The HPV FASTER consortium: Searching for the best combinations of vaccination and screening

FX Bosch Institut Catala d'Oncologia Salzburg June2016

ICO Hospitalet. Cancer Epidemiology Research Program (CERP)

Potential conflict of interest

- Research and educational institutional grants: GSK, SPMSD, Merck, Qiagen
- Personal / speaking / travel grants: GSK, SPMSD, Merck, Qiagen, RMS

This presentation is the sole responsibility of the author

Two major stages in vaccine introduction

Licensing (Phase I-III)

- Safety
- Efficacy
- Product specific / trial restricted / regulators' agreed
- Defined evaluation criteria & protocols
- FDA / Advisors / EMA / MoH & National advisory boards...

Recommendations

- Uses in a given population
 Vaccination ages, dosing and schedule
- Adverse events incidence and evaluation
- Cost-effectiveness
- ACIP / WHO GACVS / National expert bodies & societies

Potential new indications for HPV vaccination / screening (before the absence of formal Phase III clinical trials)

PROPHYLACTIC

(prevent new infections and transmission)

- Adult women
 - To 26, 30, 45+...
- Males
 - To 18, 50+...
- Infants (EPI)

AS PART OF THERAPY

(interrupt reinfections and prevent transmission)

- HPV + women in screening
- Post treatments in CIN lesions
- RRP
- GW and survivors of HPV related cancers
- Therapeutic / mixed vaccines

HIGH RISK GROUPS (selective vaccination & new screening)

HIV cohorts / MSM

- Transplants & immunosuppressed
- Autoimmune patients
- STI clinics
- Partners of HPV+
- Migrants / marginal
- Abused children

Cervical Cancer prevention: Social Partners

screenologists

- Gynecologists
- Pathologists
- GP's
- Treatment
- HPV screening technologies

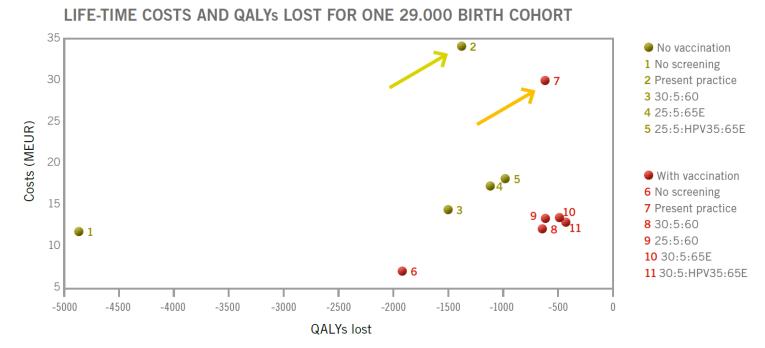
vaccinologists

- Pediatricians
- GP's
- Vaccine experts
- Infectious diseases
- Vaccine industry

Policy makers

- Centralized public health programs organizers
- Communication & education
- International Phase IV follow up
- Financing & equity

Options to control cervical cancer



	SCREENING (PAP) ^{1–3}	SCREENING (HPV)	HPV 16/18 VACCINATION ³⁻⁶
Target	Cervical cancer / pre- cancer		Cervical cancer / pre-cancer HPV infection & Interrupt Transmission
Impact	Partic	Participant + Herd effect	
Number of interventions	1050+ tests lifetime	5+ tests lifetime	3 / 2 doses no booster dose to date
Follow-up	Local diagnostic & treatments network		Phase IV effectiveness & safety studies in selected countries
Side effects	Mild / Obstetrics /over-diagnostics		Local/short-lived
Impact on other cancers	Limited / none		Significant in HPV related cancers

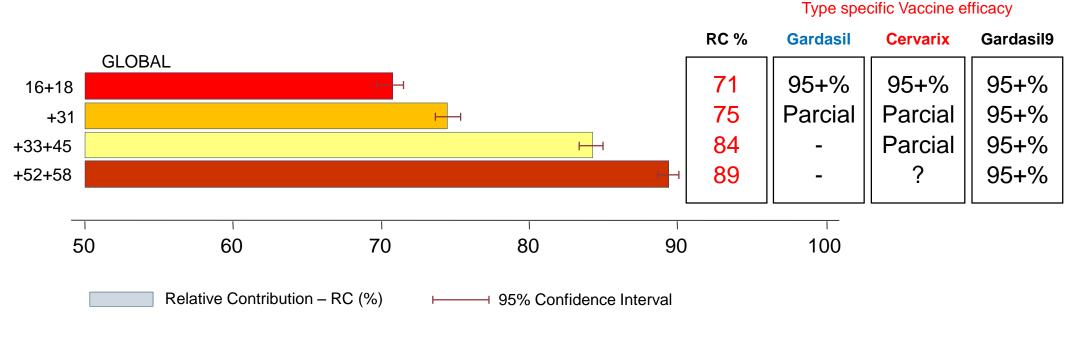
1. Kesic V, et al. Cancer Epidemiol Biomarkers Prev 2012; 21:1423–1433; 2. Anttila A, et al. Eur J Cancer 2009; 45:2649–2658; 3. Cuzick J, et al. Vaccine 2008; 26S:K29–K41; 4. EMA. Cervarix[®], European Summary of Product Characteristics, 2013; 5. GSK. Clinical Study Register. 2013; 6. Downs LS Jr, et al. Gynecol Oncol 2010; 117:486–490.

ICO Hospitalet. Cancer Epidemiology Research Program (CERP)

Cost and benefits of cervical cancer prevention in Finland

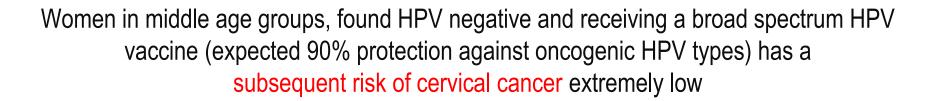
Figure 2. Under no vaccination and no screening programs (green dot number 1) the social costs of cervical cancer would be low (i.e. some $11M \in$) and the quality adjusted years of life lost very high (close to 5,000). Vaccination programs with a range of screening options (red dots 8,9,10 or 11) would have a similar cost but he number of QALYs lost would be reduced to around 500.

Accuracy of HPV screening vs. cytology


Screening test	Ν	Sensitivity (95% CI)	Specificity (95% CI)
Detection of CIN2+			
Cytology (ASC-US+)	25	70.0% (62.5–77.6%)	91.9% (90.3–93.6%)
HC2	31	90.4% (88.0–92.8%)	88.5% (87.0–90.0%)
Co-testing*	13	94.2% (90.8–97.6%)	87.7% (85.0–90.3%)
Detection of CIN3+			
Cytology (ASC-US+)	21	74.6% (65.6–83.6%)	91.8% (90.0–93.7%)
HC2	22	95.3% (93.3–97.3%)	89.0% (87.2–90.8%)
Co-testing*	12	96.7% (93.7–99.7%)	82.9% (77.1–88.6%)

*Cytology (ASC-US+) and HC2

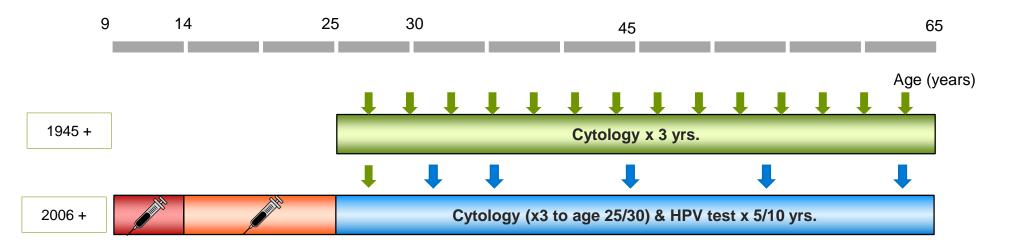
Updated meta-analysis data from Arbyn et al.^{21,22} In Bosch FX et al. Nature reviews Clinical oncology 2015

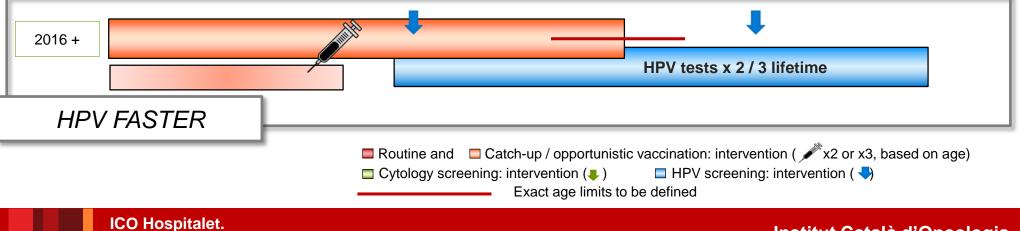


HPV type-specific contribution to cervical cancer and potential for prevention of existing vaccines

de Sanjosé S et al. Lancet Oncol, 2010 Serrano B et al. Infect Ag Cancer, 2012 Schiller J et al Vaccine 30 S 5 2012 Lehtinen M et al. Nat Rev Clin Oncol. 10 2013

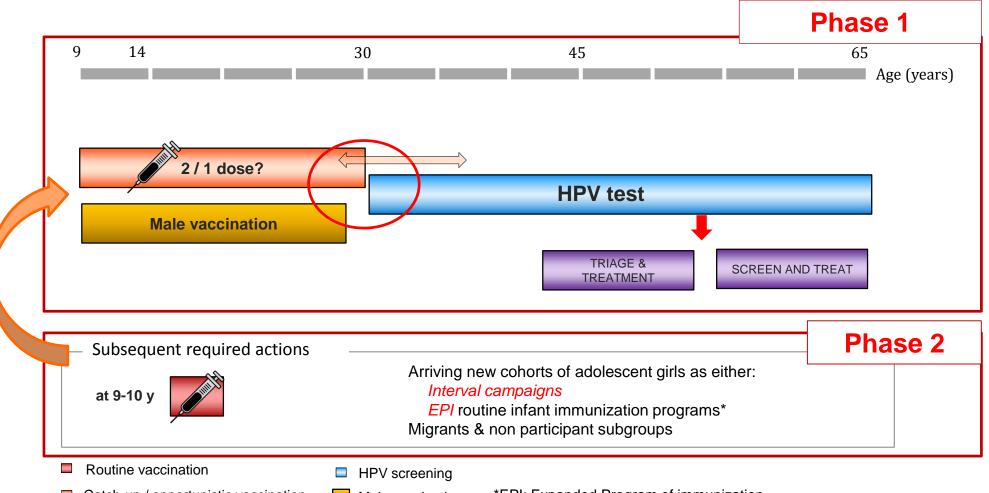
Under these risk estimates, the requirements for further screening are likely to be minimal (one / two lifetime), necessarily HPV based




NOVEL OPTIONS

self sampling, urine HPV test point of care tests screen and treat HPV therapeutics...

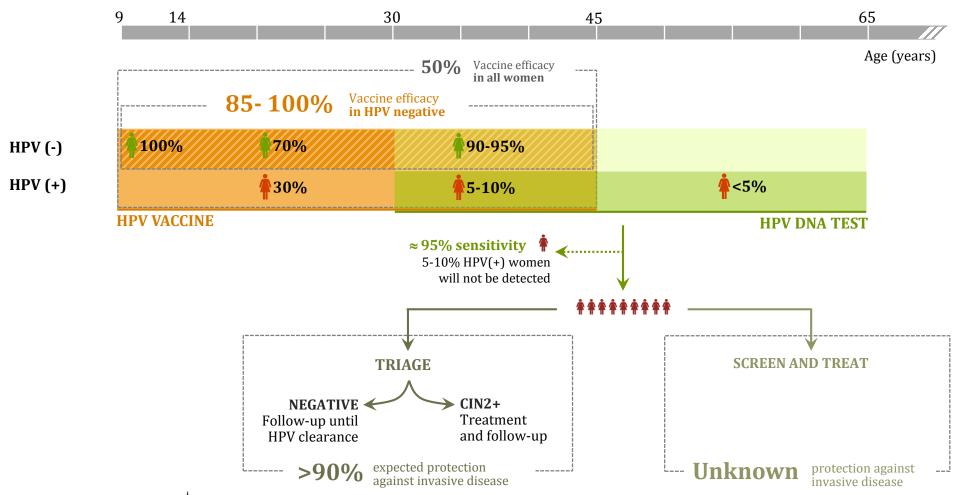
Current cervical cancer preventive strategies (simplified) and proposed HPV FASTER initiative



Cancer Epidemiology Research Program (CERP)

Institut Català d'Oncologia

HPV-FASTER deployment: potential for minimum cross sectional interventions across all age groups



- Catch-up / opportunistic vaccination
- Male vaccination *EPI: Expanded

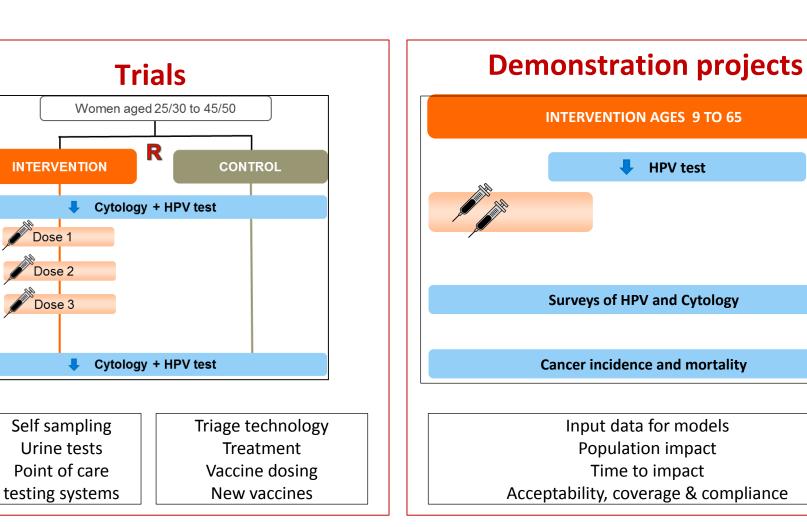
*EPI: Expanded Program of immunization

ICO Hospitalet. Cancer Epidemiology Research Program (CERP)

HPV-FASTER strategy: Core concept and expected impact

[†]Triage: HPV typing, cytology, other biomarkers, colposcopy or biopsy paired with management algorithms

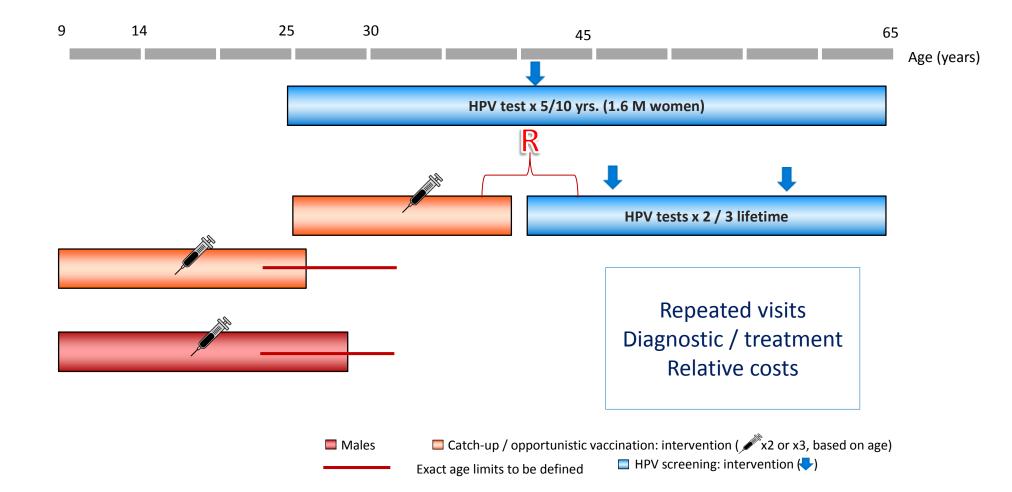
ICO Hospitalet. Cancer Epidemiology Research Program (CERP)


One HPV testing / treatment round at a sensitivity of 90-95% would reduce the incidence of cervical cancer *within years*

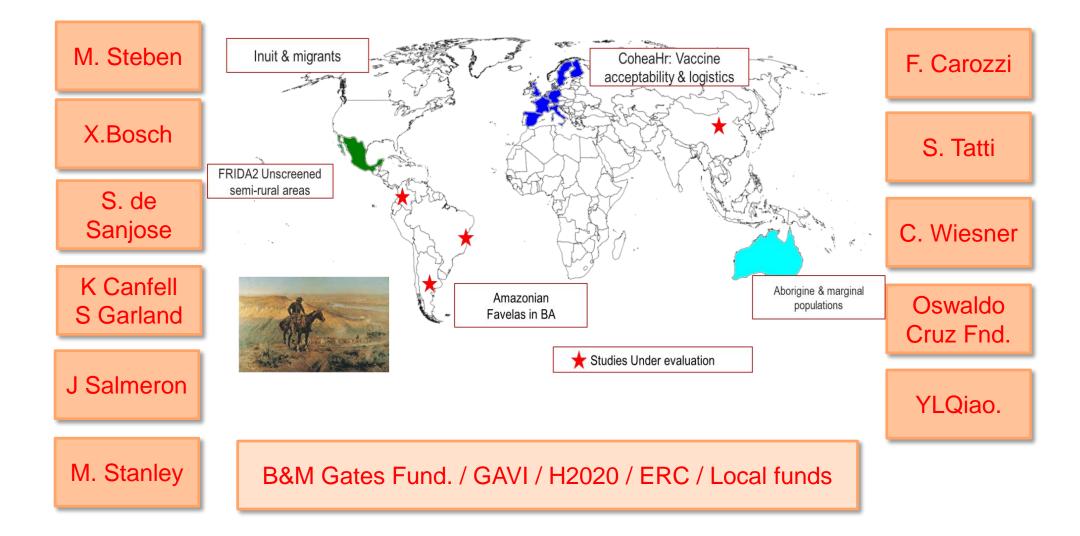
Generalized vaccination over a wider age range would ensure medium & *long term reduction* of viral infections, pre-cancer and cancer

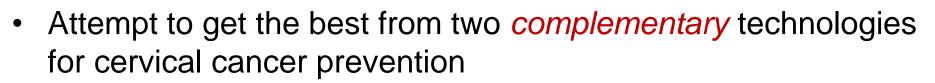
The strong herd protection effect of HPV vaccines suggests that male vaccination will *further* accelerate the reduction of HPV infections

HPV FASTER: formats & research issues


ICO Hospitalet. Cancer Epidemiology Research Program (CERP)

Institut Català d'Oncologia


Example : Enter HPV vaccination into the HPV screening program in Turkey



ICO Hospitalet. Cancer Epidemiology Research Program (CERP)

The proposal for a consortium

- Comprehensive and coherent preventive plan for women 9 to 65
- Potential for prevention of cervical cancer in the range of a reduction of 70-80% with 2/3 visits lifetime
- Accelerate cancer reduction as compared to current vaccine indications
- The costs that will make the program cost-effective and sustainable are at reach

Reasonable objectives for the next generation

Disease Control	Reduction to acceptable limits. Requires continuous intervention	Increase the number of populations
Disease elimination	Reduction of disease to zero in a given population. Requires continuous intervention	Cervical Cancer in some developed populations
Infection elimination	Reduction of infeciton to zero in a given population. Requires continuous intervention	Polio, measles
Eradication	Permanent reduction to zero worldwide. Does not require continuous intervention	Small pox
Extinction	Infectious agent does not exist, naturally or in labs.	None