Quality assurance in medical laboratories

WAKA

Kristien Van Brussel, PhD Quality manager Antwerp University hospital

Map of Europe

Map of Belgium

Antwerp University Hospital

Three dimensional overview

About us

- 573 Recognized beds
- > 3000 Employees
- > 30.000 Admissions & visits to emergency room
- > 600.000 Consultations
- Acute, university hospital
- Hospital accredited by Joint Commission International
- ISO accreditation for laboratories
- GCP certification for several activities

Content

- Quality & quality assurance
- Framework for quality management
- Key elements of a quality management system

What is quality?

- Within specifications
- Fit for purpose
- Ability to meet client expectations
- The extent to which an organisation, product, service, meets certain requirements, specifications or expectations

What is quality?

Quality Management System

Quality Management System (QMS)

Quality improvement

Framework for Quality Management

• ISO 15189: 2012

Medical laboratories – Particular requirements for quality and competence

• ISO 17025: 2005

General requirements for the competence of testing and calibration laboratories

• ISO 9001: 2008

Quality management systems - Requirements

Management requirements

ISO 9001/ ISO 17025/ ISO 15189

Organization

- 4.1 Organization and management responsibility
- 4.2 Quality management system
- 4.3 Document control

Process management

- 4.4 Service agreements
- 4.5 Examination by referral labs (subcontracting)
- 4.6 External services and supplies
- 4.7 Advisory services (competence of clinical biologists)

Management requirements

- Quality assurance and improvement cycle
 - 4.8 Resolution of complaints
 - 4.9 Identification and control of nonconformities
 - 4.10 Corrective action
 - 4.11 Preventive action
 - 4.12 Continual improvement
 - 4.13 Control of records
- Compliance with QMS and the standard
 - 4.14 Evaluation and audits
- Review of the QMS
 - 4.15 Management review

Technical requirements

Quality Assurance of the primary process (4M,1E)

• Men (competence)

- 5.1: Personnel
- 5.2: Accomodation and Environmental conditions

• Materials, Methods, Machines

- 5.3: Laboratory equipement, reagents and consumables
- 5.4: Pre-examination procedures (primary sample collection manual)
- 5.5: Examination procedures
- 5.6: Assuring quality of examination procedures
- 5.7: Post-examination processes
- Product quality
 - 5.8: Reporting of results
 - 5.9 Release of results
 - 5.10 Laboratory information management

Key elements QMS

- 1. Organization personnel
- 2. Documentation
- 3. Accomodation & environmental conditions
- 4. Pre-examination process
- 5. Equipment
- 6. Validation
- 7. Quality control
- 8. Release of results

Organization & personnel

Organization & personnel

- Qualification of personnel reflects
 - Education
 - Training Tuning
 - Experience
 - Skills
 - \rightarrow In relation to the complexity
 - \rightarrow Appropriate to the tasks performed
- Jobdescription
- Personnel records
 - Educational and professional qualification
 - Training and experience
 - Competence assessment

Organization & personnel

- Assess competence/ skills by established criteria
 - Observation
 - Review / supervision of work records
 - Problem solving skills
 - Previously analysed samples
 - Proficiency testing

Documentation

- Scope: documents that may vary based on changes in version or time.
 - Instructions, procedures, manuals,
 - Product inserts,
 - Software, databases,
- Aim: standardization \rightarrow reduce variation

Documentation

- Instructions for use, safety and maintenance
 - Manuals, language of the user
 - Available for te user (electronic manuals, websites,)
 - Actual version
- Software
 - History of SW versions
 - Software upgrades:
 - Release notes: impact of changes
 - Validation/verification (! loss of data, incompatibilities opening old files)
- Product inserts
 - Version control (! available on website, notices)
 - Documented review of impact of changes

Documentcontrol

Documentation - Requirements

- Current
- Available obsolete versions
- Approved authorized
- Clear language
- No room for interpretation
- Periodicaly reviewed
- Changes identified by author and date
- Standardized format
- Organized easy to locate

Documentation

QM: "where" are we heading vision & values

SOP: "what" do we do mandatory principles

Standard workinstructions: "how" do we do it guidance & tools

Learning & support

How do we learn what to do and how to do it

UZA'

Writing Instructions

"I have six honest serving men, They help in all I do, Their names are **Where** and **What** and **When** and **How** and **Why** and **Who".**

Rudyard Kipling

Accomodation & environmental conditions

- Lab design
 - Follows sample flow
 - Incompatible activities
- Lab conditions
 - Influence on quality of samples and results
 - Prevent cross contamination
 - Monitoring true blancs , negative control samples
- Storage conditions
 - Samples
 - Reagents
 - consumables

Pre- examination process

Pre-examination process

- Instructions for sample collection
- Recipients, additives
- Clinical information
- Correct labelling
- Transportation and handling
- Criteria for acceptance and rejection
- Condition at reception
- Traceability of portions to primary sample
 → chain of custody!
- Storrage conditions, stability, time interval to re-analysis
- Factors affecting the results (interferences)

Instrument lifecycle

Selection and purchasing

- Identification
- Acceptance testing
- Training
- Calibration
- Validation
- Maintenance
- > Repair

IN

Out of service

Chaired responsibility vendor – lab

Selection and purchasing

- Scope
 - equipment that affects the quality of the tests
 - incl. on loan and back-up instruments
- Selection of approved suppliers based on criteria
- Monitor performance of suppliers
- Service contract
 - Not only financial
 - Content of preventive maintenance
 - Instrument calibration, metrological traceability
 - Intervention times/ back up

Acceptance testing

- Upon installation and before use
- Certificate of conformity (production)
- Installation report (in the lab by the vendor)
 - Prove that specifications are met
 - Capable of achieving the necessary performance
 - Performance specifications related to intended use

Calibration

- According to manufacturers instructions
- Acceptance criteria
 - \rightarrow impact on QC (shift)
 - \rightarrow use real samples as QC material (critical decision levels)
- Metrological traceability
 - Measurement result can be related to a higher standard through a documented unbroken chain of calibrations (established calibration hierarchy)

Maintenance & Repair

- Logbook
- Preventive maintenance
- Following (at a minimum) manufacturer's shedules & instructions
- Run QC-samples before and after intervention
- Defective equipement clearly labelled out of service
- Verify performance using specified acceptance criteria
- Before routine use
- Examine the effect on previous results

Equipment records (1/3)

- Identification: manufacturer's name, type and serial number or unique identification (labnumber)
- Contact information
- Date of receiving
- Date of entering into service
- Location
- Condition when received: new, used, reconditioned
- Manufacturer's instructions
- Records of acceptance testing
- Records of maintenance carried out
- Schedule of preventive maintenance

Validation

When?

- Before introduction to routine use
- Whenever changes are made to a validated procedure

Who?

- Validation by the manufacturer
- Verification by the lab (implementation validation) if used without modifications

Validation

What?

- Methods
 - Non-standard, modified standard methods
 - In house methods (! open channel without application note)
 - Standard methods used outside their intended scope (matrix)
- IT systems
 - Datatransfer and integrity
 - Excelfiles
 - Validated formulas, macro's
 - Secured against unintended changes

Validation

How?

- Validation procedure
 - Plan (incl. criteria), results, conclusion, attachments
 - Raw data, identity of the persons performing activities
- Performance characteristics verification
 - Repeatability
 - Reproducibility
 - Accuracy
 - Metrologic traceability
 - Check reference values

Internal Quality Control

Goal: ensure quality of examination process

- Draw complete proces
- Determine critical steps based on risk analysis
- Design quality control procedures
- Quality control materials
 - React as patient samples
 - Concentrations near critical decision values
 - Covering full analytical range
 - Use independent third party control materials
- Frequency based on stability and risk of harm due to errorneous results
- Quality control rules focused on error detection
- Review data, compare to initial performance

Interlaboratory comparisons

Goal: comparability of lab results

- Appropriate to the examination & interpretation of results
- Samples should mimic patient material
- Relevant to the entire examination proces
- Provide clinical relevant challenges
- Handle as routine patient samples

Release of results

Release of results

- Violation of IQC rules
 - Reject results
 - Take correctieve action
 - Re-analyse QC samples
 - QC-samples within specifications
 - Re-examine relevant patient samples
 - After the error condition
 - After the last successful
 - Decide wich result should be released
- Performance criteria not fulfilled
 - Review IQC data

Knowledge / Experience / Care

• Review patient results

Effective actions

"Quality is never an accident; It is always the result of high intension, sincere effort, intelligent direction and skillful execution; it represents the wise choice of many alternatives"

William A. Foster

Quality is a Journey, not a Destination

