

Pilot Study

H Miniggio

HPV Transformation of tonsillar keratinocytes: structural aspects

Literature extrapolated from cervix

Previous studies on Tonsillar HPV status

- Overwhelming in favour of HPV related neoplasia
- Limited information on the tonsillar microstructural determinants of HPV infection

Kang SYJ et al. Characterization of epithelial progenitors in normal human palatine tonsils and their HPV16 E6/E7induced per tubation **Stem Cell Reports** 2015

Egawa N et al. Review. Human papillomaviruses; Epithelial tropism, and the development of neoplasia *Virusses* 2015

Klingenberg B et al. p16 INK4A expression is frequently detected in tumor-free tonsil tissue without association with HPV. *Histopathology* 2010

Fakhry et al. Associations between oral HPV 16 infection and cytopathology: evaluation of an oropharyngeal "pap-test equivalent" in high risk populations. *Cancer Prev Res (Phila)* 2011

Hobbs et al. Tonsil T-cell immunity to human papillomavirus in the absence of detectable virus in healthy adults. *Laryngoscope* 2008

HPV gains epithelial entry through the basement membrane

HPV's propagate in specific epithelial niches

Viral genotype

Oral		HPV 11
Skin (butchers warts)		HPV 7
Palmoplamtar warts		HPV 4& 6
Genital sites		HPV 6
Cervix & tonsillar epithelium -		HPV 16

Nature of the epithelial cell and the environment

Status of host immunity

High risk HPV's drive cell cycle entry

Carcinogenic to humans - HPV 16, 31 & 35

The Pharyngeal Tonsil Specialized B-lymphoid structure

Surface area 300 sq cm

Two epithelial components

Surface Epithelium

Crypt epithelium

Surface Epithelium

Surface epithelium: Cytokeratins

Surface epithelium: Mitotic activity

Langerhans cells

Surface epithelium: Spongiosis

IF IgA

Possible site of entry: Spongiosis

Possible site of entry: micro ulceration

Surface epithelium: Koilocytes

IgG fluorescence of Koilocytes

Sub epithelial inflammation and elaboration of EGF

IF for IgA

Epithelial crypts

Micro- crypts

Jovic et al 2015

Crypt immune cascade

S100

Crypt: priming of the immune system

IF IgG

HIV/AIDS: Lack of follicle dendritic cells

CD35: Zhang et al 1999

Crypt maturation

Crypt abcsess

Crypt: Koilocytes vs. p 16

Conclusion

- Tonsillar epithelium is structurally complex and arranged in 2 distinct micro architectural configurations
- Tonsillar epithelium is dynamic and exhibit complex interactions with the immune system
- Presence of koilocytes and p16+ in reticular epithelium suggests a high probability for HPV viral protein in tonsillar epithelium
- Immuno histochemistry for p35 provides insight into the HIV status of a subject