## Enkele nieuwe geneesmiddelen 2019

Prof. Koen Augustyns Farmant, Antwerpen, 04/02/2020

#### Content

- **Zolgensma**<sup>®</sup> (onasemnogene abeparvovec)
  - Spinal muscular atrophy (SMA)
- The cost of medicines
- Ozempic<sup>®</sup> (Semaglutide)
  - Type 2 diabetes

Novartis FDA 24/05/2019

Novo Nordisk EMA 08/02/2018



Zolgensma

### Introduction



# Interfering with the genetic expression

Almost all drugs work at the protein level: Receptors - Enzymes



## What about drugs acting at the level of translation?



#### Drugs acting at the level of translation



Inhibitor of bacterial protein biosynthesis by binding to bacterial ribosome

#### Inhibitor of HIV protease



What about drugs acting at pre-mRNA or mRNA level?



#### Drugs acting at pre-mRNA or mRNA level



Highly specific interaction between RNA and oligonucleotide drug via Watson-Crick base pairs



#### Spinraza® (Nusinersen) for spinal muscular atrophy



## What about drugs acting at DNA level?



#### Drugs acting at DNA level



#### Drugs acting at DNA level

- Cytostatics in Oncology
  - Aselective interaction with DNA
  - Highly toxic
- Antiviral drugs
- Future?
  - Gene therapy
  - CRISPR/Cas



#### Gene therapy

- The therapeutic delivery of nucleic acid into a patient's cells as a drug to treat disease
- Adeno-associated virus (AAV) vectors are the leading platform
- AAV
  - Non-pathogenic member of the Parvoviridae
  - Single-stranded DNA
  - Icosahedral protein capsid
- Gene
  - Replacement: compensate for loss-of-function mutations
  - Silencing: tackle gain-of-toxicity mutations (RNAi)
  - Addition: e.g. to deliver therapeutic antibodies
  - Editing: repair mutations



Recombinant AAV(rAAV) transduction pathway





#### Key challenges

- Large-scale vector manufacturing and cost
- Vector quality control
- Immunological barriers
  - NAbs from previous wtAAV infection
  - Immune response
- Efficacy
- Genotoxicity





#### rAAV pipeline

- Glybera, EMA approved 2012, but stopped
  - Gene replacement, Lipoprotein lipase
- Luxturna, FDA approved 2017
  - Gene replacement, RPE65, to treat retinal dystrophy
- Zolgensma, FDA approved 2019
  - Gene replacement, SMN1, to treat spinal muscular atrophy

- Phase 3
  - Gene replacement, FVIII, Haemophilia A
  - Gene replacement, FIX, Haemophilia B

#### Content

• Zolgensma<sup>®</sup> (onasemnogene abeparvovec)

- Spinal muscular atrophy (SMA)
- The cost of medicines
- Ozempic<sup>®</sup> (Semaglutide)
  - Type 2 diabetes

#### Spinal muscular atrophy (SMA)

- SMA is a rare genetic disease characterized by degeneration of the motor neurons in the anterior horn of the spinal cord, resulting in muscular atrophy
  - Progressive muscle wasting and mobility impairment
  - Proximal muscles (arm and leg) and respiratory muscles are affected first
- Genetic defect in the SMN1 gene
  - Encodes SMN protein (survival motor neuron)
  - Necessary for survival of motor neurons
  - Functions in transcriptional regulation and SMN deficiency results in widespread splicing defects



#### SMA genetics: autosomal recessive



- global incidence of 8.5 to 10.3 per 100,000 live births
- most common genetic cause of infant mortality
- major cause of childhood morbidity due to muscle weakness.

#### **SMA** genetics



#### Two nearly identical genes

- SMN1 results in functional SMN protein
- SMN2 (5 to 11 nucleotides difference)
  - Can encode functional SMN with identical amino acid sequence
  - BUT a C-T substitution in exon 7 favors skipping of that exon
  - mRNA lacking exon 7 leads to truncated, non-functional SMN protein

#### SMA genetics

Deletions and mutations in SMN1 lead to seriously reduced levels of functional SMN

Humans have a variable number of copies of SMN2

- 0 to 8 copies
- Copy number is an important predictor of disease



#### Spinal muscular atrophy (SMA)

- SMA has been categorized into Types 0, 1, 2, 3, and 4 based on <u>age of symptom onset</u> and maximal achieved motor abilities.
- In general, symptom onset and severity of SMA correlate with <u>SMN2 gene copy number</u> in this genetic disorder
  - Type 0 1 copy of SMN2
  - Type 1 2 copies of SMN2
  - Type 2 3 copies of SMN2
  - Type 3 3-4 copies of SMN2
  - Type 4 > 4 copies of SMN2

rare prenatal SMA

- 58%
- 29%
- 13%
- < 5% adult-onset SMA

#### Spinal muscular atrophy (SMA): different types



6

#### Spinraza® (Nusinersen) for spinal muscular atrophy



#### Spinraza® (Nusinersen): mechanism of action

- ASO with no mRNA degradation
- Modulation of splicing at pre-mRNA of SMN2 gene
- ASO binds to intron 7 avoiding splicing factor hnRNP to bind
- Exon 7 is included leading to a functional protein



#### Spinraza® (Nusinersen): clinical data

- Intrathecal injection of 12 mg
- Repeated after 2, 4 and 9 weeks and then every 4 months
- Terminal elimination  $t_{\frac{1}{2}}$  in CSF = 135-177 days
- Most side effects related to injection directly into the spine
- Phase 3 infantile-onset
  - 121 babies, age of SMA onset < 6 months
    - Improved motor control and survival
- Phase 3 later-onset
  - Average age = 3 years
    - 57% showed improvement in movement over 26% improvement on placebo



#### Zolgensma® (onasemnogene abeparvovec)

- Pediatric patients less than 2 years of age
- Spinal muscular atrophy (SMA)
- bi-allelic mutations in the survival motor neuron 1 (SMN1) gene
- AAV9 with a fully functional copy of SMN1
- Only one injection needed
- No long term results yet
- Warning for severe liver injury
- Patients with preexisting immunity to AAV9 are excluded



Farmant 2019

#### Zolgensma®: ongoing phase 3 clinical trial data

- 21 patients
  - Mean age = 3.9 months
  - SMA before 6 months and 2 copies of SMN2 (type 1 SMA)
  - No AAV9 antibodies
  - A single dose via intravenous infusion
- Clinical endpoints
  - 19 were still alive

| Endpoints                                                   | Phase 3 (N = 21)                                        | Natural history control<br>(N = 23) |
|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|
| Survival at 14 months of age                                | 13 (67%)<br>only 13 had reached the<br>age of 14 months | 25%                                 |
| Sitting without support<br>for > 30 seconds at 18<br>months | 10 (47%)                                                | 0%                                  |

#### Content

• Zolgensma<sup>®</sup> (onasemnogene abeparvovec)

- Spinal muscular atrophy (SMA)
- The cost of medicines
- Ozempic<sup>®</sup> (Semaglutide)
  - Type 2 diabetes

#### Waarom is het medicijn dat Pia's leven kan redden zo peperduur?

'Het voelt akelig als we we de waarde van een mensenleven in geld proberen uit te drukken'

## 'Ons systeem kan geen honderden Pia's aan'



Ruim 970.000 sms'jes en meer dan 1,9 miljoen euro: geld om baby Pia te redden is binnen!



#### The prices for Zolgensma® and Spinraza®

- Spinraza<sup>®</sup>
  - 88.3K EURO/year
  - First year: 529.8K EURO
  - Following years: 264.9K EURO
  - After 6 years: 1.85M EURO
- Zolgensma<sup>®</sup>
  - 1.9M EURO once
  - Novartis acquired AveXis for 7800M EURO in 2018



- Production costs
- Research and development costs
- Patent exclusivity (driver for innovation)
- Return on investment
- Market size, the blockbuster model
  - Cheap drugs for many patients
- Competition
- The Orphan Drug Act
  - For rare, deadly diseases
  - Longer patent protection, shorter approval, tax reduction
- What is the cost without intervention?
- Value-based pricing
  - Quality-adjusted life year (QALY)
  - 1 QALY = 1 year in perfect health
  - 1 QALY = 50K to 150 K USD, 40K Euro in Belgium ???
- Ethical and political considerations
  - Rule of rescue: for individuals in high need
  - Emotions, political suicide

### Factors determining the price of medicines



#### Challenges in drug discovery & development









- 1. Out-of-pocket costs
- 2. Success rates
- 3. Developments times
- 4. Cost of capital
  - **11%**



#### R&D costs of the different phases

- Drug Discovery
  - Target-to-hit
    - 1M USD, 80%, 1 year
  - Hit-to-lead
    - 2.5M USD, 75%, 1.5 years
  - Lead optimization
    - 10M USD, 85%, 2 years
  - Preclinical
    - 5M USD, 69%, 1 year

- Drug Development
  - Phase 1
    - 15M USD, 54%, 1.5 years
  - Phase 2
    - 40M USD, 34%, 2.5 years
  - Phase 3
    - 150M USD, 70%, 2.5 years
  - Submission to launch
    - 40M USD, 91%, 1.5 years

#### R&D costs of the different phases

- Global success rate
  - 4.12%
  - 24.3 projects need to be started to get 1 drug on the market
- Total development time
  - 5.5 years drug discovery
  - 8 years drug development
  - 13.5 years in total



#### How to calculate total costs?

- E.g. for target-to-hit
  - 1M USD cost per project
  - But 24.3 projects need to be started
  - So 24.3M USD out-of-pocket cost
- But cost of capital 11% per year for 13.5 years
  - So 94M USD capitalized cost
- Total costs
  - 873M USD out-of-pocket cost
  - 1778M USD capitalized cost
  - Currently estimated at **2600M USD** capitalized cost

#### R&D costs per approved NME



Farmant 2019 38

Paul, S.M. et al. Nature Reviews Drug Discovery, 2010, 9, 203

Type 2 diabetes

#### Introduction





#### Target: ATP-sensitive K<sup>+</sup> ion channel



#### Targets: GLP-1 (glucose dependent) and DPP4



#### Targets: insulin resistance in the liver



#### Target: insulin resistance in skeletal muscle





#### Target: insulin resistance in adipocytes



#### Targets: decrease glucose uptake and increase glucose excretion



#### Targets: summary



Nature Reviews | Endocrinology

Farmant 2019 47

Zhou. K. et al. Nat. Rev. Endocrinol. 2016, doi:10.1038/nrendo.2016.51

6

#### **Classification of drugs**

- Insulin deficiency
  - K<sup>+</sup> channel blockers: sulfonylureas and glinides
  - Insulin (exogenous)
- Insulin resistance
  - Metformin
  - PPAR  $\gamma$  agonists: glitazones
- Decreased uptake, increased excretion
  - $\alpha$ -glucosidase inhibitors: **acarbose**
  - SGLT-2 inhibitors: gliflozines
- Incretins
  - GLP-1 receptor agonists: incretin mimetics
  - DPP4 inhibitors: **gliptins**



#### Sulfonylureas and glinides



Antibacterial sulfonamides with hypoglycaemic adverse effects

Sulfonylureum: less antibacterial, stronger hypoglycaemic

Desamino sulfonylureum: no antibacterial, still hypoglycaemic

Farmant 2019

#### Sulfonylureas and glinides



#### Sulfonylureas and glinides



- Together with metformin or if metformin is contra-indicated
- Risk of hypoglycaemia, certainly for longer acting
- Sulfonylureas
  - Longer acting
    - Glibenclamide (2<sup>nd</sup>): Daonil®
    - Glimepiride (2<sup>nd</sup>): Amarylle®
  - Shorter acting
    - Gliclazide (1<sup>st</sup>): Uni Diamicron®
    - Glipizide (2<sup>nd</sup>): Minidiab<sup>®</sup>
    - Gliquidon (2<sup>nd</sup>): Glurenorm®
  - Glinides
    - Repaglinide: NovoNorm<sup>®</sup> (rapid onset, short acting, postprandial glucose control)

#### Metformin (biguanide)

- First choice, combined with lifestyle management
- Glucophage<sup>®</sup>
- Improves insulin resistance, reduces gluconeogenesis
- No hypoglycaemia, no weight gain
- GI adverse effects
- Lactic acidosis (can be fatal)
  - Increased risk with dose, age, renal and liver insufficiency
  - Stop before surgery



Metformin



#### PPAR $\gamma$ agonists (glitazones, thiazolidinediones, TZDs)

- Improve insulin resistance
- Pioglitazone, Actos®
- Limited use
- Hypoglycaemia, weight gain
- Sodium and fluid retention leading to heart failure
  - Increased with age, NSAID's, insulin
- Slightly increased risk for bladder cancer



Pioglitazone



#### Acarbose

- Inhibits α-glucosidases needed to digest carbohydrates in small intestine leading to reduced absorption of carbohydrates and reduced postprandial hyperglycaemia
- Glucobay<sup>®</sup>
- Limited use



- Limited effect. Always in combination with other antidiabetics.
- Frequent GI adverse effects
- Hypoglycaemia induced by other antidiabetics can only be treated with oral glucose (e.g. druivensuiker)

#### Gliflozines

- Sodium/glucose cotransporter 2 (SGLT-2) inhibitors
  - Less glucose reabsorption in the kidney causing glucosuria
- Monotherapy or in combination
- No efficacy in case of renal insufficiency
- Low risk of hypoglycaemia, small weight loss
- Risk for dehydration, polyuria
  - Increased with age and diuretics (loop diuretics, thiazides)
- Canagliflozin: Invokana®
- Dapagliflozin: Forxiga®
- Empagliflozin: Jardiance®



Farmant 2019

#### DPP4 inhibitors: gliptins

• DPP4 is a serine protease responsible for the inactivation of the incretin hormones (GLP-1 and GIP)

- Incretins are glucose-dependent
  - Low to no risk of hypoglycaemia
  - Can be considered for e.g. professional drivers
- Monotherapy or in combination
- Rare: pancreatitis

#### DPP4 inhibitors: gliptins



#### Content

• Zolgensma<sup>®</sup> (onasemnogene abeparvovec)

- Spinal muscular atrophy (SMA)
- The cost of medicines
- Ozempic<sup>®</sup> (Semaglutide)
  - Type 2 diabetes

#### GLP-1 receptor agonists: incretin mimetics



#### **GLP-1** structure



How to improve the pharmaceutical properties of peptide drugs?

- Replace amino acids recognized by degrading proteases
- Use non-natural amino acids
- Replace amide bonds
- Conjugate to albumin or F<sub>c</sub>-fragment of human IgG4
- $t_{\gamma_2}$  of albumin and IgG = 21 days



#### Neonatal Fc receptor (FcRn) recycling pathway of IgG Similar for albumin



6

#### Reversible binding to albumin via a fatty acid side chain



#### Covalent binding to a IgG4 F<sub>c</sub>-fragment



FIGURE 1 Dulaglutide structure of the molecule.





#### GLP-receptor agonists: incretin mimetics

- Incretins work glucose-dependent
  - Low to no risk of hypoglycaemia
  - Can be considered for e.g. professional drivers
- Usually in combination with other antidiabetics
- Weight loss
- GI adverse effects
- Low risk of pancreatitis
- Slower gastric emptying might influence absorption of other medicines

Farmant 2019 66

• Subcutaneous injections

#### Rybelsus<sup>®</sup> - FDA 2019: oral tablets of semaglutide 1 x dag



Coformulation of semaglutide with Salcaprozate sodium (SNAC)

Allows transcellular absorption in the stomach



# DANK U



