

Enkele nieuwe geneesmiddelen 2017

Prof. Koen Augustyns Farmant, Antwerpen, 19/12/2017

Universiteit Antwerpen

Farmant 2017

Part 1 CANCER THERAPY WITH A FOCUS ON IMMUNOTHERAPY

Content

• Cancer introduction

- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

Cancer is not one disease: Different organs

Estimated age-standardized (World) cancer incidence and mortality rates (ASR) per 100 000, by major sites, in men and women, 2012

Cancer is not one disease: Different cells and molecular subtypes

Content

- Cancer introduction
- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

Universiteit Antwerpen

Farmant 2017 8

Content

- Cancer introduction
- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

6

Stop proliferation: traditional chemotherapy

- Inhibitors of nucleotide biosynthesis
 - Methotrexate, 5-fluorouracil, thiopurines, ...
- Inhibitors of DNA biosynthesis
 - Gemcitabine, DNA intercalators, topoisomerase inhibitors, ...
- Direct DNA binding and modification
 - Cyclophosphamide, cisplatin, bleomycin, ...
- Inhibition of microtubule polymerization or depolymerization
 - Vinblastine
 - Paclitaxel

6

Stop proliferation: Hormones in oncology

- Estrogen receptor
 - Selective estrogen receptor modulator (SERM)
 - Tamoxifen
 - Estrogen receptor antagonist
 - Fulvestrant (Faslodex®)
- Estrogen biosynthesis (aromatase inhibitors)
 - Anastrozol, Letrozol, Exemestan
- Androgen receptor (prostate carcinoma)
 - Androgen receptor antagonist
 - Bicalutamide, Enzalutamide, Flutamide
 - Total antiandrogen
 - Cyproteron (Androcur®)
- Androgen biosynthesis (CYP17A1 inhibitor)
 - Abirateron (Zytiga®, prostate carcinoma)

Farmant 2017 13

Stop proliferation: antibody-drug conjugates

Trastuzumab emtansine (Kadcyla®, Roche, EMA 2013)

Options for breast cancer depending on the phenotype

2. Evading growth suppressors

- Retionblastoma (RB) protein is a tumour suppressor
- Phosphorylated RB is inactive and allows cell cycle progression
- Inhibition of CDK4/6 will stop phosphorylation of RB and stops cell cycle progression

The first CDK4/6 inhibitors recently entered the market

ΜΟΑ	Name	Active substance	Company	EMA	FDA
CDK4/6	Ibrance	Palbociclib	Pfizer	2016	2015
CDK4/6	Kisqali	Ribociclib	Novartis	2017	2017
CDK4/6	Verzenio	Abemaciclib	Eli Lilly	-	2017

To treat hormone-receptor positive, HER2 negative advanced metastatic breast cancer in combination with an aromatase inhibitor

3. Resisting Cell Death

Programmed cell death, apoptosis, is a natural barrier to cancer Apoptosis is reduced in malignant tumours and tumours resistant to therapy

CCR Focus

BH3 mimetic to inhibit BCL-2 f(H) = f(H)

Difficult target: protein-protein interaction Fragment-based drug discovery

Venetoclax (Venclyxto®) AbbVie, EMA 2016, FDA 2016

chronic lymphocytic leukaemia (CLL) when other treatments have failed

K_i < 0.0005 μM (BCL-xL) LE > 0.20 NH NO₂ NH **ABT-199** K_i < 0.00001 μM (BCL-2) LE > 0.25 $K_i = 0.048 \, \mu M \, (BCL-xL)$

4. Replicative immortality

Evading growth

- Limited number of cell growth-and-division cycles
- Then enter into
 - Senescence = a non-proliferative but viable state
 - Or cell death
- Cancer cells
 - Unlimited replicative potential
 - = immortalization

Stop replicative immortality

5. Inducing angiogenesis

Tumours continuously need new vessel formation for the delivery of nutrients and oxygen and for the evacuation of metabolic waste and CO_2

The angiogenic switch

THE BALANCE HYPOTHESIS FOR THE ANGIOGENIC SWITCH

Universiteit Antwerpen

Farmant 2017 24

Angiogenesis inhibitors

ΜΟΑ	Name	Active substance	Company	EMA	FDA
VEGF-A	Avastin	Bevacizumab	Roche	2005	2004
VEGF, PIGF	Zaltrap Eylea	Aflibercept (macular degen.)	Sanofi- Aventis	2013	2012
VEGFR-2	Cyramza	Ramucirumab	Eli Lilly	2014	2014
TKI	Nexavar	Sorafenib	Bayer	2006	2005
TKI	Sutent	Sunitinib	Pfizer	2006	2006
TKI	Votrient	Pazopanib	Novartis	2010	2009
ТКІ	Caprelsa	Vandetanib	Sanofi	2012	2011
ТКІ	Inlyta	Axitinib	Pfizer	2012	2012
ТКІ	Stivarga	Regorafenib	Bayer	2013	2012
ТКІ	Cometriq	Cabozantinib	Ipsen	2014	2012
ТКІ	Lenvima	Lenvatinib	Eisai	2015	2015

Content

- Cancer introduction
- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

Emerging Hallmarks and new enabling characteristics

Universiteit Antwerpen

6

8. Evading immune destruction

- Both the innate and adaptive immune system operate as a significant barrier to tumour formation and progression
- Tumours have found ways to avoid this immune barrier

Content

- Cancer introduction
- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

Farmant 2017 33

Immune checkpoint molecules

- Are important gatekeepers of T-cell function
 - Prevent self-destruction
 - Counteract excessive immune reaction
- Examples of inhibitory checkpoint molecules are
 - CTLA-4: cytotoxic T-lymphocyte-associated protein 4
 - PD-1: programmed death 1 receptor
 - PD-L1 and PD-L2: ligands for the PD-1 receptor
- Tumours have co-opted these gatekeeping mechanisms to allow immune escape

Immune escape

PD1 negative regulator of previously activated T cells in the periphery
Immune checkpoint blockade

ΜΟΑ	Name	Active substance	Company	EMA	FDA
CTLA-4	Yervoy	Ipilimumab	BMS	2011	2011
PD-1	Keytruda	Pembrolizumab	MSD	2015	2014
PD-1	Opdivo	Nivolumab	BMS	2015	2015
PD-L1	Tecentriq	Atezolizumab	Roche	2017	2016
PD-L1	Bavencio	Avelumab	Merck Serono	2017	2017
PD-L1	Imfinzi	Durvalumab	Astra Zeneca	-	2017

Therapeutic use

- Yervoy® (CTLA-4)
 - **Melanoma**: unresectable stage III and stage IV in patients who have received prior therapy
- Keytruda® (PD-1)
 - Advanced melanoma
 - Advanced or metastatic **NSCLC**, expressing PD-L1
 - Hodgkin lymphoma after failure of brentuximab vedotin and autologous stem cell transplant
 - Advanced or metatstatic **urothelial cancer** after treatment with platinum chemotherapeutics

Therapeutic use

- Opdivo® (PD-1)
 - Advanced melanoma, alone or in combination with Yervoy®
 - Advanced or metastatic **NSCLC** that has previously been treated with chemotherapy
 - Hodgkin lymphoma after failure of brentuximab vedotin and autologous stem cell transplant
 - Advanced or metatstatic **urothelial cancer** after treatment with platinum chemotherapeutics
 - Advanced renal cell carcinoma in patients who have been treated before
 - squamous cell cancer of the head and neck (SCCHN) where platinum chemotherapy has not worked

Therapeutic use

• Tecentriq® (PD-L1)

- Advanced or metastatic **NSCLC** that has previously been treated with chemotherapy
- Advanced or metatstatic **urothelial cancer** after treatment with platinum chemotherapeutics
- Bavencio® (PD-L1)
 - Advanced **Merkel cell carcinoma** (MCC), a type of skin cancer (rare disease)
- Imfinzi[®] (PD-L1)
 - Advanced or metatstatic **urothelial cancer** after treatment with platinum chemotherapeutics

Opdivo® vs docetaxel in NSCLC

Squamous

Nonsquamous

Horn, L. et al. CheckMate 017 and CheckMate 057, J. Clin. Oncol. 2017, 35, 3924 Universiteit Antwerpen Farmant 2017 42

Opdivo® vs docetaxel in NSCLC

Squamous

Horn, L. et al. CheckMate 017 and CheckMate 057, J. Clin. Oncol. 2017, 35, 3924 Universiteit Antwerpen Farmant 2017 43

Combination of Opdivo® and Yervoy® in advanced melanoma

Wolchok, J.D. et al. CheckMate 067, New Eng. J. Med. 2017, 377, 1345 Universiteit Antwerpen Farmant 2017 44

Combination of Opdivo® and Yervoy® in advanced melanoma

Wolchok, J.D. et al. CheckMate 067, New Eng. J. Med. 2017, 377, 1345 Universiteit Antwerpen Farmant 2017 45

Immune-related adverse events

- Pneumonitis, colitis, hepatitis, nephritits, hypophysitis, rash
- Up to several months after the last administration
- Requires close follow-up by organ specialists
- Can be treated with glucocorticoids, but this can diminish the antitumour response

Content

- Cancer introduction
- Hallmarks of cancer
 - Cell proliferation, loss of tumour suppressors, resisting cell death, immortality, angiogenesis, invasion and metastasis
- Hallmarks of cancer: therapeutic options
 - Traditional chemotherapy
 - Recent targeted cancer therapies
- Emerging Hallmarks
 - Reprogrammed energy metabolism, avoids immune destruction
- Cancer Immunotherapy
- Future

Future: first CAR-T cell immunotherapy approved, August 30, 2017

A chimeric antigen receptor (CAR) expressed on T cells recognizes CD-19 on B-cells (MHC-independent), which leads toT cell proliferation cytokine production, CTL function and tumour lysis

Chimeric Antigen Receptor (CAR) 1st Generation 2nd Generation

CARs are hybrid proteins consisting of an extracelluar single chain fragment of variable region (scFv) fused to co-stimulatory signaling domains CD28 or 4-1BB (CD137), coupled with CD3 ζ to mediate T-cell activation.

Kymriah® (Tisagenlecleucel) Novartis

- Approved for patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse
- Relapsed patients have a poor prognosis
- 63 patients: overall remission rate at 3 months = 83%
- Adverse events
 - Cytokine release syndrome 79%
 - Transient neurological events 65%
 - Infections 59%

Future: oncolytic viruses, dendritic cell vaccines

A. Oncolytic Viruses

B. Dendritic Cell Vaccines

Kamta, J. et al. Frontiers in Oncology, 2017, 7, 64

Universiteit Antwerpen

Farmant 2017 51

Part 2 DRUGS TO TREAT HEPATITIS C INFECTIONS

Content

- Hepatitis C introduction
- HCV: viral cycle and targets
 - NS3/4A
 - NS5A
 - NS5B
- HCV direct-acting antivirals
- Sofosbuvir

Different human pathogenic virusses

De Clercq, E. et al. Clinical Microbiology Reviews, 2016, 29, 695

Different human pathogenic virusses

De Clercq, E. et al. Clinical Microbiology Reviews, 2016, 29, 695

Flaviviridae

Virus Family	Genus	Species	
	Flaviviruses	West Nile	
		Yellow fever	
		Dengue	
		Japanese encephalitis disease	
Flaviviridae		Tick-borne encephalitis	
		St. Louis encephalitis	
		Zika	
	Hepaciviruses	Hepatitis C	
	Pestiviruses	Bovine viral diarrhea	

Hepatitis C

- A liver diseases caused by the Hepatitis C virus (HCV)
- A bloodborne virus
- Most common mode of infections through exporsure to small quantities of infected blood
 - injection drug use
 - unsafe injection practices
 - unsafe health care
 - transfusion of unscreened blood and blood products
 - Mother-to-child: 4-8% of births
 - Sexual transmission: infrequent
- Acute or chronic hepatitis
 - mild illness lasting a few weeks
 - serious, lifelong illness

WHO, Guidelines HCV, April 2016

Global incidence of HCV

WHO, Global Hepatitis Report, 2017 Thomas, D.L. et al. Nature Medicine, 2013, 19, 850

Universiteit Antwerpen

Farmant 2017 60

Global distribution of HCV genotypes

WHO, Guidelines HCV, April 2016

Universiteit Antwerpen

Farmant 2017 61

WHO, Global Hepatitis Report, 2017

Screening, diagnosis, prevention

- Acute infections is usually asymptomatic
- Undiagnosed for decades until symptoms due to serious liver damage develop
- Prevention
 - No vaccine for HCV
 - Hand hygiene
 - Safe and appropriate handling of needles and injections
 - Testing of donated blood
 - Use of condoms
 - Training of health care personnel

Development of therapy for chronic hepatitis C is a story of success. Sustained virological response rates have been improved from approximately 5% with interferon (IFN) monotherapy in the early 1990s to >60% with the optimised standard therapy of pegylated IFN (PEG-IFN) and ribavirin in **2006**.

Manns, M.P. et al. Gut, 2006, 55, 1350

Freatment recommendations for patients with chronic HCV (2006)

HCV genotype	Duration (weeks)	PEG-IFN dose (1×/week sc)	Ribavirin dose (daily orally)
Genotype 1	48	180 μg PEG-IFN alpha-2a	1000 mg (<75 kg)
Genotypes 4-6*			1200 mg (≥75 kg)
		1.5 µg/kg PEG-IFN alpha-2b	800 mg (<65 kg)
			1000 mg (65–85 kg)
			1200 mg (>85 kg)
Genotypes 2/3	24	180 µg PEG-IFN alpha-2a	800 mg (all)
		1.5 µg/kg PEG-IFN alpha-2b	800 mg (<65 kg)
			1000 mg (65–85 kg)
			1200 mg (>85 kg)

Manns, M.P. et al. Gut, 2006, 55, 1350

Universiteit Antwerpen

Farmant 2017 65

Content

- Hepatitis C introduction
- HCV: viral cycle and targets
 - NS3/4A
 - NS5A
 - NS5B
- HCV direct-acting antivirals
- Sofosbuvir

HCV viral cycle

HCV targets

Content

- Hepatitis C introduction
- HCV: viral cycle and targets
 - NS3/4A
 - NS5A
 - NS5B
- HCV direct-acting antivirals
- Sofosbuvir

Direct-acting antivirals

- May 2011
- First direct-acting antivirals were approved
- Incivo® (telaprevir), Janssen
 - Withdrawn in 2016
- Victrelis® (boceprevir), MSD

HCV direct-acting antivirals

ΜΟΑ	Name	Active substance	Company	EMA	FDA
NS5B	Sovaldi	Sofosbuvir	Gilead	2014	2013
NS5B	Exviera	Dasabuvir	AbbVie	2015	-
NS5A	Daklinza	Daclatasvir	BMS	2014	2015
NS5A	Harvoni (+sofosbuvir)	Ledipasvir	Gilead	2014	2014
NS5A	<mark>Epclusa</mark> (+sofosbuvir)	Velpatasvir	Gilead	2016	2016
NS3/4A	Olysio	Simeprevir	Janssen	2014	2013
NS5A	N // 1 ·	Ombitasvir	AbbVie	2015	2015
NS3/4A	VIEKITAX	Paritaprevir			
NS5A	Zenetien	Elbasvir	MSD	2016	2016
NS3/4A	Zepatier	Grazoprevir			
NS3/4A	Vosevi (+sofosbuvir, +velpatasvir)	Voxilaprevir	Gilead	2017	2017
NS5A	Movingh	Pibrentasvir	AbbVie	2017	2017
NS3/4A	Maviret	Glecaprevir			

Farmant 2017 73

Non-nucleoside inhibitor

Nucleotide inhibitor of NS5B RdRp

Targets the active site, which is highly conserved

- Effective against all genotypes
- Less development of resistance
- Triphosphate is the active form

Universiteit Antwerpen

Farmant 2017 75

6

Content

- Hepatitis C introduction
- HCV: viral cycle and targets
 - NS3/4A
 - NS5A
 - NS5B
- HCV direct-acting antivirals
- Sofosbuvir

Sofosbuvir is a prodrug targeting the liver Hepatocyte ö HO CatA, hCE1 SOF Enters the liver with first-pass metabolism O HN ···P Hint1 О НО -Р-О-ОН HO-CMPK NDPK OH CatA: Cathepsin A HO hCE1: hepatic carboxylesterase 1 Hint1: Histidine-triad nucleotide binding protein 1 HO CMPK: cytidine monophosphate kinase inactive metabolite NDPK: nucleoside diphosphate kinase

Genotype 1, 2, 3, 4, 5, or 6 Patients 12 Weeks of Treatment		
Genotype	Dosing	Cure Rates [‡]
1	GSI One Pill per Day With Food	97%
2		100%
3		95%
4		91%
5		100%
6		100%

DANK U

en

PRETTIGE FEESTDAGEN