17532

Possible local circuits between the bladder and the major pelvic ganglion in the modulation of non-voiding activity in the rat

Sara Persyn¹, Stefan De Wachter¹, Jane Eastham², James Gillespie²

¹Department of Urology, University of Antwerp, Antwerp, Belgium; ²Uro-physiology Research group, The Dental and Medical School, Newcastle upon Tyne, England

INTRODUCTION	METHODS
Bladder afferent outflow plays a critical role in bladder pathology. Abnormal outflow results in altered sensation, leading to increased voiding frequency, urge and often incontinence. β 3-adrenoceptor agonists were thought to treat these symptoms by mimicking sympathetic nerve activity and directly relaxing the detrusor (1). However, also other sites of action should be considered. It has been suggested that the peripheral ganglia might play a modulatory role in bladder physiology (2). The present study	 Functional study 10 male Sprague-Dawley rats Urethane anesthesia (1.5 g/kg, i.p.) PE-50 catheter through the dome Bladder filled to 60% micturition threshold volume Observation NVA: control and after pelvic, hypogastric and MPG transection
structures in the major pelvic ganglion (MPG) of the rat that	Closed catheter (mean time: 5 min) Closed catheter (mean time: 5 min) Fill up to 60% of MTV Start fill Stop fill
might be involved in such neural circuitry. To further explore the role of the pelvic plexus in the control of bladder activity, we evaluated isovolumetric non-voiding activity	Immunohistochemistry: Primary antibodies immunoreactive (IR) to: tyrosine-hydroxylase

(NVA) in a rat model in which the MPG's were cut bilaterally.

(TH), vesicular acetylcholine transporter (VAchT), calcitonin-gene related peptide (CGRP), nitric oxide synthase (NOS)

RESULTS

- No significant changes in the integral and amplitude after consecutive hypogastric and pelvic nerve transection
- The control integral and amplitude didn't change after complete dencentralization.
- A significant increase in the integral and amplitude of NVA was observed after MPG transection, when compared with the decentralized and control condition.
- The frequency of NVA did not change

- Adrenergic (TH) large cells and SIF cells were found in the MPG. The remainder are cholinergic (VAchT) large neurons with cholinergic inputs. All three types of neurons are surrounded by CGRP-IR sensory fibres.
- Also large NOS cells were observed and some had NOS-IR inputs, but none of them showed CGRP-IR synapses

Figure 1. The effect of different nerve transections on isovolumetric non-voiding activity (NVA). Original record (A) and the mean effect of MPG transection on the integral (B) and amplitude (maximum and mean) (C) of NVA when compared with the decentralized and control condition measured from 10 rats. * p<0.05; ** p<0.01

M

d

Α

a

Figure 2. Illustration of the complex interactions between sensory, cholinergic and adrenergic systems in the major pelvic ganglion (MPG). A demonstrates large adrenergic (red: TH-IR) neurons (+) and SIF cells (*). Both cells are sometimes surrounded by CGRP-fibres (green, arrow). B illustrates large cholinergic neurons (*) that receive cholinergic input (red: vacht-IR). Some of these neurons (+) also receive CGRP-IR fibers (green, arrow). C demonstrates NOS(red)-positive (*) and NOS-negative (+) cells surrounded by NOS-IR fibres, not by CGRP-IR (green) fibres. Calibration bars: A, 30 μ m; B, 15 μ m; C, 10 μ m. D illustrates the reflex pathways and intra-ganglionic elements involved in the motor-sensory regulation of the bladder. The dotted lines represent the transections that have been performed by our functional study.

CONCLUSIONS	REFERENCES
ocal inhibitory reflexes are found in the IPG that may function to modulate NVA uring the filling phase	 Sacco E, Bientinesi R. Mirabegron: A review of recent data and its prospects in the management of overactive bladder. Therapeutic Advances in Urology 4: 315-324.
site of action for anticholinergic and β_3 -drenergic drugs?	 de Groat WC, Booth AM. Synaptic transmission in pelvic ganglia. In: Maggi CA (ed) Nervous control of the urogenital system. Harwood academic publishers. 1993