

SUSPECT SCREENING ANALYSIS IN INDOOR DUST & AIR FROM HOMES, OFFICES AND PRE-SCHOOLS USING LC-QTOF-MS

Christina Christia^{1*}, Giulia Poma¹, Stuart Harrad², Cynthia de Wit³, Pim Leonards⁴, Marja Lamoree⁴, Adrian Covaci^{1*}

¹Toxicological Center, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium ²School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, West Midlands, United Kingdom ³Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden ⁴Institute for Environmental Studies (IVM), VU University Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands * christina.christia@uantwerpen.be

Background

University of Antwerp

Toxicological Centre

- Indoor environment is a complex and major contributor to long term human exposure to chemicals^{1,2}.
- Thousands of chemicals are present in indoor dust and air due to their additive use in products & emission from indoor activities³.
- Targeted analytical methods have provided critical information on legacy and emerging chemicals⁴.

enviroNment for human Exposure

Development of untargeted/suspect analytical methods is becoming the key tool for the investigation of the "unknowns" (alternatives, emerging, novel chemicals)².

Approach

Sampling Methods

Sample Collection

- Dust from homes (n=7), offices (n=4), preschools (*n=2*)
- Air from offices (*n*=4) were collected (2016-'17).

Dust Sampling methods

- Vacuum cleaner equipped with a nylon sock (25 μ m pore size). 1m² of carpet was vacuumed for $2'/4m^2$ of bare floor for 4'.
- Vacuum cleaner equipped with nozzle (polypropylene) and an inserted metal filter

Air Sampling method

Workflow Development HB4EU Agilent Norman database database database Keywords 'phthalate', 'carboxylate', 'phosphate', 'adipate', 'citrate', 'terephthalate', 'trimellitate', sebacate', 'perfluorinated' *in-house* database (~3000 compounds) Agilent Mass Hunter Qualitative Analysis Software Compounds

- Find by formula tool
- Limitations derived from fortified compounds (QC)
- Data files were run against the *in-house* database
- Creation of CEF files

Mass Profiler Professional Software

- Filtering of compounds of interest
- Selected compounds were present in dust &

Pumps equipped with absorbents (PUFs, GFFs, Env+ Cartridges) were deployed.

Results

100%

90%

Carboxylic Acids Dicarboxylic Acids Phosphates Adipates Benzoates Acids **Graph 1.** Contribution of compound groups found in ESI+ and ESI- ionization mode.

analysis

Data

- Native compounds were found in samples ranging 24-100% with confidence level of identification 1.
- Most positive hits were detected in dust (level of identification 3).
- Dominant compounds were carboxylic acids in both ionization modes.
- Drugs and personal care products were the major application categories of the identified compounds.

Conclusions

preparation protocol & data analysis Sample V

*materials; polymers, resins, films, cements, sheets, n.a.; not available

Graph 2. Applications of compounds identified in ESI+, ESI- mode.

References

1) Dong et al., 2019. Environ. Sci. & Technol., 53, 7045-7054., 2) Cefic-LRI Programme, European Chemical Industry Council, cefic-Iri.org **3)**Dionisio et al., 2015. Toxicology reports, 2, 228-237. **4)** Christia et al., 2018, Environ. Res., 171, 204-212.

- workflow were developed and applied successfully. Level of Identification 1 was achieved for all known native standards.
- Solver S detection frequency in samples.
- ► ESI-: 16 compounds were identified with 15-20% frequency detection in samples.
- ❑ Dust contained the majority of identified compounds compared to air samples.
- → Additives of drugs and personal care products were mostly identified in dust and air.

Acknowledgements

Financial support was provided by the European Chemical Industry Council (CEFIC) to the Shine project (LRI-B17). Drs. Christina Christia acknowledges a doctoral fellowship BOF DOCPRO 3 and Dr. Giulia Poma acknowledges the provision of her post-doctoral fellowship from the University of Antwerp.