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Outline

PART 1. NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

• Talbot’s method on new contours

• Rational approximation to the exponential

f(t) =
1

2πi

∫

Γ

etzF(z) dz

PART 2. APPLICATION TO THE COMPUTATION OF SPECIAL FUNCTIONS

• The exponential function

• The Mittag-Leffler functions

• The gamma function

• The exponential integral

• Application to PDEs



PART 1. INVERSION OF THE LAPLACE TRANSFORM

Laplace Transform and Inverse Formula (Bromwich)

F(z) =

∫∞

0

e−ztf(t) dt, f(t) =
1

2πi

∫σ+i∞

σ−i∞
etzF(z) dz, σ > σ0

Re z

Im z

σσ
0
 



Bromwich Integral:

f(t) =
1

2πi

∫σ+i∞

σ−i∞
etzF(z) dz, σ > σ0

Efficient quadrature rules for this integral? Will consider

• Talbot’s method (= trapezoidal rule on deformed contour)

• Rational approximation to exp(z)

Several details are in fact

For example,

• In Talbot’s method, new contours and improved parameters, and

• In the rational approximant method, the use of
best approximation rather than Padé.



Method 1: Talbot [1979]

Deform Bromwich line to: Re z

Im z

z(θ) = σ + µ
(
θ cot θ + ν i θ

)
, −π ≤ θ ≤ π

This converts Bromwich integral into:

f(t) =
1

2πi

∫π

−π

ez(θ)tF
(
z(θ)

)
z′(θ) dθ.

Discretize by trapezoidal/midpoint rule, on uniform grid of [−π, π]

f(t) ≈ h

2πi

N∑

k=1

ez(θk)tF
(
z(θk)

)
z′(θk).



Reason for success? Use partial fraction expansion

θ cot θ = 1 + 2θ2
( 1

θ2 − π2
+

1

θ2 − 4π2
+ . . .

)

to deduce that integrand decays rapidly on Talbot contour:

exp
(
z(θ)t

)
= O

(
exp

( 2µtθ2

θ2 − π2

))
, |θ| → π−.

Re z

Im z
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To eliminate wasteful nodes, we propose a

Modified Talbot Method Trefethen & JACW [2005]

z(θ) = σ + µ
(
θ cot αθ + ν i θ

)
, −π ≤ θ ≤ π

with
0 < α < 1.

Optimal parameters σ, µ, ν, α for the two Talbot contours?

Analyze with the help of model problem

F(z) =
1

z − λ
⇐⇒ f(t) = eλt, λ < 0

(Motivation λ Ã A ∈ IRn×n,
F(z) = (zI − A)−1, f(t) = exp(At) )



By balancing various error terms, the following formulas for
optimal contours have been derived JACW [2005]

Original Talbot method:

z =
N

t

(
0.3221 θ cot

(
θ
)

− 0.2407 + 0.2827 i θ
)

Modified Talbot method:

z =
N

t

(
0.5017 θ cot

(
0.6407 θ

)
− 0.6122 + 0.2645 i θ

)

For the model problem
F(z) = (z − λ)−1, f(t) = eλt,

these parameter choices achieve convergence rates

Abs. Error. = O
(
2.6−N

)
, Abs. Error. = O

(
3.9−N

)
,

respectively, for the original and modified Talbot contours.



Two recently proposed alternatives to Talbot’s contour:

Parabolic
Gavrilyuk/Makarov [2000]

z = µ
(
iw + 1

)2

−∞ < w < ∞

Hyperbolic
López-Fernández/Palencia [2004]

z = µ
(
1 + sin

(
iw − α

))

−∞ < w < ∞
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With optimal parameter choices, the convergence rates are

Parabolic

Abs. Error = O(2.8−N)

Hyperbolic

Abs. Error = O(3.2−N)

Summary

Contour Orig Talbot Parabola Hyperbola Mod Talbot

Conv Rate O(2.6−N) O(2.8−N) O(3.2−N) O(3.9−N)

(Applies to model problem

F(z) =
1

z − λ
⇐⇒ f(t) = eλt, λ < 0 )



Estimation of Optimal Parameters?

Consider simpler problem: integrals on IR

I(f) =

∫∞

−∞
f(x) dx.

Approximate by trapezoidal sum, with spacing h

Ih(f) = h

∞∑

k=−∞
f(kh).

Discretization error,
DEh(f) = I(f) − Ih(f),

often unexpectedly small:



Example:
∫∞

−∞

e−x2

1 + x2
dx = πe(1 − erf 1)
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Error Estimate Based on Contour Integrals [Martensen, 1968]

1

2πi

∫

¤
N

f(z) cot
πz

h
dz =

h

π

N∑

k=−N

f(kh)

=⇒

DEh(f) = Re
∫∞+ia′

−∞+ia′
f(z)

(
1−i cot

πz

h

)
dz

=⇒

|DEh(f)| ≤
(

coth
πa′

h
−1

) ∫∞+ia′

−∞+ia′
|f(z)| dz

Often

|DEh(f)| = O(e−2πa/h)

Re z

Im z

a

a′



A question-and-answer session:

Q: What if f(z) is entire?

A: Growth-rate of f(z) as z → ±i∞ comes into play.

Q: What if f(x) is not real-valued?

A: Will have two error terms, one for upper half-plane, one for lower.
Need to estimate separately. ( =⇒ Discretization Error, Two Parts)

Q: How does one compute infinite trapezoidal sum?

A: Rapidly decaying terms, truncate ( =⇒ Truncation Error)
(Slowly decaying terms, apply series acceleration.)



Apply the above ideas to the Bromwich integral:

Match two parts of discretization error to truncation error.
This gives two equations.

If contour contains only two parameters, solve.

If contour contains three parameters, solve for two of these.
Thus obtain error estimate involving only one free parameter.
Minimize error estimate with univariate routine.

Summary (reprise)

Contour Orig Talbot Parabola Hyperbola Mod Talbot

Conv Rate O(2.6−N) O(2.8−N) O(3.2−N) O(3.9−N)



Method 2: Rational Approximation to the Exponential
Vlach [1969], Luke [1972]

Recall the Bromwich integral

f(t) =
1

2πi

∫

Γ

etzF(z) dz.

Make the change of variables s = zt, i.e.,

f(t) =
1

2πti

∫

Γ ′
esG(s) ds, G(s) = F(s/t).

Approximate es by a type (N − 1,N) rational function

r(s) =

N∑

k=1

ck

s − sk



and substitute into Bromwich integral. This yields

f(t) ≈
N∑

k=1

wkG(sk), wk = cke
skt−1

Note: This quadrature formula is closely related to Talbot quadrature

f(t) ≈ h

2πi

N∑

k=1

ez(θk)tF
(
z(θk)

)
z′(θk)

Put
s = zt, sk = z(θk)t, ck = z′(θk)N

−1;

then the two formulas are seen to be identical.

Conclusion: The Talbot method may be seen as a rational approxima-
tion method, with the nodes of the trapezoidal rule featuring as the poles
in the rational approximation. Details in
Trefethen, Weideman, Schmelzer, “Talbot Quadratures and Rational Approximation”,

Tech. Rep. 05/20, Oxford University Computing Laboratory, 2005.



How to choose r(s)?

Padé approximation Vlach [1969], Luke [1972]

• Highly accurate, but only in small regions

• Coefficients ck grow rapidly as N → ∞ =⇒ ill-conditioned

Alternative choice of r(s) (Trefethen, JACW, Schmelzer [2005])

Best approximation to es on IR− (Famous 1/9 problem)

• Cody, Meinardus, Varga [1969]
Chebyshev rational approximations to e−z, application to parabolic PDE

• Carpenter, Ruttan, Varga [1984]
Computation of (N,N) coefficients by Remes algorithm

• Magnus [1994], Aptekarev [2002] Sup-norm error estimate on IR−

‖es − r∗(s)‖ = inf
r
‖es − r(s)‖ ∼ 2

(
9.289 . . .

)−(N+1/2)
, N → ∞



Technicality: Literature considers only (N,N), we need (N − 1,N)

Define
r(s) = r∗(s) − r∗(∞)

(Not quite optimal, but close for N À 1)

Compute r∗(s) by

• Remes algorithm (expensive and cumbersome)

• Carathéodory-Fejér method (only approximate, but practical)

Will refer to this as the CMV-CF method
(Cody, Meinardus, Varga, Carathéodory, Fejér)



Summary

Contour Mod Talbot CMV-CF

Conv Rate O(3.9−N) O(9.3−N)

Numerical results were computed in MATLAB:
To achieve machine precision

2
(
9.289 . . .

)−(N+1/2)
∼ 2−52 =⇒ N ∼ 16



PART 2. COMPUTATION OF SPECIAL FUNCTIONS

Exponential function: ez

Re z

Im
 z

Modified Talbot, N = 16
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Application to Matrix Exponential: Recall scalar model problem

eλt =
1

2πi

∫

Γ

ezt F(z) dz, F(z) =
1

z − λ
, λ < 0

Formulas also valid when λ Ã A ∈ IRn×n, A s.p.d.

eAt v =
1

2πi

∫

Γ

ezt F(z) dz,
(
z I − A

)
F(z) = v

Note: Each function evaluation in quadrature rule
=⇒ one linear system solve

Linear systems can be solved efficiently:

• A single Hessenberg or Schur decomposition of A is required

• Can also be solved in parallel



Example: Heat equation in 2D
ut = c∇2u, (x, y) ∈ [−1, 1]2

Dirichlet BCs u = 0 on boundary, and initial condition
u(x, y, 0) = ex(1 − x2)(1 − y2)

Problem: To compute solution at t = 1, say.

Numerical procedure: Approximate Laplacian by discrete operator (e.g.,
5-point finite difference stencil). This gives semi-discrete system

ut = Du, u(0) = u0.

with solution
u(t) = eDt u0.

Approximate as above by inverting Laplace Transform

eDt u0 =
1

2πi

∫

Γ

ezt F(z) dz,
(
zI − D

)
F(z) = u0



Errors at (x,y,t) = (0, 0, 1) (with c = 0.02 )
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Conclusion:
To reach 10 digit accuracy elliptic problem (linear system) needs to be
solved 5 times in case of CMV-CF method, and 8 times for Mod Talbot.



Comparisons with expm (built-in MATLAB routine for matrix exponen-
tials, based on Padé approximation and scaling)

Mesh size ∆x = 2/M, ∆y = 2/M, matrix is of order (M− 1)2× (M− 1)2

Use N = 16 quadrature points:

M CMV-CF expm
20 0.10 0.36

40 0.33 20

60 0.73 780

CPU time (in s) computed in MATLAB 7 on Pentium 4 (3.4 GHz)

Have also found that methods based on Talbot contours are
numerically more stable than expm



An advantage of Talbot over CMV: Sols required at many values of t

New value of t =⇒ new quadrature points =⇒ new system solves

Can avoid additional system solves by fixing parameters at, say, t = t∗
and solve linear systems once. Then use solution vectors with t depen-
dent coefficients to compute quadrature sum at nearby values of t.
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The Mittag-Leffler Functions:

Recall scalar model problem:

exp(λt) =
1

2πi

∫

Γ

ezt F(z) dz, F(z) =
1

z − λ

Generalize to:

Eα(λtα) =
1

2πi

∫

Γ

ezt F(z) dz, F(z) =
1

z − z1−αλ

Series:

Eα(z) =

∞∑

k=0

zk

Γ(αk + 1)

Special cases:

E0(z) =
1

1 − z
, E1/2(z) = ez2

erfc(−z), E1(z) = ez



Application to (time)-fractional PDEs (sub-diffusion)

Dα
t u = c∇2u

Dα
t is Caputo’s fractional derivative

Dα
t f(t) =

1

Γ(1 − α)

∫ t

0

f′(s)
(t − s)α

ds, (0 < α < 1).

As α → 1, fractional derivative Ã ordinary derivative.

Semi-discretize c∇2 Ã D, and take the Laplace Transform. Then

u(t) =
1

2πi

∫

Γ

ezt F(z) dz,
(
z I − z1−αD

)
F(z) = u0



Numerical experiment: Fractional 1D heat equation, with α = 1/2

D
1/2
t u = uxx, 0 ≤ x ≤ π,

subject to

u(x, 0) = sin x, u(0, t) = 0, u(π, t) = 0.

Analytical solution
u(x, t) = eterfc(

√
t) sin x.

Qualitative properties similar to

u(x, t) = e−t sin x

but steady state approached at slower rate.
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Gamma Function (Schmelzer & Trefethen, [2005])

Hankel’s contour integral for reciprocal of Gamma function

1

Γ(ζ)
=

1

2πi

∫

Γ

ez z−ζ dz
Re z

Im z
Γ

(Actually, well-known formula from tables of Laplace transforms
tζ−1

Γ(ζ)
=

1

2πi

∫

Γ

ezt z−ζ dz, Re ζ > 0

Let t = 1. )

Approximate Hankel’s formula with Talbot/CMV quadrature

1

Γ(ζ)
≈

N∑

k=1

wk z−ζ
k



Re ζ

Im
 ζ

Relative Error, CMV−CF Method, N = 16
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Exponential Integral:

E1(ζ) =

∫∞

ζ

e−t

t
dt, |arg ζ| < π

From tables of Laplace Transforms:

E1(ζt) =
1

2πi

∫

Γ

ezt log(1 + z/ζ)

z
dz, Re z >

{
0

−Re ζ

Put t = 1 and approximate by Talbot and/or CMV quadrature:

E1(ζ) ≈
N∑

k=1

wk

log(1 + zk/ζ)

zk



Re ζ

Im
 ζ
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Conclusions

Two new methods for ILTs were introduced, both work well:

• Method based on best approximation to ez on IR− is more accurate,
but

• Modified Talbot method more flexible and easier to implement

As tools for the computation of special functions:

• These methods seem to be competitive for functions of matrix
argument (matrix exponential, Mittag-Leffler), but

• For functions of scalar argument (gamma, exponential integral)
further investigation and fine tuning are required


