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The complete revision of A & S (1964)

-

9

-

For the first time after the 1964 version a complete
revision of Abramowitz and Stegun

The new DLMF (Digital Library of Mathematical
Functions) will appear in a hardcover edition and as a
free electronic publication on the World Wide Web.

New chapters on mathematical methods (such as
computer algebra, asymptotic analysis) and new
functions classes (such as g—hypergeometric
functions, functions of matrix argument) will be
included.

This project started at NIST in 1999. It is expected now
that the new book, the web version, and the CD version
become available in 2006. J
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The complete revision of A & S (1964)
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What to have at my desert island?

-l _,;-E

Abramowitz & Stegun !
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The complete revision of A & S (1964)

Figure 2: The Airy function |Ai(z)| in the complex plane
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The complete revision of A & S (1964)
B -

Figure 3: The Hankel function |FZ\"(z)| in the complex
plane

J
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Recursion relations

-

To compute
# Bessel functions
# Legendre functions

o Confluent hypergeometric functions (Kummer,
Whittaker, Coulomb)

Parabolic cylinder functions
Gauss hypergeometric functions

e o o

Incomplete gamma and beta functions
o QOrthogonal polynomials
recursion relations are important and frequently used.

[ | | ]
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The recursion relations are the form
Un+1 + anln + 0pyn—1 =0, n=1,23,...

When there are two linearly independent solutions f,, and
gn, such that

lim & =0,
n—oo gn

the computation of the minimal solution
fn, n=2,34,...

from fy and f; (forward recursion) is usually very unstable.

The solution g, is called a dominant solution.

|

LW NMeMcsof Special Functions, ICNAAM 2005, Rhodes, Greece, 16—20 September. — p.8/62




- N

For example, the functions

$n—1

(n — 1)1

fnlx) =e"—1—ao—- - - — folz) =€, filz) = "1,

satisfy the recursion relation
X X
Uil — <1+ —) Un & ey 1 =0, n=12.3....
n n
Computing f,.(1) with Maple, standard 10 Digits, we see

that
fi3(z) = —0.340710500 x 1072,

a negative number.

[ | | ]
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The function

$n—1

(n — 1)1

gn(x) =" — fr(x)=1+24+ -+

IS for x > 0 a dominant solution of the recursion.
It can be computed in a stable way with starting values

go(x) =0, gi(x)=1.
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The recursion for the functions f,, (x) follows from the
simpler recursion

an

Yn+1 = Yn — -
.

Use this in backward direction with false starting value
f21(1) — (. Then

fi3(1) = 1.7287667139 x 10710 ..

which is correct in all shown digits.

Backward recursion for a minimal solution with false starting
values is the basis for the Miller algorithm.

\ \
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The set of 26 recursions for , /7 — functions
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The Gauss hypergeometric function is defined by

o ( b ) S @B “{j(j;)”).

(¢)pn!

n=0
In this form it is defined for |[z| < 1,and ¢ # 0, —1, —2,. ...

Several recursion relations with respect to the parameters
a, b, c exist. In fact, we have 26 relations for the functions

a+en, b+ e9n
Yn = 2£1 ;2]
C+ €3N

[ | T ]
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For example, the Gauss hypergeometric function

a+mn, b
yn2F1< . ;Z>

satisfies the recursion relation
(a+n)(z—1)ypr1+(2a+2n—c—az—nz+bz)y,+(c—a—n)y,—1 = 0.

There are important questions (from a numerical point of
view).

\@ Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16—20 September. — p.13/62




The set of 26 recursions for o F7— functions
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Questions:

# Is this relation stable for computing this Gauss function?
That is, can we compute y,,, n > 2, from yg, y1 IN a
stable way, or is y,, a minimal solution ?

# Can we find a second solution of this relation, and, if
yes, is this solution a minimal or dominant solution ?

#® Have these solutions the same properties (minimal,
dominant) for all complex values of z ?
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The set of 26 recursions for o F'1— functions
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We consider recursion with respect to n of the
hypergeometric function

(a +e1n, b+ ean )
2 b ; 2
C+ €3N

where
g; = —1,0,0r 1.

There are 3° — 1 = 26 possible recursions.
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Because of the symmetry relation

a, b b, a
21 ;2 | =9l ; 2
C C

— b
211 2 =1 —2)""%F R
C C z—1

only 5 basic forms need to be studied.
The remaining 21 recursions follow from these 5 recursions.

| . T
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The set of 26 recursions for o F'1— functions
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The basic forms are

b b
S (a—l—n, —I—n;z>’ JF (a—l—n, —I—n;z>’
C cC—n
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It is also important to consider the following three cases

a, b

2 I v
cC—n
a—mn, b

21 .
c+n

a—n, b—n
2 I ;2
c+n

which follow from the five basic forms by changing the
n—direction.

| . T
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The set of 26 recursions for o F'1— functions
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Remember the theory of the Gauss differential equation.
The six functions

a, b l4+a—c, 1+b—c
w1 = 2F] 2 wo = 217 * 2
c 2—c

a, b e a—b c—a, c—b
w3z = oI ; L—2z1, wy = (1—2) o Iy 1=z,
a+b+1—c c+1—a—-09

—1 _im\a a, a+1—-c 1 —1 im b,b+1—c 1
ws = (27 e T) 4 Fy i= ], we = ("t R ;=
a+1—-5b = b+1—a =

satisfy the same differential equation.
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Each w, can be written as a linear combination of two other
w—functions. For example

Na+1—c)'(b+1—¢)
I'(l—c)(a+b+1—¢)

MNa+1—-—c)l'(b+1—-c)'(c—1)
['(1—c)['(a)T'(D)

w1 = w3 —

w2 .
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Observations:

# Each term in the right-hand side satisfies the same
differential equation as w;.

# Each term in the right-hand side satisfies the same
difference equation as w.

#® Hence, by considering several linear combinations, we
can find several solutions of the same difference
equation (recursion relation).

| |
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Given the recursion relation

Yn+1 + AnYn + bnyn—1 =0
we compute

o= lim a, (= lim b,,
n—oo n—oo

and consider the characteristic polynomial

t* +at+ =0

with zeros ¢; and t-.
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The set of 26 recursions for o F'1— functions
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Then, if |t1| # |t2|, the difference equation has two linear
iIndependent solutions f,, and g,, with the properties

fﬁ+1 In+1
~ tla

In Gn

~ 19.

If [t1| > |t2|, we call f,, a dominant solution, and g,, the
minimal solution.
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For all hyper recursions, ¢; and ¢, do not depend on a, b, c;
they may depend on z.

For all hyper recursions, ¢; and ¢, are non-zero and finite
(except for some simple z—values).

By verifying when |t1| = |t2|, we find domains in the
complex z—plane where we have to identify minimal and
dominant solutions of the five basic recursion relations.
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The set of 26 recursions for o F'1— functions
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The recursion for 5 F} (a +n, b+ n; z) .
C

There is a pair { f,., g, } with

lim fut1 =11 = !
n—oo  fp (1—+/2)*
In+1  , 1
I to = R

n—0oo  gn (1+V2)

The equation |t1| = |t2| holds when z < 0. The function
related with ws is minimal; the other five functions related
with the other w; are dominant.

[ | s ]
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The set of 26 recursions for o F'1— functions
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In this case we have

a+n, b+n
yl=2F1< ;Z>,
c

MNa+n+1—-c)'(b+n+1-—c) ( a+n, b+n )
ol 1 —z].

Y3 = )
Ma+b+2n+1-0c) a+b+2n+1—c

When z is not on the negative real axis:
y1 IS dominant, y3 is minimal.
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The set of 26 recursions for o F'1— functions
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The Jacobi polynomial is a special case:

a+8+n+1 1 1 _
qua,ﬁ)(x):(n-l—a) (1-|—:c) N at+l+n, a+f+n+ ;:c 1
n 2 a1 r+1

Forward recursion is not unstable for P{*"” )(:c) when
x € [—1,1].
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The set of 26 recursions for o F'1— functions

The recursion for 5 F} (a +n, b+ n; z) .
C—nNn

There is a pair { f,., g, } with

1m =11 = :
n— 00 fn (3 —+ w)3
32(1 —
lim Intl _ to = ( w)’
n—0o0  (p (3 — w)3

where w = /1 + 8z. The equation

t1| = |t2]

%@holds on the curve shown in Figure 4.

-

|
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Figure 4: The curve |t,| = |t,| for the case (+ + —).

The function y» related with w- is minimal in the domain
inside the curve: the function related with w3 is minimal in
the domain outside the curve; the other functions related
with the other w; are dominant.
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The set of 26 recursions for o F'1— functions
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The corresponding vy (always dominant), y», y3 for this
case:

a+n, b+n
y1 = 2I1 ;2]
c—n

F'b+1—c+2n)(a+1—c+2n) o
MNa+n)L'b+n)['(1 —c+n)'(2—c+n)

n

y2 = (—2)

l4+a—c+2n, 1+b—c+ 2n
o Fy 2
2—c+n

F'b+1—c+2n)(a+1—c+2n) a+n, b+n
Y3 = o F1 1l —2z].

'l—c+n)l'(a+b+1—c+ 3n) a—l—b—l—l—c—|—3n,

[ | s ] J
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The set of 26 recursions for o F'1— functions
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The recursion for 5 F} (a T b; z).

C
There is a pair { f.,, g, } with

lim Jnt1 =t =1,
n—oo  fp,
1
lim Intl _ to =
n—oo  (gp 1 — 2z
The equation
1] = [t2]

holds on the curve shown in Figure 5, a circle with centre 1

%and radius 1. J

[ | s ]
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Figure 5: The curve |t1| = |t-]| for the case (+ 00).

The function related with w3 is minimal inside the circle; the
function related with ws is minimal outside the circle: the
other functions related with the other w; are dominant.
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The set of 26 recursions for o F'1— functions
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The vy, (always dominant), y3, y5 for this case:

I'a+n+1-c a+n, b
Ys = o 11—z,
Fla+b+n+1-c¢ a+b+n+1—c

I'n+1—c+a) a (a+n, at+tn+l—-c 1)

yv:“%)?ﬂl+a+n—@21 atn+l-b 7

\@ Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16—20 September. — p.33/62
\




The set of 26 recursions for o F'1— functions
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The recursion for 5 F} (a T b; z).

C— N
There is a pair { f.,, g, } with

fn—i—l

O
. gn+1 4~
lim = f9 = — .
n—oo  (p (1 — z)2
The equation
t1] = |t2]

holds on the curve shown in Figure 6.

J
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Figure 6: The curve |t;| = |t-| for the case (4 0 —).

The function related with w- is minimal in the domain inside
the inner curve; the function related with w3 is minimal in
the domain between the two curves; the function related
with ws is minimal in the domain outside the outer curve;
the other functions related with the other w; are dominant.

[ | e ]
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The vy, (always dominant), y2, y3, ys for this case:

a+mn, b
y1 = oI -2
c—n

2 L(b+1—c+n)'(a+1—c+2n) l+a—c+2n, 14+b—c+n
yQI(—Z) 2F1 y < 3
MNa+n)['(1 —c+n)I'(n+2—c¢)) 2—c+n

F'b+1—c+n)l'(a+1—c+2n) a+mn,b
Yys = oIy 1l —2z2 ],
'l—c+n)I'(a+b+1—c+2n) a+b+1—cH+2n
. I'(l4+a—c+2n) a+n,a+1l—c+2n 1
ys = (—=2) o b1 = .
I'l—c+n)'(14+a—>b+n) a+1—b+n z

N |
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The set of 26 recursions for o F'1— functions

The recursion for 5 F} (a’ b : z).

c+n
There is a pair { f.,, g, } with

. . z—1
lim fut1 =t =1, lim Intl _ to = .
n—0o0 fn n—oo  (gp <

The equation |t1| = |t2| holds when Rz = %. The function
related with w; is minimal when Rz < %; the function

related with w, is minimal when %z > ; the other
functions related with the other w; are dominant.

S . .
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The set of 26 recursions for o F'1— functions
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The y1, y4 for this case:

I'(n + ¢
— (» —1)"
p=(=-1) ['(c+1—a—b+n) s

c+n—a, c+n—>0
2F1 ,1—2’ .
c+n+1—a—>

[ s = )
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The (00 —),(— 0+),(— — ) recursions:

These recursions need extra attention, although they are
"negative n" cases of some of the basic forms.

The domains for these recursions are the same as those for
the (00 +),(+0 —), (+ + —) cases, respectively, which
we have done earlier.

However, for each case (and each domain) the minimal and
dominant solutions have to be identified again.
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Conclusions (so far):

o We have identified minimal and dominant solutions for
all 26 recursion relations for the hypergeometric
functions.

o We have described the domains in the complex

z—plane where these minimal and dominant solutions
have been identified.

® Proofs of these properties (not mentioned in this
lecture) are available, and are based on behaviour of
solutions near the singular points 0, 1, co of the Gauss
differential equation.

\ \
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The set of 26 recursions for o F'1— functions
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Literature:
® Papers on recursions (theory): Wong & Li (1992a,b).
® Papers on recursions (numerics): Gautschi (1967), Olver (1967).
® Book on recursions: Wimp (1984).
® Books on asymptotics: Olver, Wong, Luke.
® Recent papers on asymptotics of Gauss functions: Jones, Olde Daalhuis, Temme.
® Paper on numerics of Gauss functions: Forrey (1997).
® Project on recursion of Kummer functions: Deafio & Segura (2005).
® Papers on recursion of Legendre functions:

°

Gil & Segura (1997, 1998, ...).

Two papers on recursion of Gauss hypergeometric functions:
Gil, Segura, Temme (JCAM, ??).

|
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Power series to compute Gauss functions ?
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Consider the following questions.

1. Can we compute the Gauss hypergeometric function by
using power series and the many transformations that
are available for this function?

2. Can we compute this function for all possible values of
a, b and c?
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Power series to compute Gauss functions ?
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How to compute the Gauss function ?

Power series
ntegrals
Differential equation

Recursion relations
Chebychev expansions

© o o o o 0

Continued fractions
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The standard power series is

o Fq (CL, b; Z) = Z (ELC)R([;?'RZR, |Z| < 1.

n=0

Together with relations such as

CL,b —a CL,C—b Z
2F1< ;z)(l—z) 2F1< ; )
C C z—1

For this function with need, when we use its power series,

© <1

z—1 J
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Power series to compute Gauss functions ?
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In several other ways we can write the Gauss function in
terms of other Gauss functions.
The new arguments are
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Power series to compute Gauss functions ?
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For numerical computations we need convergence
conditions like

1

< P, |1_Z|</07

2] < p,

with
0<p<l.
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Power series to compute Gauss functions ?
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Can we cover the whole z—plane with some number p?
In the green domain one of the conditions

H<p 1=z <p |=| <o || <0

2] < p, <o

IS satisfied. This is the case p = 0.5.

/

\
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Power series to compute Gauss functions ?

| N

This is the case p = 0.75.

In the yellow domains, ‘around’ the points e* 7, the
standard power series cannot be used with this value of p.

[ s = ) 4|
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Power series to compute Gauss functions ?
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Other pitfalls:

#® For large values of a or b instabilities arise, and the
power series converge slowly.

#® For certain combinations of a, b and ¢ removable
singularities occur.
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Example ¢ = a + b:

a, b ['(c)['(c —a—b) a, b
F 2] = F 1z )+
2 1(0 Z) F(c—a)F(c—b)2 1<a_|_b_c_|_1 z)

I'(e)'(a+b—c) c—a, c—0b .
[(a)T(b) 2F1<c_a_b+1’1 )

This relation is well defined for ¢ = a + b because
singularities are cancelled.
If ¢ ~ a + b numerical computations are not stable.
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Power series to compute Gauss functions ?
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® power series are very efficient in certain domains of the
complex plane

Summarizing so far:

# not all z—values can be covered
# instabilities occur for certain values of the parameters.
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Numerical quadrature for special functions
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-

The standard integral representations of special functions
are not always suitable for numerical computations.

When parameters are large, integrals with oscillatory
integrands can be very unstable representations.

By using complex contours for these integrals, or for
transformed versions, stable representations can be
obtained.

|
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The next task is selecting a suitable quadrature rule for
computations.

Because the integrands are analytic functions,
high-precision quadrature rules can be selected.
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Example: Bessel function (h = 7/n, x = 5).

™ n—1
T Jo(x) = / cos(xsint)dt = h + hZCOS lxsin(h j)] + R,
0

j=1
n R,
4 | —.121079
8 | —.4810°6
16 | —.1110—21
32 | —.1310792
64 | —.1310163
128 | —.53 10—404

Much better than the standard estimates of R,,.
%@Explanation: periodicity and smoothness. J
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Can we rely on Maple and Mathematica ?

- N

Consider
F(\) = / o~ CHAMWPTT gy

# Maple 9.5, Digits = 10, for A = 10, gives

F(10) = —.1837516481 + .5305342893:.
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Can we rely on Maple and Mathematica ?

- N

Consider
F(\) = / o~ CHAMWPTT gy

# Maple 9.5, Digits = 10, for A = 10, gives
F(10) = —.1837516481 + .5305342893:.
# With Digits = 40, the answer is

F(10) = —.183751648053206966441889066305340879001 7+

+0.53053428925506068760950289282504487400202.
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Can we rely on Maple and Mathematica ?

- N

Consider
F(\) = / o~ CHAMWPTT gy

# Maple 9.5, Digits = 10, for A = 10, gives
F(10) = —.1837516481 + .5305342893:.
# With Digits = 40, the answer is

F(10) = —.183751648053206966441889066305340879001 7+

+0.53053428925506068760950289282504487400204.
® S0, the first answer seems to be correct in all shown
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Take another integral, which is almost the same:

-

F()\) _ / 6—t2+2i>\\/t2+1 dt —— G()\) _ / €—t2-|—2i>\t dt.

— 50 —00

o Maple 9.5, Digits=10, for A\ = 10, gives
G(10) = —0.1257674520 x 10~ 1°.
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-

Take another integral, which is almost the same:

F()\) _ / 6—t2+2i>\\/t2+1 dt —— G()\) _ / €—t2-|—2i>\t dt.

o Maple 9.5, Digits=10, for A\ = 10, gives
G(10) = —0.1257674520 x 10~ 1°.

® With Digits = 40, the answer is G(10) = .16 x 10~%3.
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Take another integral, which is almost the same:

0.@)

F()\) _ / 6—t2+2i>\\/t2+1 dt —— G()\) _ / €—t2-|—2i>\t dt.

— 50 —00

o Maple 9.5, Digits=10, for A\ = 10, gives
G(10) = —0.1257674520 x 10~ 1°.

® With Digits = 40, the answer is G(10) = .16 x 10~%3.

® The correct answer is G()\) = \/Ee—v and for A = 10 we
have G(10) = 0.6593662989 x 10~43.
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The message is: one should have some feeling about the
computed result.

Otherwise a completely incorrect answer can be accepted.
Mathematica is more reliable here, and says:

"NIntegrate failed to converge to prescribed accuracy after
7 recursive bisections in ¢t near t = 2.9384615384615387".
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By the way, Maple 7 could do the following integral

H()\) _ /OO €—t2+2i>\\/t_2 dt,

— 0

and the funny answer was, after some simplification,

H(\) = \/Ee_v[l + signum(¢) erf ¢ ]\|,

where erf 2 is the error function.
In Maple 9.5 the answer is

H(\) = \/Ee_v(l + terf \).

[ | e ]
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Consider

o dt
F(u) = / ettt u > 0.
0

t—1—1

Numerical quadrature gives F(2) = —0.934349 — 0.70922;.
Mathematica 4.1 gives for « = 2 in terms of the Meijer
G-function:

0 1
F(Q)WG%%( ’21;2—27j>.
= \0,0, 3

Mathematica evaluates: F'(2) = —0.547745 — 0.5322874.

|

Numerics of Special Functions, ICNAAM 2005, Rhodes, Greece, 16—20 September. — p.59/62



-

Ask Mathematica to evaluate F(u):
F(u) = ™ “T(0,iu — u).
This gives F'(2) = —0.16114 — 0.355355x.

So, we have three numerical results:

F1 = —0.934349 — 0.709221,

Fo = —0.547745 — 0.5322871,
F3 = —0.16114 — 0.355355:.

Observe that F;, = (F7 + F3)/2. F} is correct.

|
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fMaple 9.5:

F(u) = e Ei(1, iu — u) = “7“I(0, iu — u),
same as Mathematica. This is a wrong answer.
Next, Maple 9.5, with u = 2,

F(2) = €*7?Ei(1, 2i — 2) + 2mie* ™2,

giving F(2) = —.9343493872 — .7092195102;, which is the
correct answer.
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A book on numerics of special functions

- N

The topics mentioned in this lecture, and several other
topics, will be discussed extensively, with examples of
software, in a new book with the title of this talk.

Written together with my co-authors Amparo Gil and Javier
Segura (Santander, Spain).

The project is not finished yet and the publication date is
not known yet.

To be published by SIAM.
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