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What got me on this topic

• Problem 5 of Trefethen’s 100-Digit Challenge requires about 100

evaluations of 1/Γ(z) for z on the unit circle.

• Matlab and Octave do not have complex Γ, so I used a series for 1/Γ

from the Handbook.

• Internet consensus is that a routine by Paul Godfrey implementing

a Lanczos approximation is best available for general complex z.

I didn’t even know what a Lanczos approximation was.
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You can’t accurately evaluate Γ(x), even when x is real, by the popular

method (Matlab, Octave, etc) of accurately evaluating log Γ(x) and

using the formula elog Γ(x).



What really got me hooked

• When writing a book on the 100-Digit Challenge, we tried doing all

the problems to 10 000 digits.

• The bottleneck in Problem 5 (using Pari/GP, Maple, or Mathematica)

was in computing Γ, more precisely, in computing the first value of Γ.

• Those packages all use (or seem to use) Stirling’s formula.

Has nothing useful happened in the last 270 years except decent error

estimates (Hare[1997]) for Stirling’s formula?



Time (Pari/GP 2.2.10) to compute Γ to d digits

Time in seconds
d First value Next value

500 0.12 < 0.01
1000 0.85 0.06
2000 6.45 0.33
4000 50.37 1.75
8000 392.11 9.94

c 1.2 10−9 2.7 10−9

p 2.95 2.45

Time taken is approximately cdp. This behaviour is typical of most

multiprecision packages: first evaluation is much more expensive than

later evaluations.



Software for mathematical functions: two games and their rules

IEEE double precision
• Hardware arithmetic
• Precision 53 bits, approximately 16

digits
• 64 bits available for intermediate

results
• Constants required by algorithm are

precomputed; cost of this irrelevant
• Cost measured as average number of

flops

Arbitrary precision
• Software arithmetic
• Precision typically 32n bits,

approximately d = 9.6n digits
• n can be increased for intermediate

results
• Constants must be recomputed

whenever precision is increased
• Cost measured as approximately

cdp, for some constants c, d



Outline of this talk

• How Stirling did it

• Some other intriguing ideas (overview)

• The Lanczos approximation and others like it (detailed)

• Representations of rational functions with known poles

• Unified classification of approximations to z!



An old question

0 1 1
1
2 ?? ?
1 1 1
2 1× 2 2
3 1× 2× 3 6
4 1× 2× 3× 4 24
5 1× 2× 3× 4× 5 120
6 1× 2× 3× 4× 5× 6 720

What is the numerical value?

What is the analytical definition??



Solution by polynomial interpolation: Stirling[1730]

• The differences of n! form a divergent progression ⇒ polynomial

interpolation of n! will not work.

• Therefore interpolate log10 n! instead, whose differences can form a

rapidly convergent progression.

• But the differences of the initial terms are slowly convergent.

• Therefore calculate log10(10.5!) instead, and assume that the

recursion formula x! = x(x − 1)! holds for non-integer x.



Stirling’s interpolation of log10 10.5!, using log10 n!, n = 5, 6, . . . , 16.

Logarithms
2.0791812460 2nd diff.
2.8573324964 669467896 4th diff.
3.7024305364 579919470 21154180 6th diff.
4.6055205234 511525224 14443928 2568588 8th
5.5597630328 457574906 10302264 1446210 541511 10th

A 6.5597630328 413926852 7606810 865343 259252 156590
B 7.6011557180 377885608 5776699 543728 133583 65082

8.6803369640 347621063 4490316 355696 72996
9.7942803163 321846834 3559629 240660

10.9404083520 299632234 2869602
12.1164996111 280287236
13.3206195938

1
2(A0 + B0) +

∑K
k=1(−16)−k

(
2k−1
k−1

)
(A2k + B2k) “Bessel’s interpolation formula”

log10 10.5! ≈ 7.08045937540 − 494882787 + 1568380 − 34401 + 2098 − 266



Stirling’s conclusion

log10 10.5! ≈ 7.07552590569

10.5! ≈ 11899423.08

0.5! ≈
11899423.08

10.5× 9.5× 8.5× 7.5× 6.5× 5.5× 4.5× 3.5× 2.5× 1.5

“From this it is established that the term between 1 and 1 is .8862269251,

whose square is .7853 . . .etc., namely the area of a circle whose diameter is
one. And twice that term, 1.7724538502, [. . . ] is equal to the square root of
the number 3.1415926 . . .etc., which denotes the circumference of a circle
whose diameter is one.” (English translation by Tweddle[2003])

Stirling is claiming, on the basis of numerical evidence alone, that 1
2! = 1

2

√
π.

What is now called “experimental mathematics” was invented in 1730!



Stirling’s formula for logarithmic sums [1730]

“But it will be shown in what follows how series of this type can be
interpolated without logarithms.”

log(x + h) + log(x + 3h) + log(x + 5h) + · · · + log(z − h) = S(z, h) − S(x, h)

S(x, h) =
x log(x)

2h
−

x

2h
−

h

12x
+

7h3

360x3
−

31h5

1260x5
+

127h7

1680x7
−

511h9

1188x9
+ · · ·

The coefficients A = − 1
12, B = + 7

360, C = − 31
1260 are given by:

− 1
3.4 = A 1 1

− 1
5.8 = A + 3B 1 3 3 1

− 1
7.12 = A + 10B + 5C 1 5 10 10 5 1

− 1
9.16 = A + 21B + 35C + 7D 1 7 21 35 35 21 7 1

etc. Odd-numbered binomial coefficients



Stirling’s formula for log n!

log
(
z − 1

2

)
! = S

(
z, 1

2

)
+ 1

2 log(2π)

• Stirling [1730] only guessed the value of the constant, and did not recognize the
relationship between his coefficients A, B, C, . . . and the Bernoulli numbers
[1713]: these refinements are due to De Moivre [1730].

• Stirling’s formula for sums of logarithms is a special case of Maclaurin’s version
(midpoint rule) of the Euler-Maclaurin summation formula.

• What is nowadays called “Stirling’s formula” is a special case of Euler’s version
(trapezoidal rule) of the Euler-Maclaurin summation formula, and is also due to
De Moivre (after he saw Stirling’s version).

• Stirling’s formula answers the numerical but not the analytical question.

• The series is not convergent, only asymptotic.



From log
(
z − 1

2

)
! to z!

It is very convenient that the series for S(z, h) contains only odd powers. Therefore
one will in practice always use Stirling’s formula as

(
z − 1

2

)
! = elog(z−1/2)!, accepting

either precision loss or the use of extended precision when z is large. In theory the
precision loss can be avoided by replacing z by z + 1

2 and taking antilogarithms.

z! =
√

2π
(
z + 1

2

)z+1/2
e−z−1/2 f1/2(z),

where f1/2 can be expanded in the form

f1/2 (z) = 1 − 1
24(z+1/2)

+ 1
1152(z+1/2)2

+ 1003
414720(z+1/2)3

− · · ·

The coefficients are complicated, but in principle this is the special case a = 1
2 of a

factorization

z! = Fa(z)fa(z), Fa(z) =
√

2π (z + a)z+1/2e−z−a,

where fa satisfies fa(z) = 1 + O((z + a)−1) and has an asymptotic expansion in
negative powers of z + a.



A property of the factors Fa and fa

If a + b > 0,
Fa(b)

Fb(a)
= (a + b)a−b =

fb(a)

fa(b)



Stirling’s formula with backward recursion

Since high precision can only be obtained from Stirling’s formula when z

is large, we pick a large enough m and evaluate (z + m)! by the

formula. Then the recursion formula gives

√
2π

(
z + m + 1

2

)z+m+1/2
e−z−m−1/2 f1/2(z + m)

(z + 1)(z + 2) · · · (z + m)
.

Note that some of the poles of the approximation obtained by truncation

the series for f1/2 are the same as the first m poles of z!.



Take-home message #1

A slightly generalized form of Stirling’s formula, namely:

z! = Fa(z)fa(z), Fa(z) =
√

2π (z + a)z+1/2e−z−a,

where fa satisfies fa(z) = 1 + O
(
(z + a)−1

)
, is in principle at the heart

of almost all competitive methods for evaluating the gamma function.



Approximations based on z! = Fa(z)fa(z), Fa(z) =
√

2π (z + a)z+1/2e−z−a

• The original Stirling’s formula is

z! = F1/2(z)

(
1 −

1

24(z + 1/2)
+ O

(
z−2

))

• De Moivre’s version, now ubiquitous, of Stirling’s formula is

z! = F0(z)

(
1 +

1

12z
+ O

(
z−2

))

• The two-term Lanczos approximation is

z! = F2(z)

(
0.999779 +

1.084635

z + 1

)
(1 + η), |η| < 0.00024, Re z > 0

• The two-term Spouge approximation is (note e/
√

2π
.
= 1.08443755)

z! = F2(z)

(
1 +

e√
2π(z + 1)

)
(1 + η(z)), |η(z)| <

0.0143

Re(z + 2)
, Re z > 0



Integral formulas (old)

It is sufficient to evaluate z! for Re(z) > 0, since (−z)! =
πz

z! sin(πz)

• Euler[1729] z! =

∫1

0

(
log

1

x

)z

dx.

Reformulated by Legendre[1809] as Γ(z) =
∫∞
0 tz−1e−t dt.

The normalization of the gamma function to Γ(n + 1) instead of Γ(n) is void of
any rationality. – Lanczos[1964]; like Lanczos, we use z! most of the time.

• Laplace[1812], Hankel[1864] 1
Γ(z)

= 1
2πi

∫
C s−zet dt

Contour in general: anticlockwise, such that the negative real axis is inside.
Specific contours: Trefethen[2001]; also lecture by Weideman, later today.



Integral formulas (modern)

• Lanczos[1964] z! = (z + a)z+1e−z−a
∫e
0 (v(1 − log v))z va−1 dv

The constant a > 1 is to be chosen conveniently.

• Spouge[1994] z! =
Fa(z)
2πi

∫
C

u!
(u−z)Fa(u)

du

Fa as before; constant a > 0 to be chosen conveniently; contour has negative
integers outside but z inside.

• Temme[1996]
1

Γ(z)
=

ezz1−z

2π

∫π

−π
e−z(1−θ/ tan θ+log(θ/ sin θ)) dθ

Each formula is to be used with its own quadrature method, different for all.

Note significant difference from old formulas: the factor zze−z of Stirling’s formula
appears explicitly outside the integral.



Plausible methods for computing Γ(z) for Re z > 1

• Stirling’s formula with backward recursion

• Luke’s method [1970]: Use Padé approximations for the meromorphic factors of
the two incomplete gamma functions γ(a, z + 1) =

∫a
0 tze−t dt and

Γ(a, z + 1) =
∫∞
a tze−t dt, then add them together. (Thanks to Annie Cuyt for

telling me this!)

• Numerical evaluation of integral representations

• Special-purpose quadratures for certain integral representations (including
rational approximations of e−t, t ∈ [0, ∞] — Trefethen, Weideman et al.)



Another look at Stirling’s formula with backward recursion

Let f
[n]
1/2

be the truncation of the asymptotic series of f1/2(z) after the term in(
z + 1

2

)−n
. Then Stirling’s formula with backward recursion is

z! ≈
F1/2(z + m)f

[n]
1/2

(z + m)

(z + 1)(z + 2) · · · (z + m)

=
Fm+1/2(z)

(
z + m + 1

2

)m
f
[n]
1/2

(z + m)

(z + 1)(z + 2) · · · (z + m)

Since the last term in f
[n]
1/2

(z + m) is a multiple of
(
z + m + 1

2

)−n
, we are in effect

approximating fm+1/2 by a rational function which has m correct poles at

−1, −2, . . . , −m and a spurious pole of multiplicity (n − m) at (−m − 1
2). This is a

compelling reason to stop when m = n even though the smallest term has not yet been
reached. We will call the (m, m) rational function thus obtained the balanced form of
Stirling’s approximation.



Lanczos series

Based on Lanczos integral formula z! = (z + a)z+1e−z−a
∫e
0 (v(1 − log v))z va−1 dv;

substitute v(1 − log v) = cos2 θ, −π
2 6 θ 6 π

2 ; expand even part of va−1 as a cosine

series (very clever, this). Integrate series term-by-term, the factor z!/(z + 1
2)! appears,

so we have a formula for (z + 1
2)!; replace z + 1

2 by z, and voilà!
(All this takes six pages of wizardry in Lanczos’s paper.)

• Lanczos series z! = Fa(z)fa(z), a > 1
2 to be chosen conveniently, where

fa(z) = ρ0 + ρ1
z

z + 1
+ ρ2

z(z − 1)

(z + 1)(z + 2)
+ · · · and the ρk depend on a.

This series converges for all Re z > 0.

Lanczos suggests: Decide how many terms m = m(a) will be retained after the
constant (a good choice is an integer near a); then express the finite series in terms of
partial fractions.



Lanczos approximation

z! = Fa(z)f̃a(z) + η̃a(z), where Fa(z) =
√

2π (z + a)z+1/2e−z−a, and for certain
constants depending on a,

f̃a(z) = c̃0 +
c̃1

z + 1
+

c̃2

z + 2
+ · · · +

c̃m

z + m
.

• To follow the paper is hard; to compute the coefficients the way Lanczos says is
rather complicated: “Lanczos’ formulas for the ck take about a page to write out”
— Spouge[1994]; but the final approximation is very easy to use.

• The way that this approximation is derived — truncate an exact Fourier series —
suggests that the approximation will be near-best among approximations having
this form.

• Like the balanced Stirling’s formula, the Lanczos approximation has correct poles
only.



Pari/GP code for the Lanczos approximation

{ faux(z,a) = (z+a)^z*sqrt(z+a)*exp(-z) }

{ rho(m,a)=local(c,c0,c1,s0,s1); s1=1;

c1=c=vector(m,k, s0=s1; s1=s1*(k-1/2); s0/faux(k-1,a) );

forstep(k=m,2,-1, c[k]=2*c[k]-c[k-1]);

for(j=3,m, c0=c1; c1=c;

forstep(k=m,j,-1, c[k]=4*c[k]-2*c[k-1]-c0[k-2] )

);

c }

{ fac(z,a,m)=local(r,s,t);

r=rho(m,a); s=r[1]/2; t=1;

for(k=1,m-1, t=t*(z-k+1)/(z+k); s=s+t*r[k+1] );

2.*s*faux(z,a) }

Calculation of coefficients involves m evaluations of Fa at integer arguments and about
m2 binary-shifted additions. Evaluation of approximand takes one evaluation of Fa

and about 3m multiplications.



The Spouge approximation

Based on Spouge’s integral formula z! =
Fa(z)
2πi

∫
C

u!
(u−z)Fa(u)

du which is of course

just a special case of Cauchy’s integral formula. Spouge’s idea is very simple: let Cm be
a contour that includes z and the first m poles −1, −2, . . . , −m of z!. Using residue
calculus, we get:

z! = Fa(z)

1 +

m∑
k=1

(−1)k−1

(k − 1)!(z + k)Fa(−k)
+

1

2πi

∫
Cm

u!

(u − z)Fa(u)
du


This gives in one shot Spouge’s approximation z! = Fa(z)f̂a(z) + η̂a(z), with

f̂a(z) = 1 +
ĉ1

z + 1
+

ĉ2

z + 2
+ · · · +

ĉm

z + m
, ĉk =

(−1)k−1

(k − 1)!(z + k)Fa(−k)
,

and an integral representation for the error η̂a(z). (There is of course a lot of analysis
involved in getting a practically useful estimate for |η̂a(z)|.)

Since Fa(z) =
√

2π (z + a)z+1/2e−z−a, the process is valid only for a > m, and the
largest legal value of m, which is also the best one, is m = dae − 1.



Take-home message #2

The Lanczos and Spouge approximations have the same form,

z! ≈
√

2π (z + a)z+1/2e−z−a
(
c0 +

c1

z + 1
+

c2

z + 2
+ · · · +

cm

z + m

)
,

which respects the poles of z!, but not quite the same coefficients.



A derivation of the Lanczos approximation in the spirit of Stirling

Take another look at the Lanczos series

fa(z) = ρ0 + ρ1
z

z + 1
+ ρ2

z(z − 1)

(z + 1)(z + 2)
+ · · · .

Note that this series terminates when z is an integer. Since the Lanczos approximation

f̃a(z) = c̃0 +
c̃1

z + 1
+

c̃2

z + 2
+ · · · +

c̃m

z + m

is obtained by truncating the series at ρm, the Lanczos approximation is exact for
z = 0, 1, 2, . . . , m. This implies that the approximant f̃a can be found by solving the
polynomial interpolation problem

p(z) = q(z)fa(z), z = 0, 1, 2, . . . , m,

q(z) = (z + 1)(z + 2) · · · (z + m),

and putting f̃a = p/q.



Lanczos vs Spouge approximations: an example

The derivation of the Lanczos and Spouge approximations is very different, and the
coefficients are not the same, but very close. For example, for Godfrey’s
recommendation a = 671/128 = 5.2421875, m(a) = 14, we get

k c̃k (Lanczos) ĉk (Spouge)
0 1.0000000000 1.0000000000
1 57.1562356659 57.1562356659
2 −59.5979603555 −59.5979603555
3 14.1360979747 14.1360979744
4 −0.4919138161 −0.4919138308
5 0.0000339946 0.0000358560
6 0.0000465236 0.0000000000
7 −0.0000983745 0.0000000000

The remaining seven c̃k values are all of the same order of magnitude as the last three
shown. Note that there are two fairly large coefficients of opposite sign. This gets
worse, quickly, as we increase a.



Numerical properties of partial fraction approximations to z!

We now look only at approximations of the same form as the Lanczos and Spouge
approximations, i.e. z! ≈ Fa(z)φa(z), where

φa(z) = c0 +
c1

z + 1
+

c2

z + 2
+ · · · +

cm

z + m
.

Since the Spouge approximation exactly matches the residues at −1, −2, . . . , −m, it is
to be expected that any good approximation of this form will have the following
properties (as in fact the Lanczos approximation has):

• The first dae − 1 coefficients are close to the Spouge coefficients.

• Taking more than dae − 1 coefficients is not as effective as increasing a.

Unfortunately, as a increases, roundoff becomes non-neglible. For example, when
a = 50 and z = 10, the ratio between the largest term and the sum is about 1012, i.e.
twelve significant digits are lost to smearing.



Take-home message #3

All good partial fraction approximations to z! with poles at

−1, −2, . . . , −m, are increasingly prone to roundoff as m increases.



Rational functions with known poles

The space of (m, m) rational functions with poles zk, k = 1, 2, . . . , m, is a linear space,
and the obvious way to represent such a function is via its coefficients relative to some
basis {fk, k = 0, 1, . . . , m} for that space. We define ek(z) = (z − zk)−1.

• fk = ek, i.e. the partial fraction decomposition. Obtainable instantly when the
residues at the poles are known. The interpolation problem is ill conditioned.

• fk = pk/q, where q =
∏m

k=1 ek, and {pk, k = 0, 1, . . . , m} form a basis for the
space of polynomials of degree 6 m. The interpolation problem reduces to
polynomial interpolation.

• fk =
∏k

j=1 ej, i.e. the inverse factorial series. The interpolation problem is as ill
conditioned as for the partial fraction decomposition.

• For our case with zk = −k, one can try fk(z) =
∏k

j=1(z − j + 1)(z + j)−1, as in the
Lanczos series. The interpolation problem is as well conditioned as one can hope
for, having a triangular matrix.



The “best” basis

It turns out the coefficients are all positive if one uses the inverse factorial series for the
Spouge approximation, also for the Lanczos approximation if the same value of m is
used. That is:

φa(z) =

dae−1∑
k=0

bk

k∏
j=1

1

z + j
.

For the same case as before, we get:

k b̃k (Lanczos) b̂k (Spouge)
0 0.9999999980 1.0000000000
1 11.2025045504 11.2024953100
2 32.8013256287 32.8013624751
3 25.3212507533 25.3211432361
4 2.9504205951 2.9506224402
5 0.0010400114 0.0008605449

The interpolation problem involving this basis is ill-conditioned and extra precision
may be required.



Continued fraction interpolation

Aitken’s continued fraction interpolation can be applied to calculate the Lanczos
approximation, as follows:

• In IEEE arithmetic it is OK to have infinite function values. But this can be avoided
if necessary by working with 1/fa, which is finite.

• Zero divided by zero occurs if two consecutive function values are equal, so we
arrange the z values in the order 0, −1, 1, −2, 2, . . . , −m, m. The calculation can
be simplified in this case (work cut by a factor of four).

Continued fraction interpolation of fa is equivalent to the original Lanczos series

ρ0 + ρ1
z

z + 1
+ ρ2

z(z − 1)

(z + 1)(z + 2)
+ · · ·

in the sense that the coefficients calculated by Aitken’s algorithm are just the ρk’s.



Classification of approximations to the factorial function as interpolants

z! = Fa(z)fa(z) ≈ Fa(z)φa(z); Fa(z) =
√

2π (z + a)z+1/2e−z−a

where φa is an (m, m) rational function interpolating fa at 2m + 1 points. The Stirling
and De Moivre interpolants refer to the balanced form.

Original source a Interpolation points

Stirling[1730] m + 1
2 −m, −m + 1, −m + 2, . . . , −1, ∞m+1

De Moivre[1730] m −m, −m + 1, −m + 2, . . . , −1, ∞m+1

Lanczos[1964] > m −m, −m + 1, −m + 2, . . . , m − 1, m

Spouge[1994] > m (−m)2, (−m + 1)2, . . . , (−1)2, ∞



Take-home message #4

All the main approximations to z! can be derived as rational

interpolants, but when it comes to evaluating them, the stablest way is

via an inverse factorial series.



Take-home messages

1. A slightly generalized form of Stirling’s formula, namely:
z! = Fa(z)fa(z), Fa(z) =

√
2π (z + a)z+1/2e−z−a,

where fa satisfies fa(z) = 1 + O(z−1), is at the heart of almost all competitive
methods for evaluating the gamma function.

2. The Lanczos and Spouge approximations have the same form,
z! ≈ Fa(z)

(
c0 +

c1
z+1 +

c2
z+2 + · · · + cm

z+m

)
,

which respects the poles of z!, but not quite the same coefficients.

3. All good partial fraction approximations to z! with poles at −1, −2, . . . , −m, are
increasingly prone to roundoff as m increases.

4. All the main approximations to z! can be derived as rational interpolants, but when
it comes to evaluating them, the stablest way is via an inverse factorial series.

5. For fixed precision, the Lanczos approximation is better than Stirling’s formula; in
arbitrary precision, Stirling’s formula is still going strong despite being around for
270 years.



Remarks on implementation

• z! in IEEE double precision

• z! in arbitrary precision



IEEE: Why Γ(z) = elog Γ(z) does not work perfectly

Here is an example. Note that the evaluation of log Γ(z) gives the closest machine
number.

> f=prod(1:152); lf=log(f); ULPs_lost=(1-exp(lf)/f)/eps

ULPs_lost = 255

> error_in_lgamma = lgamma(153)-lf

error_in_lgamma = 0

When x is a very large (or a very small) floating-point number, the relative error in
elog x is approximately equal to the absolute error in log x, namely µ| log x|, where µ is
a number at machine roundoff level. That is, the relative roundoff error has been
amplified by a factor log |x|.

The only way round this difficulty is to have log x available to enough extra precision
(extended precision in IEEE arithmetic will do): Clark and Cody[1969].



IEEE: Why z! = Fa(z)fa(z) requires great care

(z + a)z+1/2e−z−a must not be evaluated as it stands: (z + a)z+1/2 can overflow even
when the result is in bounds. It must also not be evaluated as e(z+1/2) log(z+a)−(z+a),

for the same reason as the case elog Γ(z).

A good solution (Godfrey[2001]) is Fa(z) = (z + a)z/2+1/4e−z−a(z + a)z/2+1/4,

which cannot overflow for reasonable values of a unless the result is out of bounds. Of
course, the underlying software for ab should be careful, not just barge in with eb log a.



Multiprecision: Methods based on Stirling’s formula

Evaluation: calculate (z + a)! with a = O(d), to get enough accuracy, then use then
recursion formula to get back. Thus a typical evaluation of Γ requires O(d)

multiplications. Each multiplication requires about O(d1.6) time: total complexity,
about O(d2.6).

Initialization: Requires Bernoulli numbers up to B2n, where n = O(d). To get B2k

given all the previous numbers requires k multiplications, so it looks like O(d2)

multiplications. But there is a way to organize this process so that one of the
factors in each multiplication is a smallish integer. So each multiplication is of time
O(d): total complexity, O(d3).

The natural form of the series is already the numerically stable form.

Bernoulli numbers, possible useful elsewhere, are generated.

Node at ∞ with high multiplicity concentrates too much accuracy in one area.



Multiprecision: the Lanczos and Spouge approximations

In both cases, we need m = dae − 1 = O(d) terms.

Evaluation: O(d) multiplications, complexity about O(d2.6).

Initialization: We need O(d) values of Fa; elementary functions take about O(d2)

time, so we can do this in O(d3) time. The Lanczos algorithm given above takes
O(d2) additions, also O(d3) time.

The advantageously placed nodes give near-uniform accuracy in the Lanczos case;
Spouge not bad either.

The natural form of the Lanczos approximation is the continued fraction.

The natural form of the Spouge approximation is the partial fration.



Take-home message #5

For fixed precision, the Lanczos approximation is better than Stirling’s

formula; in arbitrary precision, Stirling’s formula is still going strong

despite being around for 270 years.



Take-home messages

1. A slightly generalized form of Stirling’s formula, namely:
z! = Fa(z)fa(z), Fa(z) =

√
2π (z + a)z+1/2e−z−a,

where fa satisfies fa(z) = 1 + O(z−1), is at the heart of almost all competitive
methods for evaluating the gamma function.

2. The Lanczos and Spouge approximations have the same form,
z! ≈ Fa(z)

(
c0 +

c1
z+1 +

c2
z+2 + · · · + cm

z+m

)
,

which respects the poles of z!, but not quite the same coefficients.

3. All good partial fraction approximations to z! with poles at −1, −2, . . . , −m, are
increasingly prone to roundoff as m increases.

4. All the main approximations to z! can be derived as rational interpolants, but when
it comes to evaluating them, the stablest way is via an inverse factorial series.

5. For fixed precision, the Lanczos approximation is better than Stirling’s formula; in
arbitrary precision, Stirling’s formula is still going strong despite being around for
270 years.


