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dy(z) | dy(x) _
T— - (¢ — o) - ay(x) =0

This equation 1s obtained from Gauss
hypergeometric equation, considering the change
r — x/b, followed by the limit b — oo.

It has a regular singular point at x = 0 and an
irregular singular point at x = oo.

References: Abramowitz and Stegun (1970), Luke
(1969), Olver (1974), Temme (1996) ...
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If a #0,—1,—2, ... apair of independent solutions is:

First kind (Kummer function).

M(a;c;x) = 1Fi(a;c;x) = Zanaj reR

Cn

n=0

Second kind (Tricomi function).
Ua;c;z) = C1M(a;c;2)+Corx' M (a+1—c;2—c; x

Here we will suppose that a, ¢, x > 0 unless
otherwise stated.
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Special cases of CHF include:
Elementary functions.
Laguerre and Hermite polynomials.
Incomplete gamma functions.
Error functions.

Parabolic cylinder functions.
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We will consider the functions:

Yn(x) ={M(a+Ekn;c+mn;x), Ula+kn;c+mn;x)}

where k£, m = 0,41 and n € Z, possibly large. In
particular the cases:

(k,m) = (1,1)
(k,m)=(0,1)
(k,m) = (1,0)

With suitable normalizations, both functions satisty the
same three term recurrence relation (TTRR).

Yn+1(2) + an(2)yn(x) + bp(2)Yp—1(x) = 0
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Given a TTRR
Ynr1(T) + an()yn () + 0p(7)yn—1(z) =0

we say that a solution f,,(x) is minimal if

lim fn(2)

n—oo (g, (T)

=0

for any solution g, (x) which is not a multiple of f,.

We say that g, (x) is a dominant solution.
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If we use the recurrence in the forward direction then we
obtain a solution:

yn(x) — Afn(aj) T Bgn(x)

where in general B # 0, which is dominant. The error is:

Yn — fn
Jn

b, =

.00, ifB#£0

Thus, a minimal solution cannot be computed using
the TTRR in the forward direction.

References: Gautschi (1967), Wimp (1983).
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From the TTRR we construct the associated CF:

yn(x) o _bn _bn—|—1 _bn—|—2

yn—l(x) an+ an—|—1+ an—|—2+ o

Does this CF converge?

Under what conditions does it converge and to what
function?
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Theorem (Pincherle).
Ifb, #0,n=1,2,...then the TTRR

Yn+1(2) + an(2)yn(x) + bp(2)yn-1(2) =0

has a minimal solution f,, if and only if the associated CF
converges. In that case forn =1,2,3, ...

fn _bn _bn—l—l _bn—|—2

fn—l an+ an—|—1_|_ an—|—2_|_
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Given a three term recurrence relation:
Identify the minimal solution (Perron+asymptotics).

If we want to compute a dominant solution we use
the TTRR 1n the forward direction.

If we want to compute a minimal solution we can
use the CF.

Is this information enough in order to compute Kummer
functions safely?
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Minimal and dominant solutions are defined in the
lIimit n — oo.

What happens when n 1s not very large?

We will show that in many cases the behaviour for
moderate values of n can be opposite to what 1s
given by asymptotic information.
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fn(l‘) = M(a +n,c+n, :1:) Minimal

(—1)"T'(c+n)U(a+n,c+n,x)

)

S

—~
=

~—
|

On the stability of recurrence relations for hypergeometric functions — p. 12/-



Firsta =03, c=08and xr = 1.1
Thena =0.3,c=08and r = 31.1
We will compute in Fortran using the recurrence for

n=20,1,2,...,100 and plot the relative error with
respect to the result given by Maple (40 digits).
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Computation of U (a + n;c + n; x)
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Figure 1: Dominant solution, x = 1.1
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Computation of M (a + n;c+ n; x)
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Figure 2: Minimal solution, z = 1.1
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Computation of U (a + n;c + n; x)

loglerrorl

~10

L - +
_1 4 T R
T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T

0 20 40 .60 80 100

Figure 3: Dominant solution, z = 31.1

On the stability of recurrence relations for hypergeometric functions — p. 16/-



Computation of M (a + n;c+ n; x)
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Figure 4. Minimal solution, z = 31.1
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falz)  c4+n-—1 (a+n)x (a+n+1)x

fooi(x) c+n—1—z+ c+n—az+ c+n+1—a+
For k € N we define the £ — th approximant:
B c+n—1
c+n—1—ux
c+n—1 (a+n)x (a+n+k—2)z

Fk =

c+n—1—a24+ c+n—x+ c+n+k—2—2a
fork =2.3.4, ...
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This 1s a T-fraction, that corresponds to:

fn(x) M(a + n;c+ n;x)

fo-1(z)  M(a+n—1c+n—1x)

at x = 0. We have convergence to this ratio for x € R.

The T-fraction corresponds to:

c+n—1 ska+n,a+1—c—1/x)
r ofyla+n—1l,a+1—c—1/x)

at r = ox.
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It
gn(x) = (—1)"T'(c+n)U(a+ n;c+ n;x)
then
gn () c+n—1 oFya+na+1—-c—1/x)
gn—1(T) x oFola+n—1,a+1—¢—1/x)

when © — 0.

Note: The CF does not converge to this ratio, but
numerically it can be accurately approximated.
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Analysis of the continued fraction IV

Wefixa=08,¢c=03,n=15z =51.1
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(a) Plot of Fj,

(b) Plot of log |Fk+1 — Fk|
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Let us recall the continued fraction;

fn c+n—1 (a+n)z (a+n+1)x

foer ct+n—1—az+ c+n—az+ c+n+1—a+

If x 1s large enough thenc+n + k£ — 2 — 2 < 0 and the
approximants interlace:

Fi<Py<Fy<Fr<.. . <Fsg< Fg< Fy<Fy<O

Remark: The ratio of minimal solutions 1s > 0, so this is
wrong!!
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If we reach Ky odd suchthatc +n + K¢y —x > 0:
i <PFs<...<Fg, <Frgi<Fg_1...<Fy<lby;<(

The next one is not right: Fy, o < Fk,, and the
behaviour changes.

If we reach Kyevensuchthatc+n+ Kg—x > 0:
i <Py <...<Fg41 <Fg, <Fg,_o...<Fy<lby<(

The next one 1s not right: Fy, 12 > Ik, and the
behaviour changes.
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If we add [|c +n — x|| + 1 terms in the CF we obtain
the best approximation to the "false" limit.

r

T'he larger x 1s the better the approximation is.

The absolute error is bounded by |Fx, .1 — Fk,|.

In the example, a = 0.8, c = 0.3, n = 15, x = 51.1,
this bound is ~ 8.645786 x 107?.

If v = 76.1 then it is ~ 2.857821 x 10717,
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This criterion 1s clearly related to the signs of the
coefficients of the recurrence.

We look for a criterion of pseudostability of the
TTRR based on the signs of these coefficients.

Other cases:
Recursion (k,m) = (1,0) when ¢ > 0 is large.
Recursion (k,m) = (0, —1) when z > 0 is large.
Recursions for Gauss hypergeometric functions.
To be continued...
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