On the stability of recurrence relations for hypergeometric functions

Alfredo Deaño*, Javier Segura

Universidad Carlos III de Madrid (Spain), Universidad de Cantabria (Spain)

Kummer differential equation

$$
x \frac{d^{2} y(x)}{d x^{2}}+(c-x) \frac{d y(x)}{d x}-a y(x)=0
$$

- This equation is obtained from Gauss hypergeometric equation, considering the change $x \rightarrow x / b$, followed by the limit $b \rightarrow \infty$.
- It has a regular singular point at $x=0$ and an irregular singular point at $x=\infty$.

■ References: Abramowitz and Stegun (1970), Luke (1969), Olver (1974), Temme (1996) ...

Confluent hypergeometric functions

If $a \neq 0,-1,-2, \ldots$ a pair of independent solutions is:
\square First kind (Kummer function).

$$
M(a ; c ; x)={ }_{1} F_{1}(a ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{x^{n}}{n!}, \quad x \in \mathbb{R}
$$

- Second kind (Tricomi function).

$$
U(a ; c ; x)=C_{1} M(a ; c ; x)+C_{2} x^{1-c} M(a+1-c ; 2-c ; x)
$$

- Here we will suppose that $a, c, x>0$ unless otherwise stated.

Confluent hypergeometric functions

Special cases of CHF include:

- Elementary functions.
- Laguerre and Hermite polynomials.
- Incomplete gamma functions.
- Error functions.
- Parabolic cylinder functions.

Three term recurrence relations

We will consider the functions:
$y_{n}(x)=\{M(a+k n ; c+m n ; x), U(a+k n ; c+m n ; x)\}$
where $k, m=0, \pm 1$ and $n \in \mathbb{Z}$, possibly large. In particular the cases:

- $(k, m)=(1,1)$
- $(k, m)=(0,1)$
- $(k, m)=(1,0)$

With suitable normalizations, both functions satisfy the same three term recurrence relation (TTRR).

$$
y_{n+1}(x)+a_{n}(x) y_{n}(x)+\underset{n}{b_{n}(x)} y_{n-1}(x)=0
$$

Minimal and dominant solutions I

Given a TTRR

$$
y_{n+1}(x)+a_{n}(x) y_{n}(x)+b_{n}(x) y_{n-1}(x)=0
$$

we say that a solution $f_{n}(x)$ is minimal if

$$
\lim _{n \rightarrow \infty} \frac{f_{n}(x)}{g_{n}(x)}=0
$$

for any solution $g_{n}(x)$ which is not a multiple of f_{n}.
We say that $g_{n}(x)$ is a dominant solution.

Minimal and dominant solutions II

If we use the recurrence in the forward direction then we obtain a solution:

$$
y_{n}(x)=A f_{n}(x)+B g_{n}(x)
$$

where in general $B \neq 0$, which is dominant. The error is:

$$
E_{n}=\left|\frac{y_{n}-f_{n}}{f_{n}}\right| \rightarrow \infty, \quad \text { if } B \neq 0
$$

Thus, a minimal solution cannot be computed using the TTRR in the forward direction.

- References: Gautschi (1967), Wimp (1983).

Continued fractions I

From the TTRR we construct the associated CF:

$$
\frac{y_{n}(x)}{y_{n-1}(x)}=\frac{-b_{n}}{a_{n}+} \frac{-b_{n+1}}{a_{n+1}+} \frac{-b_{n+2}}{a_{n+2}+} \ldots
$$

- Does this CF converge?
- Under what conditions does it converge and to what function?

Continued fractions II

Theorem (Pincherle).

If $b_{n} \neq 0, n=1,2, \ldots$ then the TTRR

$$
y_{n+1}(x)+a_{n}(x) y_{n}(x)+b_{n}(x) y_{n-1}(x)=0
$$

has a minimal solution f_{n} if and only if the associated CF converges. In that case for $n=1,2,3, \ldots$

$$
\frac{f_{n}}{f_{n-1}}=\frac{-b_{n}}{a_{n}+} \frac{-b_{n+1}}{a_{n+1}+} \frac{-b_{n+2}}{a_{n+2}+} \cdots
$$

General strategy

Given a three term recurrence relation:

- Identify the minimal solution (Perron+asymptotics).
- If we want to compute a dominant solution we use the TTRR in the forward direction.
- If we want to compute a minimal solution we can use the CF.

Is this information enough in order to compute Kummer functions safely?

Some remarks

- Minimal and dominant solutions are defined in the limit $n \rightarrow \infty$.
- What happens when n is not very large?
- We will show that in many cases the behaviour for moderate values of n can be opposite to what is given by asymptotic information.

Recurrence $(1,1)$

$$
\begin{equation*}
y_{n+1}(x)+a_{n}(x) y_{n}(x)+b_{n}(x) y_{n-1}(x)=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{n}=-\frac{(c+n)(1-c-n+x)}{(a+n) x} \\
b_{n}=-\frac{(c+n)(c+n-1)}{(a+n) x}
\end{gathered}
$$

Solutions:

$$
\begin{aligned}
& f_{n}(x)=M(a+n, c+n, x) \quad \text { Minimal } \\
& g_{n}(x)=(-1)^{n} \Gamma(c+n) U(a+n, c+n, x)
\end{aligned}
$$

Two examples

- First $a=0.3, c=0.8$ and $x=1.1$
- Then $a=0.3, c=0.8$ and $x=31.1$

We will compute in Fortran using the recurrence for $n=0,1,2, \ldots, 100$ and plot the relative error with respect to the result given by Maple (40 digits).

Computation of $U(a+n ; c+n ; x)$

Figure 1: Dominant solution, $x=1.1$

Computation of $M(a+n ; c+n ; x)$

Figure 2: Minimal solution, $x=1.1$

Computation of $U(a+n ; c+n ; x)$

Figure 3: Dominant solution, $x=31.1$

Computation of $M(a+n ; c+n ; x)$

Figure 4: Minimal solution, $x=31.1$

Analysis of the continued fraction I

$\frac{f_{n}(x)}{f_{n-1}(x)}=\frac{c+n-1}{c+n-1-x+} \frac{(a+n) x}{c+n-x+} \frac{(a+n+1) x}{c+n+1-x+}$
For $k \in \mathbb{N}$ we define the $k-t h$ approximant:

$$
\begin{gathered}
F_{1}:=\frac{c+n-1}{c+n-1-x} \\
F_{k}:=\frac{c+n-1}{c+n-1-x+} \frac{(a+n) x}{c+n-x+} \cdots \frac{(a+n+k-2) x}{c+n+k-2-x}
\end{gathered}
$$

for $k=2,3,4, \ldots$

Analysis of the continued fraction II

This is a T-fraction, that corresponds to:

$$
\frac{f_{n}(x)}{f_{n-1}(x)}=\frac{M(a+n ; c+n ; x)}{M(a+n-1 ; c+n-1 ; x)}
$$

at $x=0$. We have convergence to this ratio for $x \in \mathbb{R}$.
The T-fraction corresponds to:

$$
-\frac{c+n-1}{x} \frac{{ }_{2} F_{0}(a+n, a+1-c ;-1 / x)}{{ }_{2} F_{0}(a+n-1, a+1-c ;-1 / x)}
$$

at $x=\infty$.

Analysis of the continued fraction III

If

$$
g_{n}(x)=(-1)^{n} \Gamma(c+n) U(a+n ; c+n ; x)
$$

then
$\frac{g_{n}(x)}{g_{n-1}(x)} \sim-\frac{c+n-1}{x} \frac{{ }_{2} F_{0}(a+n, a+1-c ;-1 / x)}{{ }_{2} F_{0}(a+n-1, a+1-c ;-1 / x)}$
when $x \rightarrow \infty$.
Note: The CF does not converge to this ratio, but numerically it can be accurately approximated.

Analysis of the continued fraction IV

We fix $a=0.8, c=0.3, n=15, x=51.1$:

On the stability of recurrence relations for hypergeometric functions - p. 21/2

A basic criterion I

Let us recall the continued fraction;

$\frac{f_{n}}{f_{n-1}}=\frac{c+n-1}{c+n-1-x+} \frac{(a+n) x}{c+n-x+} \frac{(a+n+1) x}{c+n+1-x+} \ldots$
If x is large enough then $c+n+k-2-x<0$ and the approximants interlace:

$$
F_{1}<F_{3}<F_{5}<F_{7}<\ldots<F_{8}<F_{6}<F_{4}<F_{2}<0
$$

Remark: The ratio of minimal solutions is >0, so this is wrong!!

A basic criterion II

If we reach K_{0} odd such that $c+n+K_{0}-x>0$:
$F_{1}<F_{3}<\ldots<F_{K_{0}}<F_{K_{0}+1}<F_{K_{0}-1} \ldots<F_{4}<F_{2}<0$
The next one is not right: $F_{K_{0}+2}<F_{K_{0}}$, and the behaviour changes.

If we reach K_{0} even such that $c+n+K_{0}-x>0$:
$F_{1}<F_{3}<\ldots<F_{K_{0}+1}<F_{K_{0}}<F_{K_{0}-2} \ldots<F_{4}<F_{2}<0$
The next one is not right: $F_{K_{0}+2}>F_{K_{0}}$, and the behaviour changes.

A basic criterion III

- If we add $[|c+n-x|]+1$ terms in the CF we obtain the best approximation to the "false" limit.
- The larger x is the better the approximation is.
\square The absolute error is bounded by $\left|F_{K_{0}+1}-F_{K_{0}}\right|$.
- In the example, $a=0.8, c=0.3, n=15, x=51.1$, this bound is $\approx 8.645786 \times 10^{-9}$.
- If $x=76.1$ then it is $\approx 2.857821 \times 10^{-17}$.

Under construction

- This criterion is clearly related to the signs of the coefficients of the recurrence.
- We look for a criterion of pseudostability of the TTRR based on the signs of these coefficients.
- Other cases:
- Recursion $(k, m)=(1,0)$ when $c>0$ is large.
- Recursion $(k, m)=(0,-1)$ when $x>0$ is large.
- Recursions for Gauss hypergeometric functions.
- To be continued...

