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Kummer differential equation

x
d2y(x)

dx2 + (c − x)
dy(x)

dx
− ay(x) = 0

This equation is obtained from Gauss
hypergeometric equation, considering the change
x → x/b, followed by the limit b → ∞.
It has a regular singular point at x = 0 and an
irregular singular point at x = ∞.

References: Abramowitz and Stegun (1970), Luke
(1969), Olver (1974), Temme (1996) ...
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Confluent hypergeometric functions

If a $= 0,−1,−2, . . . a pair of independent solutions is:
First kind (Kummer function).

M(a; c;x) = 1F1(a; c;x) =
∞∑

n=0

(a)n

(c)n

xn

n!
, x ∈ R

Second kind (Tricomi function).

U(a; c;x) = C1M(a; c;x)+C2 x1−cM(a+1−c; 2−c;x)

Here we will suppose that a, c, x > 0 unless
otherwise stated.
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Confluent hypergeometric functions

Special cases of CHF include:
Elementary functions.
Laguerre and Hermite polynomials.
Incomplete gamma functions.
Error functions.
Parabolic cylinder functions.
...
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Three term recurrence relations
We will consider the functions:

yn(x) = {M(a+kn; c+mn;x), U(a+kn; c+mn;x)}

where k,m = 0,±1 and n ∈ Z, possibly large. In
particular the cases:

(k,m) = (1, 1)

(k,m) = (0, 1)

(k,m) = (1, 0)

With suitable normalizations, both functions satisfy the
same three term recurrence relation (TTRR).

yn+1(x) + an(x)yn(x) + bn(x)yn−1(x) = 0
On the stability of recurrence relations for hypergeometric functions – p. 5/2



Minimal and dominant solutions I
Given a TTRR

yn+1(x) + an(x)yn(x) + bn(x)yn−1(x) = 0

we say that a solution fn(x) is minimal if

lim
n→∞

fn(x)

gn(x)
= 0

for any solution gn(x) which is not a multiple of fn.

We say that gn(x) is a dominant solution.
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Minimal and dominant solutions II
If we use the recurrence in the forward direction then we
obtain a solution:

yn(x) = Afn(x) + Bgn(x)

where in general B $= 0, which is dominant. The error is:

En =
∣∣∣
yn − fn

fn

∣∣∣ → ∞, if B $= 0

Thus, a minimal solution cannot be computed using
the TTRR in the forward direction.

References: Gautschi (1967), Wimp (1983).
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Continued fractions I
From the TTRR we construct the associated CF:

yn(x)

yn−1(x)
=

−bn

an+

−bn+1

an+1+

−bn+2

an+2+
. . .

Does this CF converge?
Under what conditions does it converge and to what
function?
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Continued fractions II
Theorem (Pincherle).

If bn $= 0, n = 1, 2, . . . then the TTRR

yn+1(x) + an(x)yn(x) + bn(x)yn−1(x) = 0

has a minimal solution fn if and only if the associated CF
converges. In that case for n = 1, 2, 3, . . .

fn

fn−1
=

−bn

an+

−bn+1

an+1+

−bn+2

an+2+
. . .
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General strategy

Given a three term recurrence relation:
Identify the minimal solution (Perron+asymptotics).
If we want to compute a dominant solution we use
the TTRR in the forward direction.
If we want to compute a minimal solution we can
use the CF.

Is this information enough in order to compute Kummer
functions safely?
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Some remarks
Minimal and dominant solutions are defined in the
limit n → ∞.
What happens when n is not very large?
We will show that in many cases the behaviour for
moderate values of n can be opposite to what is
given by asymptotic information.
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Recurrence (1,1)

yn+1(x) + an(x)yn(x) + bn(x)yn−1(x) = 0 (1)
where

an = −(c + n)(1 − c − n + x)

(a + n)x

bn = −(c + n)(c + n − 1)

(a + n)x

Solutions:

fn(x) = M(a + n, c + n, x) Minimal

gn(x) = (−1)nΓ(c + n)U(a + n, c + n, x)
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Two examples

First a = 0.3, c = 0.8 and x = 1.1

Then a = 0.3, c = 0.8 and x = 31.1

We will compute in Fortran using the recurrence for
n = 0, 1, 2, . . . , 100 and plot the relative error with
respect to the result given by Maple (40 digits).
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Computation of U(a + n; c + n; x)
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Figure 1: Dominant solution, x = 1.1
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Computation ofM(a + n; c + n; x)
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Figure 2: Minimal solution, x = 1.1
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Computation of U(a + n; c + n; x)
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Figure 3: Dominant solution, x = 31.1
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Computation ofM(a + n; c + n; x)
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Figure 4: Minimal solution, x = 31.1
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Analysis of the continued fraction I

fn(x)

fn−1(x)
=

c + n − 1

c + n − 1 − x+

(a + n)x

c + n − x+

(a + n + 1)x

c + n + 1 − x+
.

For k ∈ N we define the k − th approximant:

F1 :=
c + n − 1

c + n − 1 − x

Fk :=
c + n − 1

c + n − 1 − x+

(a + n)x

c + n − x+
. . .

(a + n + k − 2)x

c + n + k − 2 − x

for k = 2, 3, 4, . . .
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Analysis of the continued fraction II

This is a T-fraction, that corresponds to:

fn(x)

fn−1(x)
=

M(a + n; c + n;x)

M(a + n − 1; c + n − 1;x)

at x = 0. We have convergence to this ratio for x ∈ R.

The T-fraction corresponds to:

−c + n − 1

x
2F0(a + n, a + 1 − c;−1/x)

2F0(a + n − 1, a + 1 − c;−1/x)

at x = ∞.
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Analysis of the continued fraction III

If
gn(x) = (−1)nΓ(c + n)U(a + n; c + n;x)

then

gn(x)

gn−1(x)
∼ −c + n − 1

x
2F0(a + n, a + 1 − c;−1/x)

2F0(a + n − 1, a + 1 − c;−1/x)

when x → ∞.
Note: The CF does not converge to this ratio, but
numerically it can be accurately approximated.
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Analysis of the continued fraction IV

We fix a = 0.8, c = 0.3, n = 15, x = 51.1:

–2

–1

0

1
20 40 60 80 100 120

(a) Plot of Fk
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(b) Plot of log |Fk+1 − Fk|
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A basic criterion I
Let us recall the continued fraction;

fn

fn−1
=

c + n − 1

c + n − 1 − x+

(a + n)x

c + n − x+

(a + n + 1)x

c + n + 1 − x+
. . .

If x is large enough then c + n + k − 2 − x < 0 and the
approximants interlace:

F1 < F3 < F5 < F7 < . . . < F8 < F6 < F4 < F2 < 0

Remark: The ratio of minimal solutions is > 0, so this is
wrong!!
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A basic criterion II
If we reachK0 odd such that c + n + K0 − x > 0:

F1 < F3 < . . . < FK0 < FK0+1 < FK0−1 . . . < F4 < F2 < 0

The next one is not right: FK0+2 < FK0, and the
behaviour changes.

If we reachK0 even such that c + n + K0 − x > 0:

F1 < F3 < . . . < FK0+1 < FK0 < FK0−2 . . . < F4 < F2 < 0

The next one is not right: FK0+2 > FK0, and the
behaviour changes.
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A basic criterion III
If we add [|c + n− x|] + 1 terms in the CF we obtain
the best approximation to the "false" limit.
The larger x is the better the approximation is.
The absolute error is bounded by |FK0+1 − FK0|.
In the example, a = 0.8, c = 0.3, n = 15, x = 51.1,
this bound is ≈ 8.645786 × 10−9.
If x = 76.1 then it is ≈ 2.857821 × 10−17.
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Under construction
This criterion is clearly related to the signs of the
coefficients of the recurrence.
We look for a criterion of pseudostability of the
TTRR based on the signs of these coefficients.
Other cases:
Recursion (k,m) = (1, 0) when c > 0 is large.
Recursion (k,m) = (0,−1) when x > 0 is large.
Recursions for Gauss hypergeometric functions.

To be continued...
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