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Abstract

We reconstruct an n-dimensional convex polytope from the knowledge of its directional
moments up to a certain order. The directional moments are related to the projection of
the polytope vertices on a particular direction. To extract the vertex coordinates from
the moment information we combine established numerical algorithms such as generalized
eigenvalue computation and linear interval interpolation. Numerical illustrations are given
for the reconstruction of 2-d and 3-d convex polytopes.

1 Introduction

The reconstruction of the boundary of a shape from its moments is a problem that has only
partially been solved. For instance, when the shape is a polygon [24, 13], or when it defines
a quadrature domain in the complex plane [17], it has been proved that its boundary can
be reconstructed exactly from the knowledge of its moments. Both results admit no obvious
extension to higher dimensions. The technique in [6] is applicable in higher dimensions, but
the authors reconstruct a shape’s characteristic function, or more generally, a square-integrable
function defined on a compact domain. The reconstruction algorithm for polygons is based
on Davis’ exact integration formula [7] of a function in the complex plane. For polynomial
functions, Davis’ formula can be seen as a low dimensional case of identities attributed to Brion
[2]. Based on the latter, Gravin, Lasserre, Pasechnik and Robins proposed the reconstruction
of an n-dimensional convex polytope in exact arithmetic [16].

Brion’s integration formula over a polytope does not relate moment information directly to
the vertices of the convex polytope, but rather to the projections of these vertices onto some
1-dimensional subspace. To recover the projections, we recognize an inverse problem that arises
in several areas [12, 18, 20, 21, 25] and can be solved numerically as a generalized eigenvalue
problem.

After recovering the projections of the vertices on various one-dimensional subspaces, remains
the problem of matching different projections (in different directions) of the same vertex, with



that vertex. In this paper we describe how to solve this issue, without resorting to exact
arithmetic. The problem cannot be solved with ordinary interpolation or least squares approx-
imation. But using an interval interpolation technique [27], we understand why we need n+ 1
projections (or more) to solve the matching.

Our method is the result of combining techniques from quite different mathematical disciplines:
integer lattices, computer algebra, numerical linear algebra, interval methods, inverse problems.
The complete algorithm, which we demonstrate in Section 6 and challenge in Section 7, consists
of the following steps:

1. The exact number of vertices r is computed from an upper bound R and moments up to
order 2R+ 1− n, in a sample of directions.

2. For n + 1 (or more) directions, the projections of the vertices are obtained as the gener-
alized eigenvalues of a structured pair of matrices whose entries are determined from the
directional moments up to order 2r − n− 1.

3. Each of these projections is then matched to the corresponding vertex and its coordinates
are computed as the coefficients of an n-dimensional interval interpolant.

The different steps in our algorithm involve Hankel matrices, in the singular value decomposi-
tion for the computation of r, as well as in the generalized eigenvalue problem delivering the
vertex projections. Structured matrices with real elements have condition numbers that grow
exponentially with their size [3], and the size of our matrices is determined by the number of ver-
tices of the polytope. In Section 7 we are therefore required to use high precision floating-point
arithmetic for the polyhedron with many vertices that represents a brilliant diamond cut.

The paper is organized as follows. In Section 2 we introduce geometric, complex and directional
moments together with Davis’ and Brion’s formulae. In Section 3 we review Prony’s method and
the related eigenvalue problem to determine the projections of the vertices from the directional
moments. In Section 4 we discuss the determination of the number of vertices. In Section 5 we
present an algorithm to solve the matching problem. Numerical illustrations are given in the
Sections 6 and 7 where we reconstruct 2-d and 3-d convex polytopes.

2 Geometric and directional moments

In this section we present identities attributed to Brion. These identities are central in [1] to
establish the complexity of the computation of the moments of a polytope. Brion’s identities are
also at the core of the solution of the inverse problem proposed in [16]. They can actually be seen
as a generalisation of Davis’ integration formula that was used to solve the shape-from-moment
problem in 2-d [24, 13].

We consider a convex polytope in Rn determined by the set of its r vertices V. Abusing the
notation, V also denotes the polytope itself.

The geometric moments are

mα =

∫
V
xα dx =

∫
. . .

∫
V
xα1
1 . . . xαn

n dx1 . . . dxn, α = (α1, . . . , αn) ∈ Nn.
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The order of the geometric moment mα is |α| = α1 + . . .+αn. These moments can be expressed
as a multivariate polynomial in the coordinates of the vertices [28]. A complexity analysis for
the computation based on Brion’s identities is offered in [1] for exact arithmetic.

The moment in the direction δ ∈ Rn of order k is

mk(δ) =

∫
V
〈x, δ〉k dx, k ∈ N,

where 〈·, ·〉 denotes the usual scalar product in Rn.

One can obtain any directional moment of order k from the geometric moments of order k with
the multinomial formula

mk(δ) =
∑
|α|=k

(
k

α

)
mα δ

α.

Conversely, geometric moments of order k can be obtained from the directional moments of
order k in

(
n+k−1

k

)
distinct directions by solving a linear system of equations.

In the context of polygon retrieval (n = 2) from tomographic data in [24, 13], geometric moments
and then complex moments are computed from directional moments. Complex moments can
be understood as moments in the direction δ = (1, i). At the core of this shape-from-moments
problem is Davis’ integration formula for an analytic function f on the polygon V in the complex
plane [7] ∫∫

V
f ′′(x+ i y) dxdy =

∑
v∈V

av f(v),

where the v ∈ V are here interpreted as complex numbers. Assuming that v̌ and v̂ are the
vertices adjacent to v, the coefficients in Davis’ formula are

av =
Vv

(v − v̌)(v − v̂)
,

where Vv is the oriented area of the parallelogram defined by the vectors with vertices v̌−v and
v̂ − v.

This formula bears a generalisation to any dimension, known as Brion’s identities. The formula
relates the directional moments to the projections of the vertices. This allows us to work directly
with directional moments, which are data that can be deduced from tomographic measurements.

Theorem 2.1. [16] Provided that the orthogonal projections of the r vertices of the convex
polytope V on the direction δ are distinct, we have the following equalities

(k+n)!
k! mk(δ) =

∑
v∈V

av(δ) 〈v, δ〉n+k, k ≥ 0,

and

0 =
∑
v∈V

av(δ) 〈v, δ〉n−k, 1 ≤ k ≤ n,
(2.1)

where the av(δ) depend on δ and the adjacent vertices of v in a triangulation of V.

Moreover
av(δ) 6= 0, v ∈ V. (2.2)
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The formula for the coefficients av(δ) is given in [2, Section 10.3] when V is a simple convex
polytope. That is, each vertex in the polytope has exactly n adjacent vertices. Let Vv be the
set of n adjacent vertices of v. The volume Vv of the parallepiped determined by Vv is obtained
through the determinant of the edge vectors of Vv. Then

av(δ) =
Vv∏

u∈Vv

〈v − u, δ〉
. (2.3)

In particular, for a simplex 4 with vertices v0, v1, . . . , vn,

(k+n)!

k!

∫
4
〈x, δ〉k dx = V

n∑
i=0

〈vi, δ〉k+n∏
j 6=i
〈vi − vj , δ〉

= V
∑

k0+...+kn=k

〈v0, δ〉k0 . . . 〈vn, δ〉kn (2.4)

where V = Vv0 = . . . = Vvn . Notice that this is actually a polynomial in δ though we shall use
its more compact rational expression.

For a more general convex polytope, one has to consider a partition of the polytope into simplices
that does not introduce any additional vertex [2, Theorem 3.1]. The coefficients av(δ) for the
convex polytope is then a sum of its sibblings in the formulae for the simplices. That they do
not vanish is proved in [16].

The directions δ ∈ Rn to which the theorem applies are those for which 〈u, δ〉 6= 〈v, δ〉 for all
distinct u, v ∈ V. Those are the generic directions. We examine what happens when δ fails to
be generic in this meaning.

On the one hand, Brion’s identities are correct for any δ that does not make the denominators
of av vanish. However, if δ is a direction for which the coefficients av(δ) are well defined but for
which there are two distinct vertices u, v ∈ V such that 〈u, δ〉 = 〈v, δ〉, we can write the formula
with less than r terms. The linear recurrence introduced in Section 3 is then of order less than
r and the associated Hankel matrix is of rank less than r.

In addition, when 〈v0, δ〉 = . . . = 〈vp, δ〉 for distinct vertices v0, . . . , vp ∈ V that belong to the
same simplex of any triangulation, there is a formula similar to (2.1) where the p + 1 terms
〈vi, δ〉n+k are replaced by terms 〈v0, δ〉n+k, (n + k)〈v0, δ〉n+k−1, . . . , (n + k) . . . (n + k − p +
1)〈v0, δ〉n+k−p. This can be deduced from the rightmost expression in (2.4). The Hankel matrix
constructed in Section 3 is still of rank r and admits 〈v0, δ〉 as a generalized eigenvalue of
multiplicity p+ 1. See for instance [10, 23].

3 Recovering the projections of the vertices

In this section we address the problem of retrieving the projections V(δ) = {〈v, δ〉 | v ∈ V} of the
vertices of the convex polytope V from its directional moments mk(δ). We recognize an inverse
problem that has appeared in several areas [12, 21, 25, 18, 24, 13, 16]. While [16] approaches
the problem with Prony’s method, we favor a formulation in terms of generalized eigenvalues.

The standing assumption is that the projections of the vertices on the direction δ are pairwise
distinct. Thus |V(δ)| = |V| = r. Also, we assume in this section that the number of vertices is
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known. We discuss in next section how this number can be retrieved from only the knowledge
of the moments.

From the directional moments (mk(δ))k we introduce the sequence (µk(δ))k∈N of modified di-
rectional moments defined by

µk(δ) = 0, 0 ≤ k ≤ n− 1,

µk(δ) = k!
(k−n)! mk−n(δ), k ≥ n.

By Theorem 2.1 there exist r non-zero real numbers av(δ) such that this sequence satisfies
µk(δ) =

∑
v∈V av(δ) 〈v, δ〉k, k ∈ N. The goal is to retrieve the r elements 〈v, δ〉 of V(δ) from

(µk(δ))k and hence (mk(δ))k. This is just an instance of the following problem.

Inverse problem: Consider a sequence (µk)k∈N such that for some non-zero real (or complex)
numbers a1, . . . , ar and pairwise distinct real (or complex) numbers w1, . . . wr,

µk =
r∑
i=1

aiw
k
i , ∀k ∈ N. (3.1)

The problem is to find the wi from the knowledge of r and (µk)0≤k≤2r−1. It can be tackled by
Prony’s method recast as a generalized eigenvalue problem.

In this paper we deal with computed directional moments. In comparison to measured direc-
tional moments, we can work with a selected precision and we do not take care of noise effects
in the data. When working with measured information and having 2R − n moments available
per direction, it is best to replace the square r× r Hankel matrices by rectangular R× r Hankel
matrices and introduce Least Squares or Maximum Likelihood methods to solve this inverse
problem [9, 15, 25].

First one observes that the sequence (µk)k is a solution of a recurrence equation of order r,
namely

µk+r = pr−1 µk+r−1 + . . .+ p0 µk, (3.2)

where (−p0, . . . ,−pr−1, 1) are the coefficients of the polynomial

p(z) =
r∏
i=1

(z − wi) = zr − pr−1 zr−1 − . . .− p1 z − p0.

Applying (3.2) to (µk)k∈N for k = 0, . . . , r − 1 leads to the linear system

µ0 µ1 . . . µr−1

µ1 . .
.

... . .
. ...

. .
.

µr−1 . . . µ2r−2


︸ ︷︷ ︸

H
(0)
r



p0
p1
...
...

pr−1

 =



µr
µr+2

...

...
µ2r−1

 . (3.3)

From (µk)0≤k≤2r−1 we can retrieve the characteristic polynomial p of the underlying recurrence
by solving the above linear system. The sought numbers w1, . . . , wr are the roots of this poly-
nomial. Theses two steps (solving the linear system and computing the roots of the entailed
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polynomial) is known as Prony’s method. It was introduced in [26] and is used in the context
of the shape-from-moments problem in [16, 24]. The authors of [13, 20] introduce a solution in
terms of the generalized eigenvalues of a pencil of matrices. It is based on the following facts.

We can recast (3.3) into the matrix equality:

µ0 µ1 . . . µr−1

µ1 . .
.

... . .
. ...

. .
.

µr−1 . . . µ2 r−2


︸ ︷︷ ︸

H
(0)
r



0 . . . . . . 0 p0

1
. . .

... p1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 . . . 0 1 pr−1


︸ ︷︷ ︸

P

=



µ1 µ2 . . . µr

µ2 . .
.

... . .
. ...

. .
.

µr . . . µ2 r−1


︸ ︷︷ ︸

H
(1)
r

. (3.4)

The last column of the matrix on the right hand side comes from Equation (3.3), while the
other columns are simply shifts of the columns in the matrix on the left hand side.

Let us introduce the following notations from [18, Section 7.5] for the matrices arising in the
above equality. The r× r Hankel matrix with first row given by

(
µd . . . µr+d−1

)
is denoted

by H
(d)
r . The companion matrix of the characteristic polynomial of the recurrence (3.2) is

denoted by P . The matrix equality (3.4) becomes H
(0)
r P = H

(1)
r , and more generally we have

H
(d)
r P = H

(d+1)
r for d ≥ 0.

Since w1, . . . , wr are the roots of p(z) = zr − pr−1 zr−1 − . . .− p1 z − p0, we have
1 w1 · · · wr−11
...

...
...

...
...

...
1 wr · · · wr−1r


︸ ︷︷ ︸

Wr


0 . . . 0 p0

1
. . .

...
...

...
. . . 0 pr−2

0 . . . 1 pr−1


︸ ︷︷ ︸

P

=


w1 0

. . .

. . .

0 wr


︸ ︷︷ ︸

D


1 w1 · · · wr−11
...

...
...

...
...

...
1 wr · · · wr−1r


︸ ︷︷ ︸

Wr

.

Let D and Wr be respectively the diagonal and the Vandermonde matrices defined by w1, . . . , wr
and appearing in the above equality. The latter can thus be written Wr P = DWr. The wi
being pairwise distinct, Wr is invertible and P W−1r = W−1r D. That is, w1, . . . , wr are the

eigenvalues of P and W−1r is a matrix of eigenvectors for P . From H
(1)
r = H

(0)
r P in (3.4) we

can deduce
H(1)
r W−1r = H(0)

r W−1r D,

and more generally, H
(d+1)
r W−1r = H

(d)
r W−1r D, for d ∈ N. Thus w1, . . . , wr are the generalized

eigenvalues of the matrix pencils
(
H

(d+1)
r , H

(d)
r

)
and W−1r is a matrix of associated generalized

eigenvectors.

Computing generalized eigenvalues is a classical problem in numerical linear algebra [14, 8,
19]. The structured problem we consider here is unfortunately known to be potentially ill-
conditioned. Following [4] we can give an upper bound for the conditioning of the generalized
eigenvalue problem as a constant multiplied by the square of the condition number of the
Vandermonde matrix Wr.
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To come back to our initial problem of retrieving V(δ) from (µk(δ))k we introduce the pencil

of Hankel matrices
(
H

(1)
r (δ), H

(0)
r (δ)

)
. Its generalized eigenvalues are the elements of V(δ).

From those we can construct a matrix of generalized eigenvectors, given by the inverse of the
Vandermonde matrix Wr(δ). The condition number of Wr(δ) is denoted κ(δ). To reduce
the conditionning of the generalized eigenvalue problem, which is of order κ(δ)2, we consider
polytopes lying in the unit ball.

4 Estimating the number of vertices

So far, the number r of vertices has been assumed to be given. But r can also be an unknown
of the problem. In this section, we discuss how to numerically retrieve this number from the

Hankel matrices H
(0)
k (δ) formed from the sequence of modified directional moments (µk(δ))k in

a generic direction δ.

One first observes thatH
(0)
r+`(δ) is at most of rank r for any ` ≥ 0. Indeed the sequence (µk(δ))k∈N

satisfies a recurrence equation (3.1) of order r. For any ` > 0, each of the last ` columns of

H
(0)
r+`(δ) is thus a linear combination of the previous r columns. Now, noting w1, . . . , wr the

elements of V(δ), we examine the Vandermonde factorisation of the Hankel matrix:

H
(0)
k (δ)=


1 1 · · · 1
w1 w2 · · · wr
...

...
. . .

...

wk−11 wk−12 · · · wk−1r


︸ ︷︷ ︸

tWk(δ)


a1(δ) 0 · · · 0

0 a2(δ)
. . .

...
...

. . .
. . . 0

0 · · · 0 ar(δ)


︸ ︷︷ ︸

A(δ)


1 w1 · · · wk−11

1 w2 · · · wk−12
...

...
. . .

...
1 wr · · · wk−1r


︸ ︷︷ ︸

Wk(δ)

. (4.1)

For a generic direction δ, the r elements wi of V(δ) are pairwise distinct and therefore detH
(0)
r (δ) 6=

0. It follows that H
(0)
r+`(δ) is exactly of rank r, for all ` ≥ 0.

Based on this observation, if a strict upper bound R for the number of vertices r is given, then

r can be determined as the rank of H
(0)
R (δ). A caveat is that this matrix may be ill-conditioned.

The condition number of H
(0)
r (δ) is determined by the condition number of Wr(δ) and A(δ) in

(4.1). For this we also refer to the discussion in [12] and [22] that examines the situation in
the context of sparse interpolation. The condition number of the Vandermonde matrix Wr(δ)
depends on the distribution of the numbers in V(δ) of the projections of the vertices in the
direction δ [11]. As for the matrix A(δ), having one of the ai(δ) too small can also lead to an

incorrect (numerical) rank for H
(0)
R . Since we can (even randomly) select multiple directions for

the projections, we can retain only those directions for which not both Wr(δ) and A(δ) are too
ill-conditioned. Alternatively we could apply the rank estimates for Hankel matrices of [5].

Therefore, if we have an overestimation R of the number of vertices we can recover the exact

number from the analysis of the numerical rank of H
(0)
R (δ). In practice we analyze the singular

values of H
(0)
R (δ) computed by a Singular Value Decomposition [14, 8]. This is discussed on

specific cases in Section 6 and 7.
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5 Reconstruction of the vertices from their projections

In this section we show how to retrieve the vertices v from the sets of projections V(δ) =
{〈v, δ〉, v ∈ V} for δ ∈ ∆, where ∆ is a set of s > n vectors in the unit sphere Sn. We have at
our disposal s sets V(δ) each containing r distinct vertex projections,

V(δ) = {〈v, δ〉 : v ∈ V}, δ ∈ ∆, ||δ|| = 1, #∆ = s > n.

For each δ ∈ ∆, V(δ) was obtained from the moments (mk(δ))0≤k≤2r−n−1 , as discussed in
Section 3.

The problem is that we do not know which projection in V(δ) belongs to which vertex. So we
need to find the correct labelling of the projections concurrently with the computation of the
vertex coordinates.

Another issue is that the vertex projections are computed from a generalized eigenvalue problem
that may not have been perfectly conditioned. So we need to take some tolerance into account
when interpreting the projections and using them in subsequent computations.

Let the convex polytope be contained in a Euclidean unit ball. So all projections w = 〈v, δ〉 be
bounded by

|w| = |〈v, δ〉| ≤ 1.

We assume that the computed values for all w are in error by at most ε > 0. With this error
bound ε we define intervals

W(v, δ) = [w − ε, w + ε] =
[
w−(v, δ), w+(v, δ)

]
, w = 〈v, δ〉. (5.1)

The bound ε is of the order of κ(W 2
r ) multiplied by the bound on the inaccuracy of the computed

directional moments µ̃, in other words,

ε = O

(
κ(W 2

r )
|̃µk(δ)− µk(δ)|
|µk(δ)|

)
, k = 0, 1, . . . , 2r − 1.

We remark at this point that the computation can only continue if for at least n+1 directions δ
the intervalsW(v, δ) are disjoint. For simplicity, we assume in the sequel that in all s directions
the intervals are disjoint.

An algorithm for the reconstruction of the vertex coordinates can now be based on the compu-
tation of r linear interval interpolants in n variables, of the form

qv(δ) = 〈v, δ〉, δ ∈ Sn,

where the interpolation conditions for each qv(δ) are, that qv(δ) ∈ W(v, δ) for all δ ∈ ∆. Each
of the r functions qv(δ) interpolates only one W-interval per V(δ) but s of those values across
the sets V(δ). For a graphical illustration in the case n = 2 we refer to Figure 1(d). In the end,
with δ = (δ1, . . . , δn) being the variables in each of the r interpolation problems

qv(δ) =
n∑
i=1

u
(j)
i δi ∈ W(v, δ), δ ∈ ∆, j = 1, . . . , r, (5.2)

the coefficients u
(j)
i in the linear form are the coordinates of one vertex v ∈ V. So

vj = (u
(j)
1 , . . . , u(j)n ), j = 1, . . . , r.
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We remark at this point that any set of n projections can be interpolated by a function of the
form qv(δ), even if the width of the intervals is zero. At the same time any combination of s
projections can be approximated in the least squares sense by a function of the form qv(δ). So
none of these classical approaches is very useful in figuring out which projections belong to the
same vertex v. But an interval interpolant through at least n+ 1 disjoint intervals does the job:
the nonzero interval width compensates for overdetermining the linear interpolant by at least
one interpolation condition. The interval interpolant is stringing the intervals, containing the
projections, like beads on the graph of the interpolating function. Any interval, meaning any
projection, through which it passes, is marked as belonging to the same vertex.

Naturally, an interval interpolation problem does not need to have a unique solution: sufficiently
small perturbations of the coefficients in the linear form may not violate the interval interpo-
lation conditions. In [27] is described how the most robust interval interpolant of the form
given in (5.2) is computed. By this we mean the interpolant that stays away as far as possible
from violating the interpolation conditions imposed by the interval bounds. This interpolant is
unique and its computation is based on the computation of Chebyshev centers.

Because of the labelling problem of the projections w, the interval interpolation algorithm
becomes a 2-step procedure. In a first step we take the n best conditioned sets V(δ) and check
which combination of w-values, one taken from each of the n best conditioned V(δ), delivers a
(non-interval) interpolant

n∑
i=1

viδi = 〈v, δ〉, δ ∈ ∆̂ ⊂ ∆, #∆̂ = n (5.3)

that additionally intersects one interval W(v, δ) at each of the s− n remaining sets V(δ). Only
linear interpolants (5.3) that intersect these other s − n intervals (and hence all s intervals)
reflect a correct labelling of the projections. These better conditioned V(δ) are usually near to
one another.

Since in this first step the coordinates of v are computed from only n of the s available direc-
tions, the obtained values are not maximally accurate. After rearranging the s sets V(δ), each
containing r projections, into r sets (organized per vertex) of s projections, the vertex coordi-
nates can be computed to maximal accuracy from the total of its s projections. To this end
the interval interpolation method can be continued with the computation of the most robust
interval interpolant satisfying (5.2).

In order to make things easier to understand we now go over the 2-step procedure for the
reconstruction of a polygon (n = 2) with r vertices, illustrated in Figure 1(d).

Let us have at our disposal s sets V(δ) with δ = (cos θ, sin θ). Each set V(δ) contains the
r projections 〈v, δ〉 = u1 cos θ + u2 sin θ of the vertices, but unordered. To find out which
projections in different V(δ) belong to the same vertex, we select two nearby directions δ1 and
δ2 for which the computations are sufficiently well-conditioned, and we start pairing up the
projections in V(δ1) and V(δ2), for instance according to proximity because of the continuity of
qv(δ). In this first step, the worst case scenario is that we have to consider all combinations to
find the correct match. But working with nearby directions reduces this combinatorial aspect
with high probability.

Then we compute the interpolants (5.2) one by one (r in total) and check for each of them
whether it also interpolates, and which values it interpolates at the remaining s− 2 sets V(δ).
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Only after having discovered the correct matches of the different projections we can compute
the best interval interpolants (5.2) and extract the coordinates of the different vertices.

For the second step we apply the technique developed in [27]. For each v, the input is the
set of projections 〈v, δ〉 for various directions δ. The output are robust (u1, . . . , un) ∈ Rn
the coordinates of the vertex v. They are obtained by solving the following linear interval
interpolation problem. We look for the coefficients of a linear function qv : Sn → R such that

qv(δ) = 〈v, δ〉 = u1 δ1 + . . .+ un δn (5.4)

and
|w(v, δ)− qv(δ)| ≤ ε, δ ∈ ∆. (5.5)

6 Simulations

We now illustrate the proposed approach for the reconstruction of polytopes from their direc-
tional moments. For our simulations we consider centered and scaled polytopes: The origin
is the center of gravity of the polytope and the vertices lie in the Euclidean unit ball. This
geometric normalisation corresponds to a transformation on the moments as described in [13].

The vertices of the polytope are to be reconstructed from directional moments. The latter
are typically computed from measurements, as for instance in tomography. The proposed
reconstruction of a convex polytope in dimension n requires directional moments in at least
n+ 1 generic directions. The order of the moments required in each direction then depends on
the number r of vertices: we need directional moments up to order 2r − n− 1. In dimension 2
this can be compared to [24], where the complex moments up to order 2r− 3 are obtained from
directional moments up to the same order in 2r − 2 directions.

For a given direction δ, the directional moments mk(δ) are used to form the entries of the pair

of Hankel matrices
(
H

(1)
r , H

(0)
r

)
described in Section 3. The algorithm consists of 3 main steps:

1. Determine the number r of vertices by analyzing the singular values of the Hankel matrix

H
(0)
R for R > r big enough and a few number of random directions δ, as described in

Section 4.

2. Compute the generalized eigenvalues for the pair of matrices
(
H

(1)
r , H

(0)
r

)
in at least n+1

directions as in Section 3. Determine the condition number κ(Wr) of the Vandermonde
matrix Wr formed by those generalized eigenvalues. The generalized eigenvalues are the
projections of the vertices of the polytope with an error determined by a multiple of
κ(Wr)

2.

3. Recover the vertices V from their approximate projections using the interval interpolation
technique described in Section 5.

The first two steps are performed using standard numerical linear algebra routines from the
NAG library in Maple. In particular, Step 1 makes use of the singular value decomposition and
Step 2 of the QZ-algorithm [29]. Step 3 is implemented in Matlab. Every computations in this
Section are performed in double precision.
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In the second step, we sample a number of directions and retain those for which the condition
number is the smallest. The condition number is indeed dependent on the direction : κ(Wr)
depends on the distribution of the projected vertices [11]. In particular it increases when the
projections of two vertices get closer to one another.

Furthermore, to cut down on the combinatorial complexity of the interpolation scheme in the last
step, it makes sense to select directions reasonably close to one another. We make use of a generic
reference direction δ̂ with reasonable conditioning and other directions in the neighborhood.

6.1 Reconstruction of polygons

We begin our simulations with the reconstruction of 2-dimensional polygons. A direction δ =
(cos θ, sin θ) is represented by an angle θ ∈] − π

2 ,
π
2 ]. The projection of vertex vi = (xi, yi) is

given by wi = xi cos θ + yi sin θ. Then the interval interpolation problem formulated in terms
of θ is

xi cos θ + yi sin θ ∈ [w−i , w
+
i ], 1 ≤ i ≤ r,

where w−i and w+
i are as in (5.1).

6.1.1 Reconstruction of a regular hexagon

The regular hexagon (r = 6) is presented in Figure 1(a). The condition number κ(W6) increases
drastically when we approach the axes of symmetry (arrows in Figure 1(a)). In Figure 1(b) the
condition number κ(W6) of the Vandermonde matrix W6 is plotted for 300 equidistant generic
directions. The condition number is minimal for directions bisecting two consecutive symmetry
axes, represented by dotted lines in Figure 1(a).

The moments µk are computed in double precision. The number r of vertices is retrieved as

the rank of H
(0)
k , for k large enough. The singular values of H

(0)
7 are plotted in Figure 1(c) for

three directions picked at random.

We choose the direction δ̂ with angle θ̂ = 5π
12 . It corresponds to one of the bisectors. We then

take 4 nearby directions θ̂± 0.05, θ̂± 0.10. For each of the 5 directions we construct the pair of

Hankel matrices
(
H

(1)
6 , H

(0)
6

)
and compute their generalized eigenvalues. For these directions

all κ(W6) are around 300. We take w+(v, δ)− w−(v, δ) = 2× 10−10 in (5.1) with |〈v, δ〉| ≤ 1.

We compute the interval interpolants from the 5 sets of projections V(δ̂ + k 0.05), k = −2, −1,
0, 1, 2. The relative error on the computed projections is bounded overall by 6.4 × 10−13 for
the 5 chosen directions. The coordinates of the 6 different vertices of the regular hexagon are
recovered as the coefficients of the interpolants graphed in Figure 1(d). The relative error on
each computed coordinate compared to its true value is bounded overall by 1.5× 10−12.

6.1.2 Reconstruction of a polygon with 12 vertices

In this second simulation, we consider a random 12-gon, centered and scaled. It is drawn in
Figure 2(a).
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Figure 1: Regular hexagon

As in the case of the hexagon above, the number of vertices is retrieved by computing the

singular values of H
(0)
15 in 3 directions. From Figure 2(b) we deduce that the numerical rank is

r = 12.

After inspecting some directions, we choose the reference direction δ̂ with θ̂ = 0.379521 (arrow
in Figure 2(a)) and 4 other nearby directions θ̂ ± 0.05, θ̂ ± 0.10. The projections of the vertices
on these directions are obtained as the generalized eigenvalues of the pairs of Hankel matrices(
H

(1)
12 , H

(0)
12

)
whose entries are obtained from the respective directional moments up to order

21. The condition number κ(W12) of the matrix of generalized eigenvectors is for all 5 directions
around 7× 105. The relative error on the computed projections compared to their true values
is bounded by 1.8× 10−7.

From these 5 sets V(δ̂ − 0.10),V(δ̂ − 0.05),V(δ̂),V(δ̂ + 0.05),V(δ̂ + 0.10), we compute the 12
linear interval interpolants. We take w+(v, δ)−w−(v, δ) = 2× 10−5 in (5.1). The relative error
in each coordinate is bounded by 3.9× 10−6.

Note that even the two very close vertices in the top right corner in Figure 2(a) are recovered
with the accuracy mentioned above. The distance between them is only of the order of 10−2.
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Figure 2: Polygon with 12 vertices

6.2 Reconstruction of polyhedra

We now consider the reconstruction of convex polyhedra in dimension 3. The dimension does
not introduce new difficulties in our method. A direction δ is represented by a unit vector
(cos(θ) cos(φ), cos(θ) sin(φ), sin(θ)) with (θ, φ) lying in ] − π

2 ,
π
2 ]×] − π

2 ,
π
2 ]. The projection of

vertex vi = (xi, yi, zi) on δ equals wi = xi cos(θ) cos(φ) + yi sin(θ) cos(φ) + zi sin(φ). The
coordinates xi, yi, zi are the unknowns in the linear interval interpolation problem

wi ∈ [w−i , w
+
i ], 1 ≤ i ≤ r.

6.2.1 Reconstruction of a polyhedron with well-distributed vertices

We first consider a polyhedron with 10 vertices represented in Figure 3(a).

We retrieve the number of vertices of the polyhedron by computing the numerical rank of

the Hankel matrix H
(0)
11 in 3 different directions. The singular values of H

(0)
11 are plotted in

Figure 3(b) for three random directions.

After inspecting several directions, we select (θ̂, φ̂) = (−1.256637, 0.261799) for the reference
direction δ̂ and 4 other nearby directions where the condition number κ(W10) is of the order of
104. δ̂ is indicated by an arrow and a dotted line in Figure 3(a). We take the nearby directions
as (θ̂+ψ, φ̂), (θ̂, φ̂−ψ), (θ̂−ψ, φ̂+ψ) and (θ̂+ψ, φ̂+ψ) with ψ = 0.01. For each direction, the

pair of matrices
(
H

(1)
10 , H

(0)
10

)
is built with directional moments up to order 16. The generalized

eigenvalues of the pairs
(
H

(1)
10 , H

(0)
10

)
provide the projections of the vertices with a relative error

bounded by 1.3× 10−8.

We compute the 10 linear interval interpolants using intervals of width 2× 10−7 for the projec-
tions. In Figure 3(c) we show one of those surfaces. The coordinates of the 10 vertices of the
polyhedron are obtained as the coefficients of the interpolants. The relative error on this final
result is bounded by 8.3× 10−7.

13



-1 1

-1

1

-1

1

(a) Polyhedron

2 4 6 8 10

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

number of singular value

si
n
g
u
la
r
va
lu
es

δ1
δ2
δ3

(b) Singular values of H
(0)
11

−1
0

1
−1

0

1−1

−0.5

0

0.5

θ

φ

p
ro
je
ct
io
n
s

(c) Interpolant for one vertex

Figure 3: First polyhedron with 10 vertices

6.2.2 Reconstruction of a polyhedron with close vertices

Here we examine a polyhedron with 10 vertices and a triangular face of relatively small size (see
the top of Figure 4(a)).

In Figure 4(b) we plot the singular values of H
(0)
12 for three random directions. The gap between

the tenth and the eleventh singular value appears more clearly in some of the directions.

We choose the reference direction (θ̂, φ̂) = (−0.994838,−0.994838) for which the condition
number κ(W10) is 4.2 × 104. It is indicated in Figure 4(a) by an arrow and a dotted line. We
additionally pick the nearby directions (θ̂ + ψ, φ̂), (θ̂, φ̂− ψ), (θ̂ − ψ, φ̂+ ψ) and (θ̂ + ψ, φ̂+ ψ)

with ψ = 0.01. For each direction the pair of matrices
(
H

(1)
10 , H

(0)
10

)
is built with directional

moments up to order 16. The projections of the vertices on those directions are retrieved as the

generalized eigenvalues of
(
H

(1)
10 , H

(0)
10

)
with a relative error bounded by 2.2× 10−7.

We determine the 10 interpolants for our sets of projections using intervals of width 2× 10−6.
The coordinates of the 10 vertices appear as the coefficients of the interpolants. The relative
error on these is bounded by 1.5× 10−6.
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Figure 4: Second polyhedron with 10 vertices
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7 Diamond

As a challenge we choose an actual brilliant cut of a diamond. It is given as a convex polyhedron
with 57 vertices and represented in Figure 5. The stone’s girdle consists of pairs of vertices very
close to one another. The number of vertices and the small distance between the projections of
the vertices severely impact the condition number κ(Wr): double precision is no longer enough
to retrieve sufficiently accurate values for the projections. We rely on the software floats of
Maple to provide the needed number of digits for the computations.

girdle

δ0

(a) Side view (b) Top view (c) In perspective

Figure 5: Diamond and reference direction δ0

To reliably retrieve the number of vertices, we use a precision of 70 digits. Figure 6 tracks the

singular values of H
(0)
65 for 8 random directions and in different computational precisions.
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Figure 6: Singular Values of H
(0)
65 for several computational precision

After sampling a rather large number of directions, we select the reference direction (θ̂, φ̂) =
(0.261799, 1.047198) shown in Figure 5(a). The condition number κ(W57) for this direction is
1.67×1033. We choose 4 nearby directions with a similar condition number, (θ̂+ψ, φ̂), (θ̂, φ̂−ψ),
(θ̂−ψ, φ̂+ψ), (θ̂+ψ, φ̂+ψ) where ψ = 0.0001. Computing with 70 digits we expect to retrieve
the projections of the vertices with an accuracy of at least 10−3.

For each of the 5 selected directions δ, the pair of matrices
(
H

(1)
57 , H

(0)
57

)
is built with the

directional moments up to order 110. The projections of the vertices are obtained as the
generalized eigenvalues. The relative error is bounded by 8.1× 10−8.

We compute the 57 interpolants in double precision using intervals of width 2 × 10−4. The
coordinates of the vertices are the coefficients in those interpolants. The relative error is bounded
by 7.8× 10−5. We plot the error for all the vertices in Figure 7.
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Figure 7: Error observed when operating with 70 digits

In Figure 8 we report on the error using various computational precisions. For computations
with less than 65 digits we do not recover all the projections while the complete set of coordinates
of the vertices can be retrieved only if we use at least 70 digits.
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Figure 8: Error for different computational precisions
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