Computer Arithmetic and Numerical Techniques
Annie CUYT and Brigitte VERDONK

I. SciENTIFIC COMPUTING FOR THE CS-STUDENT

The course “Computer Arithmetic and Numerical Tech-
niques” at the University of Antwerp, is an introduc-
tory scientific computing course for students with a ma-
jor in computer science or a combined major mathemat-
ics/computer science. But it could as well be taught to any
exact or applied science student with a reasonable high-
school background in mathematics and a fair interest in
computers. It is this growing group of science students
interested in computer science that we are trying to en-
courage into scientific computing. When the idea to set
up a special course for computer science students was first
launched in 1993 — it is by the way often hard to get com-
puter science students interested in scientific computing —
many colleagues world-wide reacted very enthusiastically.

Unlike engineering students, CS-students are rarely con-
fronted with real-life scientific computing problems in other
courses. Yet we believe that the best approach to a scien-
tific computing course is one where the complete journey is
followed from physical problem to computational solution,
as described in [1]. The basic steps in this journey are:

1. a motivating problem

2. the identification of the computational problem behind
the given real-life problem

3. the selection of an appropriate numerical technique de-
veloped for its solution

4. the actual implementation or use of a numerical routine,
be it in Fortran, C, Mathematica, Matlab or the like

5. the evaluation or quality control of the numerical out-
put.

The course is structured in such a way that for each topic all
of steps (1) through (5) are covered, with special attention
to the computer science background of the students. On
one hand, special care is taken when choosing motivating
examples so that they are not too technical, yet reasonably
real-life. On the other hand, all the aspects of step (4) are
treated in great detail. Whereas other scientific computing
courses exist, this course is special in that it makes very
explicit that one should distinguish between the properties
of a mathematical algorithm and the properties of the al-
gorithm’s implementation in finite precision arithmetic on
a computer. Computer science students are interested in
computer arithmetic as part of scientific computing, in the
same way they are interested in learning about compilers
in order to obtain a full understanding of programming
languages.

Taking these considerations into account, the course “Com-
puter Arithmetic and Numerical Techniques” consists of
two parts, one discussing how computations are performed
on a binary machine as compared to mathematical com-
putations in the set of real numbers (15-hour course load),
and one on different numerical techniques (30-hour course

load). These two parts are now described in detail. At
the end of each part, we also discuss how the students get
hands-on experience.

II. COMPUTER ARITHMETIC
A. Theory

The essence of this part of the course is to discuss how the
number sets Z,@) and IR can be represented on a com-
puter and to show how computing with the computer rep-
resentation of these numbers instead of with the numbers
themselves influences the computations. Throughout this
part of the course, the level of complexity evolves in two
directions. On one hand, the complexity evolves as we go
from Z (integer arithmetic) to @ (exact rational arith-
metic) to IR (exactly rounded arithmetic). On the other
hand, the complexity increases as we allow more complex
operations on each of these number sets.

Section 1 covers computer representations of the mathe-
matical number sets Z, @) and IR: the set of machine
integers Z, where t indicates the number of bits provided
to represent the integer (including its sign), the set Qus of
rationals that can be represented in finite machine mem-
ory, and the set of floating-point numbers IF'(8,t,L,U),
with base 3, precision ¢, and exponent range [L,U]. For
short, when no confusion is possible, we shall often write
IF; instead of IF(B3,t,L,U). Several considerations have
to be taken into account when defining these sets of com-
puter numbers: the choice of the base 3, the base conver-
sions incurred on input and output of data, the amount
of bits provided for the exponent versus the significand in
floating-point numbers of predetermined size, the rounding
error involved in going from either Z,® or IR to IF; etc.
In the next sections, operations on these computer num-
ber sets are discussed in increasing order of complexity.
Section 2 discusses the elementary operations +,—, X,/
and the essential difference between these operations in
Zy,@Qr on one hand and IF; on the other hand, due to
the absence, respectively effect of rounding errors. In Sec-
tion 3 relational operators are discussed, emphasizing that
programmers should hardly ever try to test whether two
floating-point values are exactly equal to each other. Sec-
tion 4 discusses in short the problem of implementing the
elementary functions. Taylor series expansions bring out
the concept of truncation error in a very natural way.

A next level of complexity arises in Section 5 when, in-
stead of a single operation, compound statements are pro-
grammed. Compound statements involve such problems as
the accumulation of rounding errors and the choice of an
evaluation strategy (widest format available, widest needed
precision, .. .), especially when operands of different preci-
sions are mixed. The effect of the evaluation strategy is

clearly illustrated by running the same numeric code on
different hardware platforms, for example SUN-Sparc ver-
sus Intel-PC.

With the functionality described in the previous sections,
all ingredients are there to implement complete numerical
algorithms in IF';. The build-up of rounding and data errors
in the implementation of algorithms leads to the essential
concepts of forward and backward error analysis, numeri-
cal stability and ill-conditioning. These are discussed and
illustrated in great detail in Section 6.

To top off the build-up in the previous sections, Section 7
discusses the IEEE standard [2], [3] for floating-point arith-
metic. This standard embodies all of the details encoun-
tered when effectively implementing floating-point arith-
metic on a binary machine. Several important but very
detailistic concepts such as denormals, special representa-
tions, exception flags and so on come about.

For users not satisfied with IEEE floating-point arithmetic,
the next few sections present and discuss alternatives. A
first alternative is multi-precision floating-point arithmetic,
discussed in Section 8. Several software implementations
of multi-precision floating-point arithmetic exist, some of
which are based on the vector (or doubled-precision) ap-
proach, while others are based on increasing the precision
t and the base . Another alternative for floating-point
arithmetic is interval arithmetic. This is discussed in some
detail in Section 9. The last section covers rational arith-
metic or computing in @y, as an alternative to computing
in IF;. For the implementation of rational arithmetic other
building blocks are required than for the implementation
of floating-point arithmetic: computing the Greatest Com-
mon Divisor, rational rounding (with lowest complexity)
from IR to @y, etc. This section, which concludes the com-
puter arithmetic part of the course, is at the same time a
good starting-point for extra material on polynomial and
symbolic computation.

B. Hands-on experience

The material covered in the “Computer Arithmetic” part
of the course is essentially simple and clear-cut. Yet stu-
dents have difficulties grasping all the intricacies of the
material and understanding the interaction of the differ-
ent types of errors that can occur. It is clear that concepts
such as data and rounding error, overflow and underflow,
catastrophic and benign cancellation, numerical instability,
ill-conditioning, and so on should best not only be studied
from a theoretical point of view. To make them as tangible
as possible, we have developed what we call an “arithmetic
explorer”.

In this software environment it is possible to specify and
simulate that computations are performed, not in the hard-
ware IEEE singles or doubles, but in a user-defined set of
floating-point numbers. By choosing a small precision ¢
and a limited exponent range, students can then easily fol-
low the computations at the bit-level. Moreover, in a low-
precision floating-point set, one can easily zoom in on the
unmistakable effects of data and rounding error, cancella-
tion, ill-conditioning and numerical instability and develop

a better feeling for different computer arithmetic issues. In
this respect it is important to mention that the floating-
point arithmetic, as implemented in the didactical tool,
fully complies with the philosophy of the IEEE standard.
Except for the fact that the precision and exponent range
can be specified freely, all aspects of the IEEE standard are
implemented and can be visualized, including exact round-
ing, denormals, signed zero, infinities, not-a-numbers and
exception flags to name just a few. Hence it is possible
for students to really “discover” the full details of floating-
point arithmetic, something which is not so obvious when
other tools are used. While a similar analysis can be done
by using Mathematica or for instance by direct program-
ming and using a traditional compiler, the result is often a
time-consuming and confusing task, obscuring more points
than one is trying to make.

FlleEdit_Search Butions Frogram _Optlons _Help

(o] [Aft] ol (7] =] [Fi ol ol (€[]

Argunent #1: Z
DecFloat: 9.9 "2 Operation
BinRepr : +8011(1.)10 8110 % Addition
Rational: 1/18 * Sublraction | DecFloat
Flags @ TNFXART Multiplication | | BinFlaat

e | BinRepr

_ | HexRepr

V| Rational

V| Elags

=-‘ Operations

Result
_| Params

Argunent #2: =
DecFleat: 5.0°-1
BinRepr : +8118(1.)60 8000

Parameters

Argument

Rational: 1/2 Precision: | Stack
Flags : NOHE Exponent E
Result (Add}): (LR ([T
decFloat: 6.0 ~1 Bases2L=6 U=z
BinRepr : +81108(1.)00 1101 T —
Rational: 3/% = Rounding
Flags - INEXACT Arguments “* Neaest > Upward ?Helu |
> Zeno Interval
MBI Rl 1
Input: & D © Stack V[
Print: _| Params | DecFloat || BinFloat | BinRepr || HexRepr ¢ Flags
v/ Rational | Stack
Py
"2 05]
Input: DecFloat > BinFloat > BinRepr ~ HeaRepr Rationd > Stack ? &
Print: | Params #| DecFloat | BinFloat | BinRepr | HexRepr ! Flags
v/ Ratianal _| Stack

e o8]

Computing 0.140.5 in IF'(2,7,—6,7) and in Q.

For a specified set of floating-point numbers, the didactical
tool provides the whole functionality described in Sections
2-6, from basic operations to complete algorithms. More-
over, interval arithmetic, where the intervals have end-
points in the user-defined set of floating-point numbers,
and rational arithmetic are supported. In the future the
program will include rational interval arithmetic and ra-
tional rounding for irrational numbers.

The implementation of the didactical environment was re-
alized using C++ classes, and was developed in cooperation
with the students themselves, who were fascinated by the
computer arithmetic issues discussed in the course. Full
use of operator overloading also enables a user, in addition
to using the environment for simple expressions, to run
downloaded code from within the didactical software tool,
using a user-specified precision and exponent range, rather
than the IEEE single or double hardware floats. It should
be mentioned that, since this is a true didactical program,
no attention has been paid to the efficiency of the imple-
mentation. The tool was developed in Borland C++ with
a Windows interface. It is in its last debugging phase and
will be available in the coming winter term.

III. NUMERICAL TECHNIQUES

We now describe the 4 main modules of the “Numerical
Techniques” part of the course. As pointed out, each mod-
ule follows the same general pattern from real-life problem
to evaluation of the computational solution.

A. Linear algebra

This subject is of uttermost importance because so many
real-life problems involve the solution of a system of linear
equations. Hence the real-life problems that we discuss
come from quite different areas such as

e computer graphics: finding the intersection points of
lines and planes

e robotics: the movement of a robot can be described by
matrix manipulations (multiplication and inversion) ap-
plied to the robot’s state vector

e approximation theory: computing an approximation for
the real number e by solving a tridiagonal system of linear
equations, obtained from computing the convergents of a
continued fraction expansion for e.

All the numerical methods which are discussed in this
module are exact methods: Gaussian elimination (without
and with partial pivoting) and QR-factorization. Having
a proper understanding of computer arithmetic, students
easily see that the implementation of an exact method only
yields an exact solution if exact arithmetic is carried out
with exact data. Since this is clearly not the case for any
implementation in floating-point arithmetic, notions like
“rounding error”, “ill-conditioning” and “numerical stabil-
ity” pop up naturally and are discussed thoroughly. Stu-
dents get hands-on experience solving different problems,
e.g. inverting the Hilbert matrix.

B. Root-finding

Motivating examples for this subject are:

o the implementation on a chip of a routine to compute
the square root

« the difficult problem of polynomial root solving [4], [5]

In contrast to the “Linear Algebra” module, the meth-
ods that are discussed here are iterative, and hence non-
exact: bisection, Newton’s method and regula falsi. These
are fairly general purpose methods, in the sense that not
too stringent requirements are imposed on the function of
which the roots must be computed. For the implementa-
tion of the different methods, the students are asked to
estimate the root-solving problem graphically and to de-
termine starting-points for the iterative method from the
graph. In this way, they confront the problem of reliable
graphical output. Several non-linear equations resulting
from real-life problems are given as projects.

C. Approximation theory

Motivating problems in this context are:
e CAD-CAM applications
« implementation of elementary functions on a chip

Of all the modules, this is the most comprehensive one since
it covers several mathematical techniques, including inter-
polation, Chebyshev approximation, splines, least squares
and rational approximation. For all except the last of these
techniques, polynomials are used as approximating func-
tions. After a brief theoretical discussion, we emphasize
how the nature of the problem influences the choice of the
approximation method. There is a cross-reference to the
arithmetic part of the course, since the quality of the nu-
meric data will determine whether the problem needs to be
tackled in the least-squares or in the interpolation sense.
The implementation of the function e® in the mathemat-
ical function library fdlibm, made publicly available by
SUN [6], is thoroughly discussed as an example, including
the choice of approximation and the computer arithmetic
details of the implementation.

15

5 "
3
C3

05 ; j ; S

24(-53)
o
Il

05 -

15

o 2000 4000 B000 SDODEA(1'11)[)0[)[) 12000 14000 18000 18000
Scatterplot for the polynomial approximation

of degree 13 for sin(z) used in £dlibm

D. Random number generators

The course concludes with a module covering random num-
ber generators and Monte Carlo methods. Simulation tech-
niques are essential when studying many of today’s com-
plex problems such as

« traffic engineering

o the computation of irregular tank volumes

In this module, we do not discuss the simulation of physi-
cal phenomena themselves, but rather the random number
generators which underlie the simulation and which are es-
sential for the reliability of the simulation. It is well-known
that not all random number generators are equally good
and the students are taught criteria to evaluate the quality
of a random number generator. In the exercises, software
for random number generation is retrieved via the Internet
and tested according to several criteria.

E. Hands-on experience

To get acquainted with the topics covered in the sec-
ond part, several small-scale problems are formulated and
students are asked to perform the physical journey from
problem to solution in some individual projects. Af-
ter choosing a suitable algorithm, correct implementa-

tions can usually be found in well-known software envi-
ronments such as Matlab, Maple or Mathematica. Stu-
dents can also download software from well-known soft-
ware sites such as Netlib (http://www.netlib.org/). In
this respect, the Guide to Available Mathematical Software
(http://gams.nist.gov) is also very helpful.

ACKNOWLEDGEMENTS

The authors greatly acknowledge the valuable support
from their academic authorities for the extension of CS&E
within the computer science curriculum at the University
of Antwerp. Thanks are also due to Gene H. Golub for
his hospitality and encouragement; the course material did
benefit a great deal from a fruitful summer term at the
Department of Computer Science in Stanford.

COLOPHON

The course “Computer Arithmetic and Numerical tech-
niques” has recently won an Undergraduate Computational
Science Education Award for its innovative contribution to
the field.

More information on the award program can be found
in http://www.krellinst.org/UCES/awards/ugcsa97/.
Direct information on the course can also be obtained from
http://win-www.uia.ac.be/u/cuyt/cant.html.

ABOUT THE AUTHORS

Annie Cuyt is Research Director at the FWO-Vlaanderen, the
Fund for Scientific Research—Flanders, and teaches several comput-
ing courses at the University of Antwerp (UIA), among which the
course “Computer Arithmetic and Numerical Techniques” described
above. She received her Doctor Scientia degree in 1982 from the same
university. She is the author of more than 90 publications in interna-
tional journals and conference proceedings and the author or editor
of several books. Her current interests are in “Computer Arithmetic”
and in “Numerical Approximation Theory”. In view of these inter-
ests she is an editorial board member of the new journal “Reliable
Computing”. Since 1997 she also serves as a member on the scientific
committee of the Flemish Science Foundation.

Brigitte Verdonk is a postdoctoral fellow at the FWO-Vlaanderen
and is affiliated with the Department of Mathematics and Computer
Science of the University of Antwerp (UIA). She obtained a Master’s
degree in Computer Science from Stanford University in 1984 and a
Doctor Scientia degree from the University of Antwerp in 1988. After
a few years in industry, she returned to academic life and is now the
author of approximately 30 publications in international journals and
proceedings. She is currently coordinating the development of a pro-
gramming language environment enabling the evaluation, with max-
imal accuracy, of hybrid numeric expressions (hardware and multi-
precision floats, intervals, rationals, ...).

Authors’ address: Department of Mathematics and Computer
Science, University of Antwerp (UIA), Universiteitsplein 1, B-2610
Antwerp (Belgium), Email: {cuyt,verdonk}@Quia.ua.ac.be

REFERENCES

[1] Thomas L. Marchioro, David M. Martin, and W. Donald Payne,
“UCES: An undergraduate CSE initiative,” IEEE Computational
Science & Engineering, vol. 2, no. 3, pp. 69-73, 1995.

[2] ANSI/IEEE Std 754-1985, “IEEE standard for binary floating-
point arithmetic,” ACM SIGPLAN, vol. 22, no. 2, pp. 9-25, 1987.

[3] ANSI/IEEE Std 854-1987, “IEEE standard for radix-
independent floating-point arithmetic,” New York, 1987.

[4] “PoSSo (Polynomial System Solving),”
http://janet.dm.unipi.it/, 1996, ESPRIT Basic Research
contract with the Commision of the European Community
(Contract BRA 6846).

[5] “FRISCO (A FRamework for Integrated Symbolic/numeric
COmputation),” http://www.nag.co.uk/projects/FRISCO.html,

1996, ESPRIT Reactive LTR Scheme with the Commision of the
European Community under (Project No. 21.024).

[6] SunSoft, “Fdlibm, a freely distributable C math library,” Version
5, netlib@research.att.com.

