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1. INTRODUCTION

In Part I of this report we introduced a comprehensive precision- and
range-independent tool to test how well a floating-point implementation
with arbitrary precision and exponent range complies with the philosophy
of the IEEE-754 [IEEE 1985] and IEEE-854 [IEEE 1987] standards. As
pointed out in greater detail in Verdonk et al. [2001], the motivation for the
development of such a tool is the ever increasing need in many applications
for more precision than provided by the IEEE single and double formats.
While implementations of floating-point arithmetic with larger precision
become extensively available (be it in hardware or software), the tools for
testing them systematically remain almost nonexistent.

In effect, the IEEE-754 and IEEE-854 standards are specifications of
programming environments. These standards list, besides requirements for
floating-point formats and specifications for rounding, also specifications
for

(a) add, subtract, multiply, divide, square root, remainder, and compare
operations,

(b) conversions between different floating-point formats,
(c) conversions between integer and floating-point formats,
(d) rounding of floating-point numbers to integral value,

(e) conversions between basic format floating-point numbers and decimal
strings, and

(f) floating-point exceptions and their handling, including nonnumbers
(NaNs).

IEEE-754 requires that each operation in (a) and each conversion in (b)
through (d) shall be performed as if it first produced an intermediate result
correct to infinite precision and with unbounded range, and then rounded
that result according to one of the following four rounding modes: round to
nearest, round to zero, round up, or round down. If the floating-point result
is computed in this way, we shall call it exactly rounded.

The precision-independent tool we have developed is designed to test a
floating-point system in its globality, in other words all operations (a), all
conversions (b) through (e), as well as the handling of all floating-point
exceptions (f). In Part I of the paper, we only presented those aspects of the
test tool that check the operations add, subtract, multiply, divide, square
root, and remainder, including the floating-point exceptions raised by those
operations. In this part we describe the testing of all conversions listed in
(b) through (e), including the involved exceptions.

The rest of the paper is structured as follows. In Section 2, we extend the
precision-independent syntax proposed in Part I to accommodate the test-
ing of floating-point conversions. Sections 3 through 6 discuss each conver-
sion operator in detail and explain which aspects of the conversion are
tested by the test vectors. In Section 7, we discuss the driver program of
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our test tool. In Section 8 we comment on programming language issues
which pop up when testing conversions on hardware platforms. The final
section contains the results of applying our tool to test conversions on some
popular computing platforms as well as in multiprecision implementations.

2. A PRECISION- AND RANGE-INDEPENDENT SYNTAX FOR TEST
VECTORS

In this section we extend the precision-independent syntax for test vectors
introduced in Part I, to deal with the testing of conversions. To avoid
duplication, we refer the reader to Section 3.1 of Part I for the introductory
notation. As described in Part I, a test vector consists of at most 9 fields:
version number and operator, (optional) precision specification, rounding
mode, first operand, second operand (which in the case of conversions is
always zero or void), exceptions, result, and (optional) comment. For more
information on these fields we refer to Verdonk et al. [2001]. Here we only
describe the extension of the syntax that was necessary to test conversions.

2.1 The Extended Syntax

The following operators have been added to refer to the different conver-
sions:

—c: copying from a smaller to a larger floating-point format

—r: rounding from a larger to a smaller floating-point format

—i: rounding of a floating-point value to an integral floating-point value

—ri, ru: rounding of a floating-point value to signed, respectively unsigned,
32-bit integer formats

—rl, rU: rounding of a floating-point value to signed, respectively un-
signed, 64-bit integer formats

—ci, cu: conversion from a 32-bit signed, respectively unsigned, hardware
integer to a floating-point number

—cl, cU: conversion from a 64-bit signed, respectively unsigned, hardware
integer to a floating-point number

—d2b: decimal-to-binary conversion
—Db2d: binary-to-decimal conversion

Test vectors for the operators ‘c’ and ‘r’ are discussed in Section 3, for the
operator ‘I’ in Section 4, for the conversion between floating-point and
integer formats (the operators ‘ri’, ‘ru’, rI’, ‘rU’, ‘ci’, ‘cu’, ‘cl’, and ‘cU’) in
Section 5 and for decimal-to-binary conversion in Section 6.

The precision independence of our test tool stems from the fact that in
each test vector the floating-point operands and result are encoded using a
format-independent syntax. For a specified precision and exponent range
(which are command-line parameters for the test driver program), the

ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001.



122 . B. Verdonk et al.

actual test vector (operands, rounding mode, and result) is generated at
runtime from the format-independent encoding. The syntax of this encod-
ing is extensively described in Part I and summarized in Appendix A in
BNF form. We review some of its features here by means of simple
examples.

The encoding of a floating-point number consists of an optional sign, a
mandatory root number and zero or more modifier suffixes. Consider for
example the elements f; = 2¢°1 = 27 Band f, = 1 + 27/*2 of the floating-
point set F(2, ¢, L, U) with bias B = U = —L + 1. The encodings of
these numbers in our precision-independent syntax are 1mBand 1i(t-2)1
In both cases, the root number is 1. The modifier in f; is mB where mB
stands for “exponent minus B,” meaning that the root value is multiplied
with 272, Similarly, the modifier pB stands for “exponent plus B.” The
modifier in f, is i(t-2)1 to increment the root number by 1 at bit position
t — 2 (where the bit position varies between 0 and ¢ — 1).

What needs to be remarked is that some encodings refer to the precision
and the bias of the floating-point set under consideration. In test vectors for
basic operations, both the operands and the result are elements of the same
floating-point set, and the notations t and B are used to refer to the
precision and bias of that set. In test vectors for conversions, often two
different floating-point sets are involved. To distinguish between the preci-
sion and bias of the source floating-point set and the precision and bias of
the destination floating-point set, we use t and B for the former and u and
C (the next characters in the alphabet) for the latter. This is illustrated in
the next test vectors:

Ar  => 1iu3mC 0 xv 0i(1)li(u-1)1
Ar 0 < 1iuw3mC 0 xu 0i1)1

These vectors test rounding between two floating-point sets F(2, ¢, L,, U,)
and F(2, u, Lo, U,) C F(2, t, Ly, U,) with respective biases B = —L; +
1 and C = —L, + 1. The argument of the rounding is the floating-point
number

(1 + 277 1+27) x 27L
The results of the conversion are the respective denormal numbers
(271427l x 2k
and
271 x 2k,

depending on the rounding mode. This conversion should raise the inexact
(x) and underflow exceptions. Following Coonen [1984], we use one of three
characters to denote the underflow exception in a test vector (u, v, and w),
corresponding to the three different definitions of underflow permitted by
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the IEEE standard. For a detailed description of these underflow detection
mechanisms, we refer the reader to Cuyt et al. [2000b] and the references
therein.

Our format-independent syntax only applies to operands and results that
belong to floating-point sets. For operands or results that belong to the
different sets of hardware integers, the integer operand/result in the test
vector is represented in hexadecimal notation. For example, the next vector
tests the conversion of an unsigned 32-bit integer to floating-point format:

3cu ALL  0x00010001 O OK  1i(16)1pl6 — 65537

Note that this conversion is exact (no inexact exception raised) only if the
precision of the destination floating-point format is at least 17, and the
exponent range at least [~ 15, 16]. These conditions are not explicit in the
test vector, because throughout the test tool it is assumed that the
considered floating-point formats for operands and result are such that

24<=t=U+1=B+1

U=-L+1=21-1 k=8

Subject to the above, the vectors in the test tool can be used to verify
operations and conversions in any floating-point set F(2, ¢, L, U). The
implicit requirement that B = 2 is not a restriction on their applicability.
Indeed, in most multiprecision software packages the base B can be
specified by the user, within certain bounds.

The encoding of operands and results in test vectors for decimal <> binary
conversion logically differs from the encodings described previously. We
will discuss this and the corresponding test vectors extensively in Section 6.

2.2 The Complete Test Set

For conversions no test sets are available in Hough et al. [1988] while the
vectors in Coonen [1984] refer specifically only to the hardware single,
double, and quadruple formats (except for the rounding of floating-point
numbers to integral values). Hence, for the conversion test set, the first job
was to investigate which of these test vectors could be generalized for
arbitrary floating-point sets. To this format-independent generalization,
which consisted of about 850 vectors, we then added approximately 650
precision-independent vectors for the conversion operators ‘r’, 9, ‘ri’, ‘ru’,
rI’, and ‘rU’, and 14,500 precision dependent vectors to test decimal <
binary conversion (see Section 6 and Paxson and Kahan [1991]). The
vectors are centered around the testing of

—the appropriate handling of special representations (signed zeroes, NaNs,
etc.);

—the appropriate detection of exceptions such as overflow, underflow, and
invalid (where relevant for the operation);
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Table I. Floating-Point Format Conversion: Rounding Involving Underflow

Operand Proundto x O roundto x
t—1 t—1
Case 1 (+, 2x,274, —C — k) Xy-1-k > x; #0
i=0 i=u—k

—exact rounding and the corresponding detection of the inexact exception.

The complete set of test vectors is divided into files, one per operation or
conversion to be tested. To actually test a floating-point implementation
with precision ¢ and exponent range [L, U], one calls the driver program
(called leeeCC754 ), specifying the parameters of the floating-point format
(the precision ¢, the number of bits £ to store the exponent, and whether
the leading bit is hidden) and a file of test vectors. For each vector in the
file, the driver program translates the precision-independent test operands
and result into the specified floating-point format. For the given operands,
the implementation being tested then computes the result of the operation
or conversion. The result and exceptions are compared with those in the
test vector. The output of the driver program is a log-file listing any errors
that have occurred.

For the complete functionality of the driver program and its many
options, we refer to Section 7. In the following sections we first discuss the
content of the test set for each conversion in more detail.

3. CONVERSIONS BETWEEN FLOATING-POINT FORMATS

The IEEE standards require that conversions between all supported float-
ing-point formats be possible. If the conversion is to a narrower precision,
the result shall be rounded exactly, subject to the current rounding mode.
Conversion to a wider precision is exact.

We systematically tested all round and sticky bit combinations, including
near halfway cases and almost exactly representable floating-point results.
Such tests also serve to check the appropriate signaling of the inexact
exception.

In Coonen [1984] some vectors are included where the conversion from
double to single, from quadruple to single, and from quadruple to double
induces overflow, but no cases to test the proper signaling of the underflow
exception were present. To make the overflow cases precision-independent
and to construct underflow cases, the literals C and u, which respectively
refer to the bias and the precision of the destination floating-point set, are
essential. The following example vectors from Table I with operator ‘r’
illustrate this:

Ar => 1pCpl 0 xo H
Ar <0 1pCpl 0 xo Hdl

Ar <0 1ImCi(u +1)7 0 xu 0i(1)1
Ar => 1mCi(u +1)7 0 xv  0i(1)Lli(u-1)1
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In the first two vectors, the operand of the conversion is 2°"!. When
converted to F(2, u, —C + 1, C), the result is positive infinity in round up
and round to nearest (denoted by the literal H for “huge”) and the largest
representable number in F(2, u, —C + 1, C) in the other rounding modes
(“huge decrement 1”). In both cases, the inexact and overflow exceptions
should be signaled. The last two vectors are underflow cases. In round
down and round to zero, underflow is due to denormalization loss (called
u-underflow in Coonen [1984] and Cuyt et al. [2000b]), while in round to
nearest and round up underflow is due to tininess after rounding and
inexactness, but without denormalization loss (called v-underflow in
Coonen [1984] and Cuyt et al. [2000b]).

These vectors and the other vectors with operator ‘r’ in the test set are
designed to test conversion from an arbitrary floating-point set F(2, ¢, —B
+ 1, B) to a smaller destination format F(2, u, —C + 1, C), ie., fort = u
and B = C. Note, however, that in the last two test vectors given above,
the floating-point operand

(1 + 27t ugg ul)y x 9°C

is an element of F(2, ¢, —B + 1, B) only when ¢ = u + 2 and B > C or
t =z u + 3 and B = C. For other test vectors, other conditions may apply.
Rather than making these conditions explicit in the test vectors, they are
checked by the driver program during translation of the operand to its
binary representation. Test vectors where the operand is not an element of
the source floating-point set for the given values of ¢, u, B, and C are
skipped. The ignored vectors are logged for reference, and the tester is
informed of the percentage of vectors that could not be executed.

4. ROUNDING FLOATING-POINT NUMBERS TO INTEGRAL VALUES

It is clear that only the inexact exception can be raised by the rounding of a
floating-point number to its integral value, at least if we assume, as we do
in our test tool, that the precision ¢ and bias B of the floating-point set
satisfy the natural condition { — 1 = B (thus avoiding overflow).

With only exact rounding to test, we limited ourselves to creating only a
few extra vectors with conversion operator i, including exact halfway
cases, and incorporated these with the corresponding precision-indepen-
dent encodings of vectors in Coonen [1984].

5. CONVERSION BETWEEN FLOATING-POINT AND INTEGER FORMATS

Because the IEEE standards are not specific about the integer formats, it
seemed most obvious to restrict ourselves to two most frequently available
hardware formats: 32 bit and 64 bit. This is also the choice made in Coonen
[1984]. In line with most current hardware platforms, our test tool assumes
2’s complement representation of signed integers, for which the range of
representable numbers is [ —231, 23— 1], respectively [ —2%3, 253—1].
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Vectors to test conversions between floating-point and integer formats
are, more often than is the case for the other conversions, precision
dependent. Indeed, copying from unsigned 32-bit integers to any floating-
point format with precision ¢ = 32 is always exact, while this is clearly not
necessarily the case when ¢ < 32. This precision dependence is handled by
the precision specification field in the test vectors. When the precision
specification field is blank, as we have seen so far, the test vector is
applicable to arbitrary floating-point formats. When not blank, it specifies
the precision to which the test vector applies. The next vectors illustrate
this. They test the conversion from unsigned 32-bit integers to IEEE single
(precision specification ‘s’), respectively IEEE double (precision specifica-
tion ‘d’):

3cu s <0= 0x01000001 O x 1p24
3cu s > 0x01000001 O x 1i(23)1p24
3cu d ALL  0x01000001 O OK  1i(24)1p24

While the latter is in fact applicable to all floating-point formats with
precision ¢ = 32, our test tool does not allow ranges of formats to be
specified in the precision specification field. When a test vector is applica-
ble only in a given range of floating-point formats, it is included in the test
set for one or more specific formats within that range. The following
floating-point precision specifications can be encountered in the context of
testing conversions:

—s: single precision and exponent range (¢t = 24 and [L, U] = [—126,
127))

—d: double precision and exponent range (¢t = 53 and [L, U] = [—-1022,
1023])

—I1: long double precision and exponent range (¢ = 64 and [L, U] =
[-16382, 16383])

—q: quadruple precision and exponent range (¢t = 113 and [L, U] =
[-16382, 16383])

—m: multiprecision (# = 240 and [L, U] = [—16382, 16383])

According to IEEE [1985; 1987], the conversion between floating-point
and integer formats shall, like all other operations and conversions, be
dependent on the rounding mode. As we shall see in Section 8, up until the
recently published C standard [ANSI-ISO-IEC 1999], these specifications
were not compatible with the specifications for floating-point < hardware
integer conversion in C/C++, nor are they fully compatible with the
Fortran 95 standard [ANSI-ISO-IEC 1997]. Hence, IEEE-compliant conver-
sions from floating-point to integer formats in all rounding modes are still
often unavailable at the programming language level. It should be observed
that, probably for this reason, the vectors in Coonen [1984] which test the
conversion of floating-point numbers to integer formats identify all rounding
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modes with round to zero. The issue of supporting the conversion of
floating-point numbers to integer values in all rounding modes has recently
come under discussion by the IEEE 754R Revision Group.!

In our set, vectors are included which test exact rounding of all conver-
sions between floating-point and integer formats in all rounding modes:

Ai >= 3it)Im 1 0 x  0x00000002
Ai 0 < 3itt1)Im 1 0 x  0x00000001

With respect to exceptions, certainly underflow cannot arise here. It is
also easy to see that overflow cannot arise during the conversion of 32- or
64-bit integers to floating-point formats, since one of the assumptions of
our test tool is that the floating-point format under consideration is at least
as large as IEEE single precision. Hence the exponent range is at least
[—126, 127]. As for the conversion in the other direction, it may be the
case that the result of rounding a floating-point number to integer is too
large to be represented in the integer hardware format. In this case, the
IEEE standards specify that the invalid exception shall be signaled. To test
whether this is done appropriately, we have generalized format-specific
vectors included in Coonen [1984] where possible, and added a number of
borderline cases. These are cases where the floating-point operand is just
within, on the border of, or just outside the range of integers representable
in the respective hardware formats:

3ri ALL  1p31 0 i 20xfifffff

Ai d ALL 1d(30)1p31 0 OK Oxffffff
Ai | ALL 1d(30)1p31 O OK Oxffffff
Ai g ALL 1d@30)1p31 0 OK Ox7fffffif
Ai m ALL  1d@B0)1p31 0 OK Oxiffff
Ari s ALL  1d(23)1p31 0 OK Ox7fffff80

The operand 23! in the first test vector is just outside the range of
representable 32-bit integers. The result of this conversion is not checked
upon by the test driver program (indicated by the ? in the result), as it is
left unspecified by the standard. However, it should raise the invalid
exception. In the next four test vectors, a precision specification is needed,
since the conversion of the operand 23'—1 only applies for precisions ¢t =
31, of which ‘d’, ‘I, ‘q’, and ‘m’ are instantiations. When ¢ < 31, the largest
representable signed integer cannot be represented exactly as a floating-
point number.

6. DECIMAL-TO-BINARY AND BINARY-TO-DECIMAL CONVERSION

Decimal-to-binary conversions and vice versa stand out from the other
conversions in IEEE-754 and TEEE-854 in that these conversions need not
be correctly rounded for all ranges of operands. Full details can be found in
IEEE [1985; 1987]. However, since the publication of the IEEE floating-
point standards, algorithms for correctly rounded conversion between decimal

IEEE 754R Revision Group. Notes from 754R meeting, January 8, 2001. Available at
http://www.validlab.com/754R/01-01-08. htm].
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strings and binary floating-point formats have become available which
incur little time penalty in common cases [Gay 1990].

Our test tool has taken this evolution into account. With the option
-ieee , the driver program considers only those vectors in our conversion
test set with operands lying in the range within which the IEEE standards
require exact rounding. If the option -ieee is omitted, the whole decimal
< binary test set is executed. Rather than testing on the loosened rounding
requirements outside the range specified in the IEEE standards, our
vectors then test on exact rounding for all operands. When the implemen-
tation being tested returns a result which is not exactly rounded, the driver
program issues a warning rather than an error in case the operand is
outside the IEEE range.

Whereas no test set for decimal < binary conversion is included in
Coonen [1984], tables of decimal numbers are available [Tydeman 1996]
which require a lot more than 53 bits to achieve correct rounding to
double-precision binary representation. These tables correspond with re-
sults obtained in Paxson and Kahan [1991]. There, the authors describe
algorithms to find numbers in an input base (2 or 10) which, in the output
base, lie extremely close to representable numbers (for directed roundings),
or exactly half-way between adjacent representable numbers (for round to
nearest).

Using these algorithms, two groups of test vectors were created: one for
the operator ‘d2b’ containing decimal strings of n decimal digits (where n
can vary between 1 and 72 depending on the destination precision) and
another one for the operator b2d’ grouping binary floating-point operands
of various precisions ¢. Both groups of test vectors also contain some cases
where the decimal <> binary conversion is exact or induces either overflow
or underflow.

Some clarifications are needed regarding the syntax of the test vectors
for ‘d2b’:

Ad2b  sieee UN +429 E-10 x +b8410c_10000000001& E-25

This example tests the conversion of the decimal number 429 X 10710 to
its binary representation in single precision, obtained by exactly rounding
the binary floating-point equivalent of 429 X 1071

1.011 1000 0100 0001 0000 1100 10000000001 . .. X 2725,

From the pattern following the 24th bit, a pattern which is preceded by an
underscore in the test vector, it is clear that the binary representation is
almost half-way between two single-precision floats, making 429 X 10 1°
a decimal number which is relatively hard to round to IEEE single
precision. Following the version number A and the operator d2b, the
precision specification is sieee . This signifies that the operand is not just
single precision but moreover within the range for which IEEE requires
exact rounding. Similarly, fieee indicates an operand in floating-point
format f, whose value is in the range within which IEEE requires that the
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conversion of decimal string to binary representation be exactly rounded.
Here, f is one of the precision specifications ‘s’, ‘d’, ‘I, ‘q’, or ‘m’. Implemen-
tations must only pass the fieee test vectors to comply with the IEEE-754
standard. The field following the precision specification is the rounding
mode and takes on the value UN which indicates that the result of the
conversion is not yet rounded in the test vector: the driver program of the
test tool will generate a correctly rounded representation for all rounding
modes.

The rest of the test vector consists of the decimal string operand, the
possible exception flags (here x), and the result, which is no longer encoded
in our precision-independent syntax. Rather, the sign is given, then the
first ¢ bits of the significand in hexadecimal notation (no bit hidden), then
an underscore followed by a sufficient number of bits (in binary notation) in
the significand to allow for correct rounding (in this example 11 bits).
Finally, the exponent of the result is given in decimal notation. When the
precision ¢ is not a multiple of 4, leading zero bits are added to obtain 3/40
X 4 bits, which are then written in hexadecimal notation. The following
test vector for conversion of —9 X 10 *" to double precision further illus-
trates this:

Ad2b d UN -9 E-47 x -10711fed5b19a3 11111110& E-153
Test vectors for binary-to-decimal conversion are very similar:

Ab2d sieee UN  -b5e621 E +44 x -2 50000000& E +13

Ab2d s UN ebacl5 E+108 x +597 499999999& E +30
The underscore in the decimal string is a signal to the test driver to round
the result at that point in the string and compare the rounded result with
the decimal string of length n generated by the floating-point implementa-
tion. Here n is the number of decimal digits preceding the underscore. The
& indicates that decimal digits different from the one preceding the & follow
in the exact decimal representation.

7. THE CONVERSION TEST DRIVER PROGRAM

For the basics on the test driver program we refer to Part I and to the Web
page http://win-www.uia.ac.be/u/cant/ieeecc754.html . Here we
only discuss the extensions made to the program to deal with the testing of
conversions.

When testing conversions between floating-point formats, both a source
and a destination floating-point set must be specified. For the former, the
basic options apply, including -s |-d |-l |-q |-m|{ -e <int > -t <int >
[-h] }. For the latter, the same options but preceded by the character d
(destination format) should be used. For example, calling the driver pro-
gram with the options -q -ds implies that the source floating-point format
is quadruple and that the destination floating-point format is IEEE single
precision.
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The options which influence the actual testing phase now also include:

-ieee  test decimal <> binary conversion only within range where IEEE
requires exact rounding; this option can be abbreviated to -i

To illustrate the applicability of our tool, we have applied it on one hand
to several hardware floating-point implementations, including the Intel
Pentium processors and SUN Sparc workstations, and on the other hand to
the multiprecision software library FMLIB [Smith 1991] and our own
IEEE-compliant multiprecision floating-point implementation Mpleee
[Cuyt et al. 2000a]. We discuss the results of the conversion tests in Section
9. Before we can do so, however, it is necessary to comment on how
programming language standards and compilers provide support for
(IEEE) conversions.

8. LANGUAGE SUPPORT FOR IEEE FLOATING-POINT CONVERSIONS

While our test tool is particularly suited to test multiprecision floating-
point implementations, which are mostly available in software, it can
certainly also be applied to floating-point environments on hardware plat-
forms. When testing the latter, support for floating-point conversions in
compilers and programming language standards is an important issue
which will be the topic of this section.

It is well-known that not all conversions required by IEEE are available
in hardware. Hence they are compiler-specific and/or programming-lan-
guage-specific. Furthermore, those conversion functions which are avail-
able in hardware and are IEEE-compliant, may be inaccessible to the
programmer due to programming language specifications.

In fact, before dealing with conversions, it should be noted that a similar
problem already arises for the remainder function. On most popular
computing platforms, an IEEE-compliant remainder function is available
in hardware. However, this hardware function is not available to the user
through the standard C function fmod, because the specifications for fmod
in ANSI-ISO-IEC [1999] are not compatible with the IEEE-754 specifica-
tions for the remainder operation. To overcome this, the recently published
C standard [ANSI-ISO-IEC 1999] has added to its requirements the re-
mainderf , remainder , and remainderl  functions (for float, double, and
long double arguments) to provide an IEEE-compliant remainder function
in C/C++. Even before publication of the new C standard, several compiler
builders already supplied the above functions. If not supplied, one was
forced to call the corresponding assembler routine to directly address the
hardware.

In the next few paragraphs, we discuss language support for IEEE
floating-point conversions in different compiler/programming language/
hardware combinations.

8.1 Fortran and SUN Ultra Sparc-ll

In Table II, we consider the programming environment consisting of SUN
Ultra Sparc-II hardware equipped with the Forte Developer 6 update 1
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Table II.

Support for IEEE Conversions in Fortran 2000 and in the Forte 6.1 f95 Compiler on SUN Ultra Sparc-II

real(4) real(8) real(16)
Fortran Language ASM Language ASM Language ASM
SUN Ultra Spare-II Standard RM f95 single Standard RM 195 double Standard RM 95 long
format =, real(_, 4) ? fdtos =, real(_, 8) ? fstod =, real(_, 16) ? fstoq
conversion 7 ALL O fqtos ? ALL O fqtod 7 ALL O fdtoq
to integral value aint(_, 4) 0 ] aint(_, 8) 0 m| aint(_, 16) 0 ]
anint(_, 4) =1 O anint(_, 8) =1 O anint(_, 16) =1 O
ieee_rint ALL ieee_rint ALL ieee_rint ALL
ALL r_rint ALL d_rint
to 32-bit integer nint(_, 4) =1 0O nint(_, 4) =1 0 nint(_, 4) =1 0O
=,int(_, 4) 0 O fstoi =, int(_, 4) 0 O fdtoi =,int(_, 4) 0 O fqtoi
ceiling > O ceiling > O ceiling > O
floor < ] floor < O floor < ]
from 32-bit integer =, real(_, 4) ? fitos =, real(_, 8) ? fitod =, real(_, 16) ? fitoq
7 ALL O ? ALL O 7 ALL O
to 64-bit integer nint(_, 8) =1 O nint(_, 8) =1 O nint(_, 8) =1 O
=, int(_, 8) 0 O =, int(_, 8) 0 O =, int(_, 8) 0 O
ceiling(_,8) > ] ceiling(_,8) > m| ceiling(_,8) > ]
floor(_,8) < 0O floor(_,8) < 0 floor(_,8) < 0O
from 64-bit integer =, real(_, 4) ? =, real(_, 8) ? =, real(_, 16) ?
7 ALL O ? ALL O 7 ALL O
binary to decimal print, write ? print, write ? print,write ?
7 ALL O ? ALL O 7 ALL O
decimal to binary read ? read ? read ?
7 ALL O ? ALL O 7 ALL O

1 Round to nearest except for exact half-way cases which are rounded away from zero.
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Fortran 95 compiler (which we shall abbreviate as f95). The f95 compiler is
fully compliant with the Fortran 95 standard [ANSI-ISO-IEC 1997], which
describes but does not require modules to support IEEE-754 arithmetic. To
make our overview more time resilient and to illustrate the drive at SUN to
include IEEE-supporting functionality, we shall in the sequel refer to the
upcoming Fortran 2000 standard [Committee J3 2000] when discussing
support for IEEE conversions in the Fortran programming language.

SUN Sparc is a single/double-based architecture, providing single- and
double-precision hardware as well as quadruple-precision floating-point
arithmetic in software [Sun Microsystems 1997]. These three formats can
be addressed in Fortran 95 by the real(kind(0.0)) , real(kind(0.D0)) ,
and real(kind(0.Q0)) type declarations respectively. Alternatively, one
can use the real(4) ,real(8) , and real(16) declarations.

Table II lists, for each conversion required by IEEE and for each
floating-point format, four features:

—language support for that conversion as described by the upcoming
Fortran 2000 language standard [Committee J3 2000];

—in which rounding modes (RM) the conversion is callable from Fortran
according to the above draft standard (‘0’ for round to zero, ‘<’ round
down, ‘>’ round up, ‘=’ round to nearest, ‘ALL’ all of the above, and ‘?
processor-dependent rounding);

—support of the above in the SUN Fortran 95 compiler;
—what, if any, the corresponding assembler (ASM) instruction is.

All entries in the table are in Roman font, except when the functionality
is specific for the SUN Fortran 95 compiler and different from the specifi-
cations in the draft standard. For such entries, a slanted font is used.

As can be seen from Table II, the upcoming Fortran standard is either
unspecific about rounding during conversion, or requires language support
for the conversion in all rounding modes, as required by the IEEE stan-
dards. However, it should be noted that the Fortran specifications for
rounding to the nearest integer (the functions nint(_, ) and anint(_, ) )
differ from the IEEE specifications when the argument is an exact half-way
case. The latter requires rounding to the nearest even integer while the
former requires rounding away from zero.

Fortunately, where the Fortran standards are unspecific about rounding,
the conversion in the f95 compiler is executed subject to the rounding mode
set by the programmer, with “round to nearest” as the default rounding
mode. To set the rounding mode, the upcoming Fortran standard [Commit-
tee J3 2000] prescribes the function ieee_set_rounding_mode . In the 95
compiler, the rounding mode can be set with the function ieee flags ,
which can also be used to test the status of and to clear exception flags.
Functions to round a single- or double-precision argument to its integral
value in the rounding mode specified by the programmer are only available as
part of the SUN sunmath library. These functions, called r_rint and d_rint
are the precursor of the function ieee_rint in Committee J3 [2000].
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8.2 C/C++ and SUN Ultra Sparc-l

In Table IIT we consider the programming environment consisting of the
same SUN Sparc hardware, now in combination with the Forte Developer 6
Update 1 C++ compiler (CC) and the GNU C++ compiler v2.95.1 (g++).
For each conversion we list the same features as in Table II, but now for
the C/C++ language standards [ANSI-ISO-IEC 1998; 1999]. Here again we
use slanted font to indicate compiler-specific features.

Where the recent C standard is specific about rounding, it requires
language support for the conversion in all rounding modes, as can be seen
from Table III. This too, is a major and welcome addition to the previous C
standard and a result of the efforts of the Numerical C Extension Group
[Thomas 1995]. It should be specified, however, that the functions Irint
and llrint and their single- and extended-precision equivalents convert to
signed integers only. For conversion to unsigned integers, the required
round-to-zero mode of C/C++ is the only rounding mode available.

When the C/C++ standard is not specific about rounding, the conversion
using SUN CC is again executed subject to the rounding mode specified by
the programmer. The same holds for the g++ compiler, except for decimal
<> binary conversion which is only supported in round to nearest. Changing
the rounding mode in g++ can be done with the function fpsetround , and
in CC also with the function fesetround . Both functions have the same
functionality, but the name of the latter is compliant with ANSI-ISO-IEC
[1999].

A number of conversion functions, namely r rint , rintl , irint
irintf -, and irintl , are only available as part of the SUN sunmath
library and need to be declared as extern C . The latter three provide the
functionality of the functions Irint |, Irintf  , and Irintl required by
ANSI-ISO-IEC [1999]. Analogous functions to convert a floating-point
number to a 64-bit integer in the rounding mode specified by the program-
mer are not yet supported in SUN CC and g+ +.

8.3 C/C++ and Intel x87

In Table IV we consider the programming environment consisting of the
Intel x87 processor family equipped with the GNU C++ compiler v2.95.2
(g++). Intel is an example of extended-based hardware, meaning that all
computations are performed in extended precision. To mimic pure single
precision and double precision in the absence of overflow and underflow,
one has to set the rounding precision (called precision control) to 24,
respectively 53 bits. The single, double, and extended formats can be
addressed in C++ by the float, double, and long-double type declarations
respectively.

The last column in Table IV shows that on the Intel processor each
conversion, except decimal < binary, is available in extended-precision
hardware. Furthermore, it can be observed from Table IV that the g++
compiler for Linux already provides all IEEE-compliant conversion functions
required by the new C standard. Some of these functions, however, need to
be declared as extern C .
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Table III. Support for IEEE Conversions in C++ and in the GNU g++ and SUN CC Compilers on SUN Ultra Sparc-I1

Float Double Long Double
C++ Language g++ ASM Language g++ ASM Language g++ ASM
SUN Ultra Sparc-I1 Standard RM CC single Standard RM CC double Standard RM CC long
format conversion = ? fdtos = ? fstod = ? fstoq
? ALL O fqtos 7 ALL O fqtod ? ALL O fdtoq
to integral value ceilf > O ceil > O ceill > O
floorf < O floor < O floorl < O
truncf 0 trunc 0 truncl 0
rintf ALL ot rint ALL O rintl ALL |
to 32-bit integer = 0 O fstoi = 0 O fdtoi = 0 O fqtoi
Irintf ALL Irint ALL Irintl ALL
ALL  irintf ALL  irint ALL  irintl
from 32-bit integer = ? fitos = ? fitod = ? fitoq
? ALL O 7 ALL O ? ALL O
to 64-bit integer = 0 0 = 0 O = 0 0
Hrintf ALL lrint ALL Lrintl ALL
from 64-bit integer = ? = ? = ?
? ALL O 7 ALL O ? ALL O
binary to decimal < ? < ? < ?
? ALL 02 7 ALL 02 ? ALL 02
decimal to binary > ? > ? > ?
? ALL 02 7 ALL 02 ? ALL 02

Lrrint_  instead of rintf  in g++

2 ALL only in SUN CC, round to nearest in g+ +

el
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Table IV. Support for IEEE Conversions in C++ and in the GNU g+ + Compiler on Intel x87

Float Double Long Double
C++ Language ASM Language ASM Language ASM
Intel x87 Standard RM g++  single Standard RM g++ double Standard RM g++ long
format conversion = ? = ? = ? fld
7 ALL O ” ALL O 7 ALL O fst
to integral value ceilf > O ceil > O ceill > O frndint
floorf < O floor < O floorl < O
truncf 0 O trunc 0 O truncl 0 O
rintf ALL O rint ALL O rintl ALL O
to 32-bit integer = 0 O = 0 0 = 0 O fist
Irintf ALL O Irint ALL O Irintl ALL O
from 32-bit integer = ? = ? = ? fild
7 ALL O ? ALL O 7 ALL O
binary to decimal < ? < ? < ?
”» — D ”» — D ”» — D
decimal to binary > ? > ? > ?
» — 0O » = O ? = 0O
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9. APPLICATIONS

In line with the discussion in the previous section, we have tested three
hardware/programming language/compiler programming environments. All
log files of these tests are available at http://win-www.uia.ac.be/u/
cant/ieeecc754.html . We summarize the results below, but do not
report here on functionality which is missing in the implementation due to
specifications in the programming language standard or due to lack of
support in the compiler itself, as these issues have been thoroughly
discussed in the previous section. In running the test set for each imple-
mentation, we therefore skipped those test files corresponding to conver-
sion operators which are not supported in the floating-point environment
being tested, or called leeeCC754 with appropriate options to test a
particular conversion only in specific rounding modes.

A final remark is in order before listing our test results. To allow a clear
interpretation of the test results, we have compiled the driver program
without any compiler optimization options, as it turns out that such options
may influence the result of computations (in sometimes unexpected ways).

9.1 SUN f95 on SUN Ultra-Sparc I

Our test tool reported (almost only exception signaling) errors in the Forte
Developer 6 update 1 Fortran 95 compiler for the following conversions.

—Conversion to 32-bit integer (operator ‘ri’):
In cases where overflow precludes a faithful representation in the integer
format, both the invalid and the inexact exception are signaled in
round-up and round-to-zero mode for double- and quadruple-precision
arguments. The latter exception should not be raised.

—Conversion to 64-bit integer (operator ‘rI’):

This conversion returned several erroneous results in previous versions
of the SUN Fortran compiler. In the current version all results are
correct, but the test tool reports some errors with respect to exception
signaling. For inexact conversions, the inexact exception is not raised in
round-to-zero mode. Furthermore, when overflow precludes a faithful
representation in the destination format, the invalid exception is not
raised (in single and double precision) in round to nearest, while both the
inexact and invalid exceptions are raised (in quadruple precision) in
round up and down.

—Binary-to-decimal conversion (operator ‘b2d’):

Conversion is supported in all rounding modes, and no errors were
reported by the test set except for a negative zero argument in single,
double, and quadruple precision for which the decimal string +0EO is
returned rather than -0OEO, in all rounding modes.

9.2 SUN CC on SUN Ultra-Sparc I

All conversions return exact results, and the only reported errors are the
following.
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—Conversion to 64-bit signed and unsigned integer (operators ‘rI’ and ‘rU’):
No signaling of the inexact exception in round-to-zero mode, for all
precisions.

—Conversion to 32—bit unsigned integer (operator ‘ru’):
This conversion incorrectly raises the inexact exception together with the
invalid exception (in single precision and double precision) in round-to-
zero mode.

The result of copying integer zero to floating-point in round-down mode
differs depending on the source integer format and the destination floating-
point format, sometimes returning —0 and sometimes +0.

9.3 GNU g++ on SUN Ultra-Sparc I

In this programming environment, besides some exception signaling errors,
erroneous results are returned in decimal < binary conversion.

—Conversion to 64-bit signed and unsigned integer (operators ‘rI’ and ‘rU’):
In single and double precision and round to zero, the inexact exception is
not signaled (same errors as in the SUN CC compiler). In quadruple
precision and round to zero, the behavior is different from the SUN CC
compiler. The inexact flag is erroneously set for exact and for invalid
conversions. In two cases of inexact conversions, the underflow exception
is signaled together with the inexact exception.

—Conversion to 32-bit unsigned integer (operator ‘ru’):

This conversion incorrectly raises the inexact exception together with the
invalid exception (in single and double precision) in round-to-zero mode.

—Binary-to-decimal conversion (operator ‘b2d’):

As indicated in Table III, the rounding mode does not affect the conver-
sion from binary to decimal in the g+ + compiler. In other words, the only
supported rounding mode is the default round to nearest. In that round-
ing mode, errors were reported for the conversion of quadruple argu-
ments to decimal representation. All errors concern almost exact halfway
cases.

—Decimal-to-binary conversion (operator ‘d2b’):

Here, too, conversion is supported in round to nearest mode only. Our
tool reported incorrect results in the conversion to single- and quadruple-
precision representation for operands both within and outside the range
where IEEE requires exact rounding, and exception-signaling errors for
quadruple precision. For conversion to double-precision representation,
all binary representations are exact, and only a few exception signaling
errors were reported.

9.4 GNU g++ on Intel

In this programming environment, erroneous results again only occur in
decimal < binary conversion, which are the only conversions not imple-
mented in hardware on x87 platforms.
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—Binary-to-decimal conversion (operator ‘b2d’):
Conversion is supported in round to nearest mode only. For all vectors in
the test set the correct decimal output is generated, however without
raising the appropriate exceptions.

—Decimal-to-binary conversion (operator ‘d2b’):

Here, too, conversion is supported in round to nearest mode only. Our
tool reported errors in the conversion to single- and double-precision
representation. For the latter, some of the erroneous results were re-
ported for operands lying within the range where IEEE requires exact
rounding. When converting to single precision, several errors occurred for
vectors where the operand is only slightly larger (in magnitude) than the
smallest normal single-precision float, while zero is returned instead. All
other errors in conversion from decimal to single precision and double
precision concern erroneous last bits in the binary representation. The
conversion from decimal to extended precision was error free according to
our test tool, except for two overflow cases where NaN is returned
instead of infinity. Furthermore, exception signaling is neglected for all
destination precisions (single, double, and extended).

—Conversion to 32-bit unsigned integer (operator ‘ru’):

This conversion does not raise the invalid exception in cases where the
result cannot be represented as an unsigned hardware integer.

9.5 Multiprecision Floating-Point Packages

Our test tool was also applied to two software libraries for multiprecision
floating-point arithmetic: FMLIB [Smith 1991], a collection of Fortran
routines, and Mpleee [Cuyt et al. 2000a], a C++ class library. Each
implementation was tested with respect to its support for conversions, in
line with the philosophy of the IEEE standards. The log files of these tests
are available at http://win-www.uia.ac.be/u/cant/ieeecc754.html

FMLIB V1.1 supports only two rounding modes: (almost) round to zero
and (almost) round to nearest (see Section 10 in Part I). Also, neither
denormal numbers nor special representations such as =0 are supported,
and floating-point exceptions differ significantly from the IEEE require-
ments. Therefore, we applied our test tool with the command-line options
-r nz to specify the rounding modes for the test, and -n xiuoz tiny nan
inf snz  to ignore incorrect signaling of exceptions and skip test vectors
containing special representations (denormals, NaN, infinity, and signed
zero). In the next release of FMLIB all four rounding modes will be
supported.

Our own Mpleee C++ class library achieves performance comparable to
Smith [1991], while at the same time being fully compliant with the IEEE
standards for floating-point arithmetic. In particular, all conversions are
exactly rounded to their destination format. Table V lists, for both pack-
ages, all the conversion routines which are available and relevant with
respect to the IEEE specifications.
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Table V. Conversions in FMLIB and Mpleee

139

IEEE 754 FMLIB Mpleee

format conversion FMEQU(MA,MB,NA,NB) =

to single FMM2SP(MA,X) =

to double FMM2DP(MA,X) =

from single FMSP2M(X,MA) =

from double FMDP2M(X,MA) =

to integral value FMINT(MA,MB) void rint()

FMNINT(MA,MB)
to 32 bit integer FMM2I(MA,IVAL) long toInt32()

unsigned long toUint32()

from 32 bit integer FMI2M(IVAL,MA) =

to 64 bit integer long long toInt64()
unsigned long long toUint64()

from 64 bit integer =

binary to decimal FMOUT(MA,LINE,LB) ToDecimal(char *decimal, unsigned int prec)

decimal to binary FMINP(LINE,MA,LA,LB) FromDecimal(char *decimal)

APPENDIX

A. SYNTAX DESCRIPTION OF EXTENDED COONEN VECTORS IN
BACKUS-NAUR FORM (BNF)

<test-vector > = <version ><operation > <prec > <rounding > <fp >
{<fp >} <exceptions > <fp >
<version >: = <digt > | H| A
<operation > = + |- |*|/| % | S| <conv >
<conv>: =1 c|i| d2b | b2d | <intconv >
<intconv >: = ci|r|cu|rulcl]|rl|cU]|TrU
<prec >: = {e | o| s{ieee} | d{ieee} | Kieee} | gfieee} | m{ieee}}
<rounding >: = ALL|O0| < | >]| =]10<|0>]| =<| =>] =0>|
=0< | UN
<exceptions > = OK | x| X0 | xu | xv|xw|i]z
<fp > = {<sign >}<root >{<sufix >} | <decimal > | <integer >
<integer >: = {?J0{ <hex>}+
<decimal >: = <sign >{<hex>} +{ { <digit >} +&} E<sign >{<digit >}+
<sign >u = + | -
<root >: = Q| H|T|{ <dgt >}+
<suffix > = {p<literal > | m<literal >} {i <spec > | d <spec >}
{u <digit >}
<spec >: = <digt > | ( <pos>) <digit >
<pos>: = <literal >{+<digit >} | <literal >{- <digit >}
<lteral >: = <digt > |t|h|B|B <dgt >|u]|C
<hex>: = <digt >|a|b|c|d|e]f
<digt >: =0]1]2|3]|4|5]|6|7]8]9
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