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This paper introduces a precision- and range-independent tool for testing the compliance of
hardware or software implementations of (multiprecision) floating-point arithmetic with the
principles of the IEEE standards 754 and 854. The tool consists of a driver program, offering
many options to test only specific aspects of the IEEE standards, and a large set of test
vectors, encoded in a precision-independent syntax to allow the testing of basic and extended
hardware formats as well as multiprecision floating-point implementations. The suite of test
vectors stems on one hand from the integration and fully precision- and range-independent
generalization of existing hardware test sets, and on the other hand from the systematic
testing of exact rounding for all combinations of round and sticky bits that can occur. The
former constitutes only 50% of the resulting test set. In the latter we especially focus on
hard-to-round cases. In addition, the test suite implicitly tests properties of floating-point
operations, following the idea of Paranoia, and it reports which of the three IEEE-compliant
underflow mechanisms is used by the floating-point implementation under consideration. We
also check whether that underflow mechanism is used consistently. The tool is backward
compatible with the UCBTEST package and with Coonen’s test syntax.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arith-
metic; D.3.0 [Programming Languages]: General—Standards

General Terms: Verification

Additional Key Words and Phrases: Multiprecision, IEEE floating-point standard, floating-
point, arithmetic, validation

1. INTRODUCTION AND MOTIVATION
The IEEE standard [IEEE 1985] for floating-point arithmetic, which be-
came official in 1985 and which we shall refer to as IEEE–754, has been
adopted by most major microprocessor manufacturers. Whereas guarantee-
ing 100% correctness of an IEEE floating-point implementation is hardly
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feasible, as the famous Intel Pentium bug clearly demonstrated, several
good but unrelated tools exist to test different aspects of a floating-point
implementation for compliance with the IEEE-754 standard.

Concurrent with the adoption of IEEE-754 by the microprocessor indus-
try, there has been a growing need in many applications for more precision
than provided by the IEEE single and double formats. According to W.
Kahan, for now the 10-byte extended hardware format is a tolerable
compromise between the value of extra-precise arithmetic and the price of
implementing it to run fast; very soon 2 more bytes of precision will become
tolerable, and ultimately a 16-byte format [Kahan 1994].

That kind of gradual evolution toward wider precision was already in
view when the IEEE standards 754-854 were framed [Higham 1996, p. 47].
Furthermore, predictions based on the growth in the size of mathematical
models solved as the memory and speed of computers increase suggest that
floating-point arithmetic with unit roundoff ' 10232 will be needed for
some applications on future supercomputers [Bailey et al. 1989].

Against this background, 16-byte-format floating-point arithmetic [Sun
Microsystems 1997] as well as several multiprecision implementations
have been developed in the last decades. Unfortunately, tools for testing
such implementations are much more limited than tools for testing single-
and double-precision floating-point arithmetic. For example, for existing
multiprecision floating-point packages such as Brent [1978], Moshier
[1989], Smith [1991], Bailey [1995], Batut et al. [2000], Granlund [2000],
Tommila [2000], Haible [2000], and Zimmermann and Hanrot [2000],
standard testing techniques consist of internal consistency checks such as
Îx2 5 ?x?, or comparison of low-precision, respectively high-precision, re-
sults with values obtained using hardware formats, or other multiprecision
packages, and this for randomly chosen operands. This randomly chosen
subset does not guarantee that all essential aspects of a particular opera-
tion are tested.

In this report, we describe a comprehensive precision- and range-inde-
pendent tool to test how well a floating-point implementation complies with
the philosophy of the IEEE-754 and IEEE-854 [IEEE 1987] standards.
These standards list, besides requirements concerning floating-point for-
mats and specifications for rounding, specifications for

(a) add, subtract, multiply, divide, square root, remainder, and compare
operations

(b) conversions between different floating-point formats

(c) conversions between integer and floating-point formats

(d) rounding of floating-point numbers to integral value

(e) conversions between basic format floating-point numbers and decimal
strings

(f) floating-point exceptions and their handling, including nonnumbers
(NaNs)

Testing Floating-Point Arithmetic I • 93

ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001.



that can easily be formulated in a format-independent way. Our tool can be
used to test how well these principles are met in an arithmetic implemen-
tation for floating-point formats with arbitrary precision and exponent
range. The tested floating-point system can be implemented in hardware,
in software, or a combination of both. The only requirement is that the base
b 5 2. For testing multiprecision software packages this is not really a
restriction, since in most of these packages the base b can be specified by
the user, within certain bounds. Clearly, even though our test tool contains
many tough cases and is certainly better than a random testing strategy,
an implementation that passes all aspects of the test without error is not
guaranteed to be 100% correct. On the other hand, our test tool has been
used to check a number of floating-point implementations and was able to
detect anomalies that had passed unnoticed before.

The precision-independent tool we have developed is designed to test a
floating-point system in its globality, as a programming environment, in
other words all operations (a), all conversions (b) through (e), as well as the
handling of all floating-point exceptions (f). In this paper, we only present
those aspects of the test tool that check the operations add, subtract,
multiply, divide, square root, and remainder, including the floating-point
exceptions raised by those operations. In Part II of this paper [Verdonk et
al. 2001], we shall describe the testing of all conversions listed in (b)
through (e). The splitting up of the description in two distinct parts is
motivated by several factors:

—First, for most microprocessors it is the case that at least part of the
floating-point environment and certainly the operations (a) are imple-
mented in hardware. On the other hand, some of the conversions, such as
decimal-to-binary conversions, are provided only by the compiler.

—An even more substantial difference among the operations 1, 2, 3, /,
Î and the other aspects of a hardware floating-point environment con-
cerns the binding between the operators at the language level and the
underlying implementation. For 1, 2, 3, /, Î, this binding is unambig-
uous, while for remainder and conversions it may be compiler-specific
and/or programming-language-specific. Furthermore, those operations
which are available in hardware and are IEEE compliant may be
inaccessible to the programmer due to programming language specifica-
tions. Hence the distinction among what is actually being tested, the
language binding, or the effectively available implementation becomes
more and more essential.

—It is also the case that, whereas the standard is very strict for the
operations (a) and requires exact rounding for all arithmetic operations
as well as the signaling of exceptions, the requirement of exact rounding
is somewhat loosened when dealing with decimal-to-binary and binary-
to-decimal conversions.
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—Finally, whereas we have been able to develop a set of test vectors that is
completely precision independent when it comes to testing the operations
(a), the testing of conversions is partly based upon different test vectors
for different precision ranges. Full details can be found in Verdonk et al.
[2001].

The rest of the paper is structured as follows. Section 2 summarizes
existing tools for testing implementations of IEEE floating-point arithmetic
and gives an overview of the main features of our testing tool. In Section 3
the concept of test vector and the precision-independent syntax to encode
floating-point operands is introduced. This syntax is a streamlined and
extended version of the syntax developed by Coonen [1984]. In Section 4
through Section 8 we discuss, for each of the six basic operations, which
aspects of the operation are tested by the new test vectors. Section 9
describes the functionality of the driver program. In Section 10, we discuss
the results of applying our test tool to several implementations of stan-
dard– and high-precision floating-point arithmetic and indicate some direc-
tions for future work.

2. TOOLS FOR TESTING FLOATING-POINT HARDWARE

2.1 Existing Tools

After publication of the IEEE standards for floating-point arithmetic IEEE
[1985] and IEEE [1987], a number of tools were developed to test the
correctness of a floating-point environment.

One of the first programs to test the quality of a floating-point implemen-
tation is the so-called floating-point benchmark Paranoia [Karpinski 1985],
originally written by W. Kahan. Paranoia determines which general prop-
erties are satisfied by a particular floating-point implementation, e.g., what
are the precision and exponent range, is the arithmetic rounded or
chopped, is underflow gradual, is the implementation of square root mono-
tone, is multiplication commutative, etc. Paranoia is now included in
UCBTEST [Hough et al. 1988], which we shall discuss next.

UCBTEST is a whole set of programs for “testing certain difficult cases of
IEEE floating-point arithmetic” [Hough et al. 1988]. As already mentioned,
Paranoia is one of these programs. Three other programs, UCBmultest,
UCBdivtest, and UCBsqrttest, generate difficult test cases for multiplica-
tion, division, and square root, respectively. These cases are obtained from
number-theoretic algorithms developed by W. Kahan, as part of ongoing
research into test methods for computer arithmetic. These cases are diffi-
cult in the sense that they yield results halfway or nearly halfway between
representable numbers. Yet other programs in UCBTEST are designed to
test the elementary functions, and we shall not discuss these here. The part
of UCBTEST that is most relevant for our work is a battery of hexadecimal
test vectors to test the basic operations 1, 2, 3, /, and Î. For each of
single, double, and quadruple (16-byte format) precision, a separate but
analogous battery of test vectors is included in UCBTEST. Similarly,
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UCBTEST includes batteries of test vectors for several elementary func-
tions in single, double, and quadruple precision, but no vectors are provided
for testing conversions nor for testing the IEEE remainder function. For a
complete description of UCBTEST the reader is referred to Hough et al.
[1988].

Another commercial package, the NAG Floating-Point Validation pack-
age (FPV) [Du Croz et al. 1989], was developed for testing floating-point
implementations, including the basic operations 1, 2, 3, /, and compari-
sons and, optionally, square root. It cannot test operations on denormalized
numbers, nor the full range of exception-handling facilities. FPV creates an
extensive number of test operands by varying a limited number of floating-
point patterns introduced by Schryer [1981]. These patterns are the same
for all operations. The rationale behind the patterns introduced by Schryer
is that “...especially in an implementation which is almost correct, errors
are more likely to occur as edge effects, at or near some discontinuity or
boundary in the values of the operands or some part of them” [Du Croz et
al. 1989].

Last but certainly not least, a test suite which has been used by major
manufacturers of IEEE hardware was developed by J.T. Coonen [Coonen
1984]. This test tool consists of a large database of test vectors together
with a driver program. An essential feature of this tool is that the vectors
are designed to be as format independent as possible. To run the tests, the
driver program of Coonen [1984] decodes the test vectors, given in a
purposely designed syntax, into single-, double-, and extended-precision
formats. Completely format-independent test vectors are included in this
tool for the basic operations (a), while for most conversions (b) through (d),
different conversion vectors are included for single, double, and extended
precision. For the conversions (e) no test vectors are included. When
decoding the format-independent set of test vectors from Coonen [1984]
into double-precision representation, the intersection with the battery of
hexadecimal double-precision vectors from UCBTEST is rather large.

While formal verification methods have also been applied to floating-
point systems, we shall not discuss such methods here but refer, among
others, to Russinoff [1998], Harrison [2000], German [1999], and Cornea-
Hasegan [1998].

2.2 Main Features of the New Precision- and Range-Independent tool

As one can see from the above overview the available test tools are rather
complementary in nature, and each implement a different approach to
testing: explicit testing of specific floating-point properties (Paranoia),
explicit generation of difficult cases (UCBTEST), guided generation of bit
patterns (FPV), and large databases of vectors to test several essential
aspects of a floating-point implementation (Coonen in a precision-indepen-
dent format, and UCBTEST).

When constructing our precision-independent tool, our goal was to com-
bine as many features as possible of each of these approaches. We decided
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to opt for a driver program together with a very large set of precision-
independent test vectors.

—The first step in the development was to classify and integrate the sets of
test vectors from both Coonen [1984] and Hough et al. [1988] in a single
suite and encode each test vector in a uniform way, where the precision
and exponent range become parameters of the driver program.

—To this integrated set of vectors we added approximately 5500 new test
vectors, more than doubling the set in size. Several of these new test
vectors are precision-independent encodings of hard cases, sometimes
inspired by the programs in UCBTEST, and are described in the next
sections.

—Following Coonen [1984], we have fully documented the complete set of
test vectors.

—For a specific exponent range @L, U # and precision t, the driver program
can convert the encoded, precision-independent test vectors to an ex-
tended UCBTEST syntax. Hence, when the exponent range and precision
correspond to one of the three floating-point formats supported by
UCBTEST, compatibility is guaranteed with the UCBTEST suite of
programs, if a minor update in the notation for the underflow exception
is taken into account. A complete description of our extended UCBTEST
format is given in Appendix B.

—Following the Paranoia philosophy, the test tool also reports which of the
three IEEE-compliant underflow mechanisms is used by a floating-point
implementation (see Section 5.1) and checks whether that underflow
mechanism is used consistently. Implicitly, also, specific properties such
as commutativity are checked.

—As for the guided generation of test operands according to certain
patterns, we have developed, for our own purpose, a documentation
syntax which allows one to describe ranges (in significand and exponent
field) of floating-point operands and corresponding results. Hence, by
extending the driver program in the future, from a single test line in
documentation syntax any combination of operands within a specific
range (both for exponent and significand) can be generated. We have
used this idea, which will be further discussed in Section 10, to charac-
terize the new test vectors in Sections 4 through 8.

—Finally, as is detailed in Section 9, the driver program has many options
to test specific aspects of IEEE compliance, e.g., ignoring exception
handling or only testing one of the four rounding modes required by the
IEEE standard. This is especially relevant for multiprecision software
implementations, most of which only support round to zero.
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3. PRECISION- AND RANGE-INDEPENDENT TEST VECTORS

From Section 2 it is clear that the main existing test sets for verifying
implementations of IEEE floating-point arithmetic are Coonen [1984] and
Hough et al. [1988]. Our first step in developing a precision-independent
tool for floating-point arithmetic was to classify and integrate the sets of
test vectors from both these tools into a single suite and encode each test
vector in a uniform precision- and range-independent syntax. The syntax
used by Coonen [1984] seems to be a straightforward choice for this
encoding. However, as pointed out in Coonen [1984], this syntax is limited
in that, roughly speaking, only “simple” numbers modified in their low-
order bits and possibly scaled up or down can be represented. In order to
enhance the test set, we needed to be able to encode much more general
floating-point operands. Before describing the new, extended syntax, we
briefly introduce some notations while reviewing the basic facts of IEEE
floating-point arithmetic.

3.1 Notations and Basic Principles of IEEE Floating-Point Arithmetic

Let F~b, t, L, U ! be the set of floating-point numbers in base b, precision
t, and exponent range @L, U #. For every floating-point number x [ F~b, t,
L, U !, we shall denote its sign by Sx [ $1, 2%, its significand by

sx 5 O
i50

t21

xib
2i,

and its exponent by ex [ @L 2 1, U 1 1#. In this paper we shall only
consider the case b 5 2. All floating-point numbers with exponent ex [

@L, U # are normalized (x0 5 1), and their value is given by

Sx 3 sx 3 bex 5 SxO
i50

t21

xi2ex2i.

The exponent values ex 5 L 2 1 and ex 5 U 1 1 are used to represent
special values. If ex 5 L 2 1, then the floating-point number is either 60
or the denormalized number 60. x1 . . . xt21 3 2L, when at least one xi Þ 0,
0 , i , t. The special values 6` and NaN are encoded with exponent
ex 5 U 1 1. For 6`, we have xi 5 0 for 0 , i , t, while for NaN, the
fractional part x1 . . . xt21 Þ 0 and is often used to store diagnostic infor-
mation.

IEEE-754 requires that the exponent ex of a floating-point number be
stored in biased form. Hence, rather than storing the value of ex, the biased
exponent ex 1 B is stored, where the bias B is given by

B 5 U 5 2L 1 1. (1)
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Since ex varies between L 2 1 and U 1 1, the biased exponent varies
between 0 and 2U 1 1.

In some instances, when x is a denormalized number, we shall need to
refer not to the floating-point exponent ex 5 L 2 1 of x, but to the
exponent Ex of the normalized representation of x. In other words, for any
x [ F~2, t, L, U ! we have

if ex [ @L, U # : Ex 5 ex

if ex 5 L 2 1, x0 5 . . . 5 xj21 5 0, xj 5 1 : Ex 5 L 2 j, 1 # j # t 2 1.

In general, any x [ R\$0% can be written as

x 5 SxO
i50

1`

xi2Ex2i, with x0 Þ 0. (2)

Note that two such equivalent representations exist, one with only a finite
number of nonzero xi, the other with all but finitely many xi 5 1. Remem-
ber for instance that O i51

1` 22i and 1.0 represent the same value.
To distinguish between the exact and the floating-point result of an

operation, we shall use the notation p, respectively jp , where p [ $1,
2, 3, /, rem, Î%. To guarantee maximal accuracy, IEEE-754 requires that
the operation jp be implemented such that

x jp y 5 E ~x p y! @x, y [ F~2, t, L, U !, (3)

where the rounding E : R 3 F~2, t, L, U ! satisfies the following proper-
ties:

E ~x! 5 x @x [ F~2, t, L, U !

x # y f E ~x! # E ~y! @x, y [ R. (4)

Several roundings satisfy the properties (4). The IEEE standard requires
that round to nearest E, round to zero ”“, round up ‚, and round down ƒ

be supported. The conditions (3)–(4) guarantee that the relative error in the
computed result is at most 1 / 2 ulp (Unit in the Last Place) of the computed
result in round to nearest, and at most 1 ulp of the computed result in the
other rounding modes, in the absence of overflow and underflow.

When rounding the exact result of an operation, the round and sticky bits
play an important role and are denoted by r and s respectively. Let the
normalized exact result z [ R of an operation be of the form (2). Then the
round and sticky bits of z are, with respect to the floating-point set F~2, t,
L, U !, given by
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if L # Ez # U : rz 5 zt sz 5 S O
i5t11

1`

zi Þ 0D
if Ez , L : rz 5 zt1Ez2L sz 5 S O

i5t11

1`

zi1Ez2L Þ 0D. (5)

In case Ez . U, the round and sticky bits are not relevant for rounding and
hence left undefined. Here and in the sequel of the paper, we use the
convention that zi 5 0 if i , 0 and the convention that zi 5 0 if i $ t and
z [ F~2, t, L, U !.

Apart from requiring exact rounding of the operations, IEEE-754 also
requires that five types of exceptions be signaled when detected. According
to the standard, the signal entails setting a status flag, taking a trap, or
possibly doing both, the default being to respond without a trap. Hence, our
test tool is designed to test exception handling in nontrapping mode. The
five exceptions that can occur are invalid operation, division by zero,
overflow, underflow, and inexact. We refer the reader to IEEE [1985] for a
full description of the conditions under which each of these exceptions must
be signaled. As the proper signaling of exceptions is also tested by our tool,
we shall discuss in more detail each of the exceptions in Sections 4 through
8. It should be mentioned that the only exceptions which can coincide are
inexact with overflow and inexact with underflow.

3.2 The Extended Precision- and Range-Independent Syntax for Test Vectors

Each test vector in our set describes a floating-point operation: the opera-
tor, the rounding mode, the floating-point operands, the correctly rounded
floating-point result, as well as the exceptions raised by that operation.
Because each floating-point number in a test vector is encoded in a
precision- and range-independent way, the test vector can be used to test
the operation in any floating-point set F~2, t, L, U !, i.e., for arbitrary but
fixed precisions t and exponent ranges @L, U #. The only conditions we
impose are that

t $ 24

U 5 2L 1 1 5 2k2121, k $ 8.

Our syntax for the test vectors and for the encoding of floating-point
numbers is a streamlined and extended version of the syntax in Coonen
[1984]. We shall now highlight the important features of the extension. A
complete description is given in Appendix A in BNF form. Let us start with
an example test vector:

A1 5 1pt 4i1 x 1i2pt A first, simple example.

The leading character (A in this case) is the version number. This
particular test vector tests the addition (1) in round-to-nearest (5) mode of
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the operands 1pt and 4i1. These operands respectively represent the
floating-point numbers

1 3 2t ~1 1 22t11! 3 22

where t is the precision of the floating-point format under consideration.
The operation raises the inexact exception (x), and the floating-point result
is, in round to nearest, equal to 1i2pt or ~1 1 22t12! 3 2 t. The rest of the
test line is comment.

In general, each test vector consists of at most 9 fields: version number
and operator, precision specification (if applicable), rounding mode, first
operand, second operand, exceptions, result, and comment. The version
number can be ‘2’ or ‘3’, indicating that the test vector is taken from
Version 2, respectively Version 3, of the Coonen [1984] test suite, ‘H’
indicating that it is taken from Hough et al. [1988], while ‘A’ indicates that
the test vector is new and was added by the authors. The operator is one of
1 , 3 , / , % for remainder and ‘S’ for square root. The rounding mode is
either , , . , 5 , or 0 for round down, round up, round to nearest, and
round to zero, respectively. Any combination of these rounding modes as
well as the keyword ‘ALL’ are also syntactically correct. In that case the
test vector is valid in all the specified rounding modes. For the exceptions,
we use the abbreviations ‘x’ for inexact, ‘o’ for overflow, ‘u’, ‘v’, or ‘w’ for
underflow (see Section 5.1), ‘i’ for invalid, and ‘z’ for divide by zero. If the
operation raises no exceptions, rather than leaving the exception field
blank, the keyword ‘OK’ is used for backward compatibility with Coonen
[1984].

In fact, none of the 9 fields making up a test vector, except the precision
specification and the comment, may be left blank. The precision specifica-
tion field was introduced by the authors and is almost always blank, except
to indicate that the test vector is only valid for even (‘e’) or odd (‘o’)
precisions. In the case of unary operators like square root, the value ‘0’ is
used as placeholder for the second operand.

The most important aspect of the new syntax is the way in which
floating-point numbers are encoded. It is also in this aspect that the major
extensions to the Coonen syntax have been introduced. The encoding of a
floating-point number should be scanned from left to right and consists of
an optional sign, a mandatory root number, and zero or more modifier
suffixes.

Root numbers are of several types: S for signaling NaNs, Q for quiet
NaNs, H for infinity (think of Huge), T for the smallest normalized number
(think of Tiny), and, of course, (exactly representable) integers. Hence, for
example, all positive, normalized floating-point numbers lie in the interval
[T,H [.

As in the original Coonen syntax, there are five so-called modifiers which
can be used to modify root numbers. They each have the form ,oper .K,
where ,oper . is one of five operators: p (plus), m(minus), i (increment), d
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(decrement) or u (ulp). However, whereas in Coonen [1984] K is a digit
between 1 and 9, it is much more general in our syntax:

—One can choose ,oper .K equal to pK or mKto scale the root value up (p)
or down (m) by 2K where K is now a ,literal ., not just a digit between
1 and 9. This literal can, of course, be one of the digits between 1 and 9,
but also one of t , h, B, or B,digit .. Here t is the precision of the
floating-point set under consideration, h 5 ~t 21! / 2, and B is the
exponent bias as defined in (1). Furthermore, B,digit . 5 B/2,digit..

—One can choose ,oper .K equal to i( ,pos .) ,digit . or
d( ,pos .) ,digit .. If t is the precision of the floating-point set, then,
in the original Coonen syntax, the first parameter ,pos . is always
implicitly equal to t-1 , the last bit position in the significand of the root
number. The modifiers i ,digit . and d,digit . apply the function
nextfloat , respectively prevfloat , to the root number ,digit . times,
where nextfloat (prevfloat ) returns the next (previous) representable
floating-point number in the floating-point set F~2, t, L, U !. Similarly,
i( ,pos .) ,digit . and d( ,pos .) ,digit . encode the application,
,digit . times, of the function nextfloat , respectively prevfloat , not
to the root number but to the root number truncated after bit position
,pos ., where ,pos . can vary between 0 to t-1 . The outcome of this
operation is a number in F(2, ,pos .11, L, U), to which the remaining
t- ,pos .-1 bits of the original root number are appended to obtain a
new floating-point number in F~2, t, L, U !.

—Finally, one can choose ,oper .K equal to u,digit . to replace the root
value by ,digit . units in its last place.

Hence K is generalized in two ways: it can either be a literal rather than
just a digit, or it can be a bit position followed by a digit. The fact that K can
be a literal rather than just a digit allows one to modify the exponent range
much more than was the case in the original Coonen syntax. The fact that K
can be a bit position followed by a digit implies that it is now possible to
modify not just low-order bits but also high-order bits or bits in the middle
of the significand (depending on ,pos .).

3.3 The Complete Set of Precision-Independent Test Vectors

To construct our precision-independent set of test vectors, the first step in
the process was to integrate and classify the existing test set for fixed
hardware formats from Hough et al. [1988] with the set of vectors from
Coonen [1984]. The double-precision vectors from Hough et al. [1988] which
were not in the Coonen test set were encoded using the precision-indepen-
dent syntax just described. The vectors from Coonen [1984] needed no or
only minor modifications in their encoding. To this integrated set of vectors
we added approximately 5500 new test vectors, upon which we shall
comment in Sections 4 through 8, more than doubling the set in size. It was
indeed observed that in the set resulting from the merge of Hough et al.
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[1988] and Coonen [1984], not all combinations of round and sticky bits
were tested systematically for each operation. Using the extended syntax,
we were able to encode more general floating-point numbers and generate
vectors to methodically test exact rounding. Several of the new test vectors
are inspired by the philosophy underlying the UCBTEST and Paranoia
testing tools.

4. ADDITION AND SUBTRACTION

Addition and subtraction are essentially the same operation, except for the
sign of the second operand. Hence, test vectors for both operations are
identical. The commutativity of addition is implicitly tested by the driver
program, which reverses each test vector x 1 y with x Þ y to test y 1 x.

4.1 Exception Handling

Of the five exceptions listed by the IEEE standard, only overflow, inexact,
and invalid can occur for addition and subtraction. Indeed, the underflow
exception cannot arise for these operations when the floating-point number
set includes denormalized numbers, as required by the IEEE standards.
The invalid exception should only be raised when one of the operands is a
signaling NaN or in case of magnitude subtraction of infinities. Test vectors
with all possible combinations of the special representations, such as quiet
and signaling NaNs, 6` and 60, were included in the original Coonen set.

The overflow exception should be signaled when the exponent of the
intermediate result, obtained by rounding the exact normalized result to t
bits with the exponent range unbounded, exceeds the upper bound U of the
exponent range. In the original Coonen [1984] and Hough et al. [1988] test
sets, several operands x, y are included with Ex1y . U. In the new vectors
for overflow testing, the operands are chosen such that the exact result x
1 y equals

x 1 y 5 6SO
i50

t21

2U2i 1 O
i5t1j

2t1j21

yi2t2j2U2iD j $ 0 fixed. (6)

Depending on the rounding mode and on the value of the yi’s, the floating-
point result x Q y is then either infinity or the largest finite number (with
the sign of the exact result). Only in the first case should overflow be
signaled.

The case described by (6) could easily be encoded thanks to the introduc-
tion, in the extended syntax, of the literal t representing the working
precision. Using the modifier suffix mt , it becomes possible to incorporate
test vectors where the exponent of one operand is at least t less than the
exponent of the other operand. For example, to generate Case (6) with
round bit 0 and sticky bit 1, the first operand is chosen to equal the
maximal representable floating-point number x 5 2U11~1 2 22t!, while
the second operand equals y 5 2U2t21. Upward rounding of the exact result
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x 1 y 5 O i50
t212U2i12U2t21 results in x Q y 5 1`, while at the same time

both the inexact and overflow exceptions should be signaled. In all other
rounding modes, we have that x Q y 5 O i50

t212U2i, and only the inexact
exception needs to be signaled. Similar test vectors are included for all
possible combinations of round and sticky bits in Case (6).

4.2 Exact Rounding and the Inexact Exception

Using the extended syntax, we were able to create test vectors for many
different alignments of the floating-point operands and at the same time
generate all round and sticky combinations in the exact result x 1 y. For
all cases in Tables I and II, the inexact exception should be signaled
whenever the round bit rx1y or the sticky bit sx1y, defined by (5), is
nonzero.

In all cases in Table I, the addition involves a prearithmetic shift of one
of the operands. The bits of the shifted operand then completely determine

Table I. Addition: Exact Rounding

Operand x Operand y rx1y sx1y

Case 1 ~Sx, sx, ex # U ! ~Sx, sy, ex 2 t 2 j $ L!
j $ 0

y2j O
i512j

t21

yi Þ 0

Case 2a ~Sx, sx, ex $ L! ~Sx, sx, ex 1 j # U !
1 # j # t 2 1

sy 5 O
i50

j21

yi22i

xt2j O
i5t2j11

t21

yi Þ 0

Case 2b ~Sx, sx, L 2 1!
x0 5 0

~Sx, sy, L 1 j!
1 # j # t 2 1

sy 5 O
i50

j

yi22i

xt2j O
i5t2j11

t21

xi Þ 0

Case 3 ~Sx, O
i50

t21

22i, ex!

ex # U 2 1

~Sx, sy, ex 2 ~t 2 j! $ L!
j 5 1, 2

~ yj21 1 1!mod 2 O
i5j

t21

yi Þ 0

Case 4 ~Sx, sx, ex!
sx Þ 1

~2Sx, sy, ex 2 t 2 j $ L!
j $ 0

~ y2j 1 sx1y!mod 2 O
i512j

t21

yi Þ 0

Case 5a ~Sx, sx, ex! ~2Sx, sy, ex 1 j $ L!
1 # j # t 2 1

O
i51

j21

yi Þ 0

~xt2j 1 sx1y!mod 2 O
i5t2j11

t21

xi Þ 0

Case 5b ~Sx, sx, L 2 1!
x0 5 0

~2Sx, sy, L 1 j!
1 # j # t 2 1

O
i51

j

yi Þ 0

~xt2j 1 sx1y!mod 2 O
i5t2j11

t21

yi Þ 0
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the value of the round and sticky bits, except when subsequent postarith-
metic normalization due to carry propagation further influences the round
and sticky bits. In Case 1 and Case 4, the alignment of the operands is such
that the round and sticky bits are determined by the leading bits of the
smallest (in absolute value) of the two operands. In Cases 2(a)–2(b) and
5(a)–5(b), the round and sticky bits are determined by the trailing bits of
the smallest (in absolute value) of the two operands. In Case 3, the
computation of the exact result x 1 y also involves carry propagation and
hence postarithmetic normalization.

The original Coonen [1984] test suite also contains patterns which
systematically test each bit in the computed result when the exponents of
the two operands differ less than t. Of these test vectors, several were valid
only for single and double formats. For most of these precision-dependent
vectors that test shifting in addition, a precision-independent counterpart
is characterized in Case 6 in Table II.

Test vectors were also added to check carry propagation caused by
directed roundings.

5. MULTIPLICATION

In analogy with addition, the commutativity of floating-point multiplication
is implicitly checked by generating, for each new test vector, another one
with the order of the arguments reversed. Also, all possible sign combina-
tions are tested.

5.1 Exception Handling

As for addition, the original Coonen set tests all possible combinations of
special representations, including the cases where the invalid exception
should be signaled.

Our contribution to the testing of overflow for multiplication consists of
creating vectors where the exact result x 3 y of two floating-point oper-
ands x and y is only just larger than the largest representable floating-
point number, namely

x 3 y 5 SxSySO
i50

t21

2U2i 1 O
i5t

2t21

mi2U2iD. (7)

Table II. Addition: Operand Shifting and Exact Rounding

Operand x Operand y x 1 y rx1y sx1y

Case 6 ~Sx, O
i50

j21

xi22i, ex!

ex # U
0 , j , t

~Sx, sy, ex 2 j $ L! O
i50

j21

xi2ex2i

1 O
i$j

yi2j2ex2i

yt2j O
i5t2j11

t21

yi Þ 0
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The bits mi determine the round and sticky bits. In the case of (7), correct
rounding determines whether the floating-point result is signed infinity or
the largest floating-point number with the sign of the exact result. At the
same time, the overflow exception should, respectively should not, be
raised. These cases can be found in Table III when instantiating ex and ey

such that ex 1 ey 5 U.
For the combination ~rx3y, sx3y! 5 ~1, 0!, i.e., exact halfway cases, we

found no solution of (7) which holds for all precisions or for all even
precisions. If we choose floating-point operands x 5 ~Sx, 1 1 22h122t12, ex!
and y 5 ~Sy, 1 1 2211222, ey! then x 3 y is an exact halfway case satis-
fying (7) only in case the precision t satisfies t 5 3k 2 1 for some k $ 2.
Because the precision of the most common hardware formats (t 5 24, 53,
64, 113) does not satisfy t 5 3k 2 1, we have chosen not to include these
vectors in the test set with a new precision specification.

According to the IEEE standard, two correlated events contribute to
underflow: tinyness and loss of accuracy. One can distinguish between
three different ways to detect underflow, all of which are compliant with
the standard. These three cases were labeled u, v , and w in Coonen [1984].
In order to characterize u-, v -, and w-underflow, we introduce
result_tmp~x p y!, which is the normalized value obtained when rounding

Table III. Multiplication: Overflow Exception

t Operand x Operand y rx3y sx3y

Case 7a ~Sx, O
i50

t23

22i, ex! ~Sy, 1 1 22t12, ey! 1 1

Case 7b ~Sx, O
i50

t22

22i, ex! ~Sy, 1 1 22t11, ey! 1 1

Case 7c even ~Sx, 1 1 22h23122h25, ex! ~Sy, O
i50

h11

22i122h23122h24, ey! 1 1

Case 7d odd ~Sx, 1 1 O
i5h12

t21

22i, ex! ~Sy, O
i50

h

22i122t12, ey! 1 1

Case 8a even ~Sx, 1 1 22h, ex! ~Sy, O
i50

h21

22i122t12122t11, ey! 0 1

Case 8b even ~Sx, 1 1 O
i5h12

t21

22i, ex! ~Sy, O
i50

h

22i122t12, ey! 0 1

Case 9a odd ~Sx, 1 1 22h, ex! ~Sy, O
i50

h21

22i122t11, ey! 0 1

Case 9b odd ~Sx, 1 1 O
i5h11

t21

22i, ex! ~Sy, O
i50

h21

22i122t12122t11, ey! 0 1

Case 10 odd ~Sx, O
i50

h

22i, ex! ~Sy, 1 1 22h21, ey! 1 0
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x p y to t bits but as if the exponent range were unbounded. Here p is
either 3 or /, and x p y is assumed normalized. We then have

u- underflow if : ?result2tmp~x p y!? , 2L

x jp y Þ result2tmp~x p y!

v- underflow if : ?result2tmp~x p y!? , 2L

x jp y Þ x p y

w- underflow if : ?x p y? , 2L

x jp y Þ x p y.

The implementor may choose to detect underflow according to one of these
three criteria, but shall detect these events in the same way for all
operations. Note that u-underflow is the situation where, due to an extraor-
dinary denormalization loss (tininess), an error occurs (loss of accuracy)
which exceeds the expected rounding error of 1 / 2 ulp of the computed
result for round to nearest and of 1 ulp of the computed result for directed
roundings.

Besides including new test vectors for underflow, a main new feature of
the driver program is that it checks a floating-point implementation for
consistent use of the same underflow criterion throughout.

Additional test vectors for underflow have also been included where,
depending on the rounding mode, a different underflow criterion is satis-
fied. For example, choosing the floating-point operands x 5 2Ex12Ex21 and
y 5 2Ey12Ey2t11 we have that

x 3 y 5 2Ex1Ey12Ex1Ey2112Ex1Ey2t1112Ex1Ey2t.

If Ex 1 Ey 5 L 2 1, then in round down and round to zero we have

result2tmp~x 3 y! 5 ~1 1 221122t11! 3 2L21

Þ ~2211222! 3 2L

5 x R y,

while in round to nearest and round up result_tmp~x 3 y! 5 x R y. The
above implies that in round down and round to zero, the u-underflow
conditions are satisfied, while in round up and round to nearest only the
v -underflow conditions are satisfied. In the former case, every floating-
point implementation should signal inexact and underflow. In the latter,
signaling the underflow exception is optional.
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Other new test vectors for underflow include cases where the exact result
of the multiplication is just smaller than the smallest representable denor-
malized floating-point number, namely

x 3 y 5 Sx Sy O
i50

2t21

mi2L2t2i. (8)

Depending on the value of the bits mi and on the rounding mode, the
floating-point result x R y should be equal to zero or to the smallest
denormalized floating-point number. Since the conditions for u-underflow
are fulfilled in (8), every floating-point implementation should signal both
the underflow and the inexact exception. Case 11 in Table IV, which also
involves carry propagation, is an example of (8).

5.2 Exact Rounding and the Inexact Exception

For multiplication, each combination of round bit and sticky bit can be
generated with and without propagation of a carry and with normal as well
as denormalized operands and/or result. Some of these cases can be found
in Table V. We remark that the first two cases in Table V are difficult, in
the sense that the result is nearly halfway between representable numbers
(Case 12 with j 5 1) or is very close to a representable number (Case 13).
For the exact halfway cases in Table V, we have explicitly listed bit t 2 1
in the exact, normalized result z 5 x 3 y, since this bit, together with the
round and sticky bits, must be taken into account when rounding to even. It
should be clear that cases similar to those in Table V can be constructed for
denormalized operands and/or results. We do not list them here, but have
included them in the test set.

6. DIVISION

6.1 Exception Handling

All possible combinations of special representations were included in the
original sets of Coonen [1984] and Hough et al. [1988], some of which raise
the invalid exception, others the “division by zero” exception, yet others
which raise no exception at all.

As for addition and multiplication, we would like to characterize floating-
point operands x and y which, when divided, generate an (inexact) result

Table IV. Multiplication: Carry Propagation and Underflow Exception

Operand x Operand y x 3 y rx3y sx3y

Case 11 ~Sx, 1 1 O
i50

t21

22i, ex! ~Sy, 1 1 O
i51

t21

yi22i, ey! SxSy~1 1 O
i51

2t21

zi22i! 3 2L2t 1 1

?i : yi Þ 0
ex 1 ey 5 L 2 t 2 1
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equal to the largest representable floating-point number followed by one or
more nonzero bits, such that rounding determines whether overflow will
occur or not. However, it follows from Lemma 1, with Ez 5 U, that such
floating-point operands do not exist.

LEMMA 1. Given any two floating-point operands x and y in F~2, t, L, U !
with

z 5 x /y 5 Sx SySO
i50

t21

2Ez2i 1 O
i5t

1`

zi2Ez2iD (9)

then zi 5 0 for all i $ t. Here Ez is either Ex 2 Ey or Ex 2 Ey 2 1.

PROOF. Assume x and y in F~2, t, L, U ! are such that (9) holds. We can
write

x 5 SxO
i50

t21

xi22i 3 2Ex 5 Sx 3 x̃ 3 2Ex

and

y 5 SyO
i50

t21

yi22i 3 2Ey 5 Sy 3 ỹ 3 2Ey.

We first consider x̃ , ỹ, in which case Ez 5 Ex 2 Ey 2 1. Then from (9)
we have

Table V. Multiplication: Exact Rounding

Operand x Operand y ~x 3 y! t21 rx3y sx3y

Case 12 ~Sx, O
i50

t22

22i, ex! ~Sy, O
i50

t21

22i222j, ey! j mod 2 1

j 5 1, 2
ex 1 ey 1 1 $ L

Case 13 ~Sx, O
i50

t21

22i, ex! ~Sy, O
i50

t2j

22i, ey! 0 1

j 5 1, 2
ex 1 ey 1 1 $ L

Case 14a ~Sx, 1 1 2211222, ex! ~Sy, 1 1 yt2422t14122t13, ey!
ex 1 ey 1 1 $ L

yt24 1 0

Case 14b ~Sx, 1 1 221, ex! ~Sy, 1 1 yt2222t12122t11, ey!
ex 1 ey $ L

yt22 1 0
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O
i51

t

22i , x̃ / ỹ , 1. (10)

If we let

c 5 ỹO
i51

t

22i 5 ỹ~1 2 22t! 5 ỹ 2 ỹ22t,

then the inequalities (10) are satisfied if and only if

x̃ $ ‚~c! 5 ‚~ỹ 2 ỹ22t! 5 ỹ,

which contradicts the assumption that x̃ , ỹ. The case x̃ . ỹ is completely
similar. e

Underflow test cases where the exact result is either smaller or larger
than the smallest denormalized number are included in the test set.
Examples are given in Table VI. If either the round bit or the sticky bit is
different from zero in Case 15, the inexact and the underflow exception
must be signaled by all IEEE-compliant implementations. It is indeed clear
that the inexactness in Case 15 is only caused by denormalization loss and
not by the fact that the exact result is not representable in t bits precision.
Case 16 is such that, depending on the rounding mode, either the condi-
tions for u-underflow (in round up and round to nearest) or v -underflow (in
round down and round to zero) are satisfied. Note, that for division, any
result suffering w-underflow also suffers v -underflow. Indeed, it follows
from Lemma 1 that if the exact, normalized result x / y is tiny before
rounding, then it is also tiny after rounding.

6.2 Exact Rounding and the Inexact Exception

Typical for the division of two floating-point numbers x and y is that exact
halfway cases, which can be difficult to detect, cannot occur as long as

Table VI. Division: Underflow Exception

Operand x Operand y z 5 x / y rx/y sx/y

Case 15 ~Sx, O
i50

3

22i 1 ~Sy, O
i50

1

22i, ey! SxSy~201222 1 zt2j O
i5t2j11

t21

zi Þ 0

1 O
i5t22

t21

22i, ex)
ey $ L

ex 2 ey 5 L 2 j
j $ 1

122t12) 3 2ex2ey

Case 16 ~Sx, O
i50

t21

22i2221, ex!

ex $ L

~Sy, 1 1 221, ey!
ey $ L

ex 2 ey 5 L 2 1

SxSy~ O
i50

t22

22i 1

1 O
i50

1`

22t22i! 3 2L21

0 1
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?x / y? $ 2L. Indeed, multiplying a halfway case result expressed in t 1 1
bits (where t is the precision) with its floating-point divisor in t bits would
require at least ~t 1 1! bits for the original floating-point dividend, which
is not possible. More generally, the result of a floating-point division, when
inexact, cannot be represented by a finite sequence of bits. As a conse-
quence, an exact result z 5 x / y with Ez [ @L, U # and with a nonzero
round bit always has a nonzero sticky bit. This information is helpful when
implementing a division algorithm which is based on the bitwise computa-
tion of the result.

Several tricky divide cases are included in the original Coonen test set,
based on the simple power series expansion x / ~1 1 N z 22t11! 5 x 3 ~1 2 N
z 22t11 1 O~N 2222t12!! [Coonen 1984]. These cases, which can nicely be
encoded in a precision-independent way, are difficult in the sense that the
result is very close to a representable number (e.g., when x 5 1 and N 5 1)
or nearly halfway between representable numbers (e.g., when x 5 1 and
N 5 21 / 2). Such vectors are especially relevant for testing iterative
division algorithms. Based on the same power series expansion, we have
added a small number of precision-independent test vectors, mainly with
denormalized operands.

7. SQUARE ROOT

7.1 Exception Handling

Neither underflow nor overflow can occur when computing the square root,
while the original Coonen test set already contains several vectors to test
the correct detection of the invalid operation exception when the operand is
negative. Also all special representations are included as operands.

7.2 Exact Rounding and the Inexact Exception

Halfway cases cannot occur as a result of a square root operation. The
representation of the square of such a halfway result would indeed require
at least 2t 1 1 bits, and this can never equal the original t-bit floating-
point operand. More generally, one can state the following, in analogy with
division.

LEMMA 2. Let x [ F~2, t, L, U !. There does not exist an integer M $ t
such that

z 5 Îx 5 S O
k50

t21

zk2Ez2k 1 O
k5t

M

zk2Ez2kD,

with zM 5 1.

As explained in Kahan [1996], the tricky part of iterative square root
algorithms is getting the last rounding error right by less than 1 / 2 ulp of
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Îx. A slight fumble during the square root computation can result in an
error which exceeds 1 / 2 ulp so rarely that random testing has practically
no chance of exposing the flaw. Therefore, we have included test vectors for
square root which are precision-independent encodings of hard cases gen-
erated by the program UCBsqrttest [Hough et al. 1988]. They can also be
constructed by considering the power series expansion

Î~x 1 N z 22t111e! 3 22,

5 SÎx 1
1

2
x21/ 2N z 22t111e 2

1

8
x23/ 2O~N 222~2t111e!!D 3 2, (11)

where e 5 log2x. For example, for x 5 1 and N . 0 and even, the result
is a nearly representable number, while for N . 0 and odd, the result is
nearly halfway between representable numbers. The original Coonen test
set already includes a very small number of test vectors based on the series
expansion (11) with x 5 1 and , 5 0. Using the modifiers pB,digit . and
mB,digit . we were able to encode square root operands and results with
a wide range of exponents ,. Also, new test vectors satisfying (11) have
been included, where the root number x equals y2 for integers y . 1 and N
an integer multiple of y.

The set of hexadecimal test vectors for square root in UCBTEST also
includes random patterns which were not retained because of their preci-
sion-dependent nature.

8. REMAINDER

As indicated in IEEE-754, the remainder operation is not affected by the
current rounding mode, and always delivers an exact result. The invalid
exception can only occur in operations on NaNs.

In the original Coonen [1984] test set for remainder, vectors are given for
single, respectively double precision. As observed by J. Coonen, these
vectors are in fact valid for all even, respectively odd precisions. We have
included them in the test set for remainder using the precision specifier ‘e’/
‘o’ of our extended syntax. No essentially new test vectors for remainder
have been constructed.

9. THE TEST DRIVER PROGRAM

So far, our discussion has focused on the test vectors. We shall now
describe the driver program of our test tool. The purpose of the driver is
twofold:

—translation of the generic test operands and result into binary represen-
tation, according to the precision and exponent range specified by the
user.
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—execution of the operation in each test vector by the implementation to be
tested, and comparison of the result and exceptions with the given test
vector; if applicable, performance of a commutativity check.

After execution of both phases, the driver program generates a log-file
with the outcome of the testing, listing any errors that have occurred.
Several options are available in both phases. For example, the tester can
specify that the driver program should translate the test vectors, given in
(extended) Coonen format, into UCBTEST hexadecimal format (see Appen-
dix B) and output this to a file rather than perform actual testing (-o
outputfile). The driver program can also take test vectors in UCBTEST
format as input (-u inputfile). The options to specify the precision and
exponent range of the binary floating-point set are:

-e E provide E bits to represent the exponent

-t T provide T-bits precision

-h hide leading bit

-s single precision and exponent range (same as -e 8 -t 24 -h)

-d double precision and exponent range (same as -e 11 -t 53 -h)

-l long double or extended precision and exponent range (same as -e 15
-t 64) as, for example, on Intel platforms

-q quadruple precision and exponent range (same as -e 15 -t 113 -h) as,
for example, on Sun Sparc platforms

-m multiprecision format (same as -e 15 -t 240)

Some of the other options influence the actual testing phase. For example:

-n {o u x z i} do not test the listed exceptions (overflow, underflow,
inexact, zero divide, invalid)

-r {p m n z} test only the listed rounding modes (to plus `, to minus
`, to nearest, to zero)

The complete list of options is documented in the file readme.usage ,
which can be downloaded from http://win-www.uia.ac.be/u/cant/
ieeecc754.html . On that same Web page, the source code of the testing
tool, documentation on its use, and the files with test vectors are also
available.

To test a particular floating-point implementation, say X, one needs to
write conversion routines between the internal representation of the float-
ing-point number in X and the binary representation of that floating-point
number in the driver program. A framework for these conversion routines
is provided with the test tool software, and, as will be discussed in the next
section, the driver program comes with several example conversions for
existing hardware and multiprecision software floating-point implementa-
tions.
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10. APPLICATION, CONCLUSIONS, AND FUTURE WORK

To illustrate the applicability and usefulness of our tool, we have applied it
on one hand to hardware floating-point implementations, ranging from the
Intel Pentium processors to Sun Sparc stations, and on the other hand to
the multiprecision software library FMLIB [Smith 1991] and our own fully
IEEE-compliant multiprecision floating-point implementation MpIeee. Log
files of these different tests are available at http://win-www.uia.ac.be/
u/cant/ieeecc754.html .

On the Intel Pentium processor, which is an extended-based architecture,
we applied our test tool to the native extended floating-point format (-e 15
-t 64), as well as to the IEEE single and IEEE double formats, which are
supported by setting the rounding precision appropriately. As could be
expected, our test tool did not report any error in extended floating-point
arithmetic. Furthermore, it diagnosed the implementation of the v -under-
flow strategy. However, in single precision and double precision a change in
the underflow strategy, as well as double rounding in some underflow
cases, was detected by our test tool. It should be observed that the
double-rounding cases are not in conflict with IEEE-754. Indeed, IEEE-754
requires that rounding precision be supported to allow systems, whose
destinations are always extended, to mimic the precisions of systems with
single and double destinations, but only in the absence of underflow and
overflow. A detailed discussion of how these erroneous underflow cases
arise, and of underflow detection in general, can be found in Cuyt et al.
[2000a]. Finally, it should be observed that when testing the square root
operation in extended precision by a call to the C/C11 function sqrtl
using the GNU compiler gcc v2.95.2, superfluous exceptions are raised. The
errors occur in cases where only the invalid exception should be signaled,
while sometimes also the inexact or the overflow exception or both are
signaled. When replacing the call to the function sqrtl by the appropriate
assembler instruction, these errors disappear. This emphasizes the point
made in Section 1, concerning the binding between operators at the
language level and the underlying hardware implementation, and the
influence of compilers on this binding.

On the Sun SuperSparc and UltraSparc, which are both single/double-
based architectures, we applied our test tool to the hardware single and
double formats and the quadruple-precision floating-point arithmetic avail-
able in software [Sun Microsystems 1997]. For all these formats, no errors
were reported. Furthermore, our test tool diagnosed, in single and double
precision, that the v -underflow strategy is implemented on the Sun Su-
perSparc, while the w-underflow strategy is implemented on the more
recent Sun UltraSparc. In quadruple precision, our test tool diagnosed that
the w-underflow criterion is applied on both the SuperSparc and the
UltraSparc processors.

We also applied our test tool to the multiprecision library FMLIB [Smith
1991]. FMLIB V1.1 is one of the few multiprecision packages which
supports two rounding modes: round to zero and “almost always” round to
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nearest. According to Smith [1991], no more than one in a thousand results
will be incorrectly rounded to nearest for random operands. By setting the
base b equal to 2, FMLIB was tested for several precisions and exponent
ranges, in both rounding modes. Since the library does not fully support
IEEE-compliant special representations, underflow exception handling and
denormalized numbers, we excluded all test vectors involving such aspects
(by calling the driver program with the appropriate options). On the
remaining test vectors, our test tool reported errors for addition, multipli-
cation, division, and square root (no IEEE-compliant remainder function is
supported by FMLIB) in both rounding modes. For round to nearest, the
number of errors reported was much larger than the 1‰ figure cited in
Smith [1991], which can easily be explained by the fact that our test vectors
are not uniformly distributed but specifically include difficult-to-round
cases. There was, however, no obvious explanation for the errors in
round-to-zero or truncation mode. After contacting the author, it became
clear that both rounding modes are handled in the same way: select the
number of guard digits to use, compute the operation at that higher
precision, and then apply the rounding rule. In other words, round to zero
is in fact also “almost always” round to zero. In the next release of FMLIB,
the number of guard digits will be increased to ensure exact rounding of the
basic operations. Also, support for all four rounding modes will be provided.
As soon as possible, the log files for the new version of FMLIB will be
posted on the test tools’ Web page.

In the framework of the Arithmos project [Cuyt et al. 2000b], a high-
performance class library has been developed implementing fully IEEE-
compliant multiprecision floating-point arithmetic, with a user-defined
precision t and base 2 # b # 224. The development of this library was
motivated by the general need for floating-point arithmetic with high
precision, while, when building an interval arithmetic library on top of the
floating-point implementation, the high precision allows one to push the
outward interval rounding error further back. Although there exist several
high-performance and powerful multiprecision packages, including Bailey
[1995], FMLIB [Smith 1991], and MPFR [Zimmermann and Hanrot 2000],
most have not included full compliance with the principles of IEEE-754
among their design goals. This is confirmed by the FMLIB test results.
With the development of MpIeee, it is shown that a multiprecision imple-
mentation of floating-point arithmetic, which has both high performance
and offers correctly rounded results and exception handling in line with
IEEE-754, is possible. Our test tool was used for the thorough testing of
this implementation.

Finally, it should be clear that the vectors in the test sets are only
specific instantiations of the vectors we have characterized in Tables I
through VI. By developing a more general driver program, which automat-
ically instantiates test vectors from these characterizations, covering in a
systematic way the ranges specified for exponent and significand, much
more extensive testing can become possible. Such an approach would
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enhance our test tool even further, applying the idea of Schryer [1981] not
to a limited number of patterns which is the same for all operations as in
Du Croz et al. [1989], but rather to patterns specifically designed to test
certain tricky aspects of a floating-point implementation.

APPENDIX

A. EXTENDED COONEN SYNTAX IN BACKUS-NAUR FORM (BNF)

,test vector .:: 5,version .,operation . ,prec . ,rounding . ,fp .
,fp . ,exceptions . ,fp .

,version . :: 5 ,digit . | H | A
,operation .:: 5 1 | - | * | / | % | S
,prec .:: 5 {e | o}
,rounding .:: 5 ALL | 0 | , | . | 5 | 0 , | 0 . | 5, | 5. | 50. |

50,
,exceptions .:: 5 OK | x | xo | xu | xv | xw | i | z
,fp .:: 5 { ,sign .} ,root .{ ,suffix .}*
,sign .:: 5 1 | -
,root .:: 5 Q | H | T | { ,digit .} 1
,suffix .:: 5 {p ,literal . | m,literal .} {i ,spec . | d ,spec .}

{u ,digit .}
,spec .:: 5 ,digit . | ( ,pos .) ,digit .
,pos .:: 5 ,literal .{ 1,digit .} | ,literal .{- ,digit .}
,literal .:: 5 ,digit . | t | h | B | B ,digit .
,digit .:: 5 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

B. EXTENDED UCBTEST SYNTAX IN BACKUS-NAUR FORM (BNF)

,test vector .:: 5 ,op.,format . ,rounding . ,compare .
,exceptions . ,fp . { ,fp .} ,fp .

,op.:: 5 add | sub | mul | div | mod | sqrt
,format .:: 5 s | d | l | q | ,exp . ,hidden . ,prec .
,exp .:: 5 ,digit .1
,hidden .:: 5 0 | 1
,prec .:: 5 ,digit .1
,rounding .:: 5 n | p | m | z
,compare .:: 5 eq | uo
,exceptions .:: 5 - | x | xo | xu | xa | xb | v | d
,fp . :: 5 { ,hex .,hex .,hex .,hex .,hex .,hex .,hex .,hex . } 1
,hex .:: 5 ,digit . | a | b | c | d | e | f
,digit .:: 5 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The extended UCBTEST format is used by our driver program to trans-
late, for a specific floating-point format, the precision-independent vectors
in our test set to actual bit representations. It is an extension of the
existing UCBTEST format [Hough et al. 1988]. In this extended syntax,
each test vector consists of the operation to be tested; directly followed by
the floating-point format: s for IEEE single, d for IEEE double, l for Intel
double extended (10-byte format), and q for SUN quadruple (16-byte
format); the rounding mode; how the result should be checked: eq , or
bit-by-bit equality for all results except NaNs and uo or unordered for
NaNs; the exceptions; followed by the hexadecimal representation (in
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groups of 8 hexadecimal numbers separated by a space character) of the
binary floating-point operands and of the result of the operation.

The main extension of the already existing UCBTEST format is that the
floating-point format is no longer restricted to s , d, or q, but that arbitrary
floating-point formats can be represented. The format can be specified by
exp for the bit size of the exponent, hidden to indicate whether or not the
leading bit is hidden, and prec for the bit size of the significand. Following
the (extended) Coonen syntax, we have used three different flags to denote
the three IEEE-compliant underflow mechanisms (see also Section 5.1): xu
for cases satisfying the u-underflow conditions, xa for cases satisfying the
v - but not the u-underflow conditions (since the v flag is used in the
original UCBTEST syntax to denote invalid), and xb for w-underflow cases.
This is a minor update of the original UCBTEST syntax, where xu is used
for both the u- and v -cases combined, while x?u is used for all cases of
w-underflow.
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