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Abstract.  During the past decade the IEEE 754 standard for binary floating-point arithmetic has been very successful. Many of today's hardware 
platforms conform to this standard and compilers should make floating-point functionality available to programmers through high-level programming 
languages. They should also implement certain features of the IEEE 754 standard in software, such as the input and output  conversions to and 
from the internal binary representation of numbers. In this report, a number of Fortran 90 and C / C + +  compilers for workstations as well as 
personal computers will be screened with respect to their IEEE conformance. It will be shown that  most of these compilers do not conform to the 
IEEE standard and that  shortcomings are essentially due to their respective programming language standards which lack attention for the need of 
predictable floating-point arithmetic. 
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1 - In t roduct ion  

The IEEE standard for floating-point arithmetic describes how floating-point numbers should be handled in hardware and 
software. The advantages and disadvantages of the IEEE standard will not be discussed, but standardization of floating-point 
arithmetic is needed for writing portable source code and generating reliable output. In this paper, the discussion will be 
restricted to the programming languages Fortran 90 and C / C++,  as the majority of available mathematical software is 
written in Fortran or C. Fortran 90 is the modern descendent of Fortran 77, and according to [Metcalf & Reid 1996]: "(...  ) 
has always been the principal language used in the fields of scientific, numerical, and engineering programming ( . . . )" .  On 
the other hand, the languages C and especially C++ are increasingly used in scientific computing. It will be shown that 
most of the popular PC and workstation compilers which were tested do not conform to the IEEE standard, even though 
the underlying hardware platforms are IEEE-conforming. 
Section 2 highlights some important aspects of the IEEE floating-point standard. Sections 3 through 6 then compare the IEEE 
requirements with the specifications for floating-point support in the international standards of the programming languages 
Fortran 90 and C, and in the current C++ draft standard, which is based on the C programming language for its floating-point 
part. This discussion also includes floating-point support in the upcoming Fortran 2000 standard and the final proposal of the 
Numerical C Extensions Group (NCEG) to be incorporated into a revision of the C standard. Section 7 summarizes some of 
the obtained results when screening popular Fortran 90 and C / C++ compilers. A full report, with an appendix discussing 
these test results in more detail, and the test programs can be found at URL f tp: / /hwins.uia.ac.be/pub/cant /SIGPLAN/.  

2 - The IEEE floating-point s tandard  

The [IEEE 1985] and [IEEE 1987] standards for binary and radix-independent floating-point arithmetic respectively, are 
defined as: "(... ) a family of commercially feasible ways for new systems to perform floating-point arithmetic". Both 
standards differ only slightly: the latter standard can be seen as a generalization of [IEEE 1985] in the sense that it allows 
the radix or base of the floating-point set under consideration to be 2 (binary) or 10 (decimal). In what follows, we will refer 
to the IEEE standard when considering [IEEE 1985] for binary implementations. The following paragraphs highlight aspects 
of the IEEE standard which are relevant to floating-point functionality in high-level programming languages. 

2.1 - Formats 

The IEEE standard: "(... ) defines four floating-point formats in two groups, basic and extended, each having two widths, 
single and double". An implementation conforming to this standard always supports single format, which is the narrowest 
format. A second, wider basic format, is called double format. The two extended formats, single-extended and double- 
extended, can be encoded in an implementation-dependent way. The extended format corresponding to the widest basic 
format should be supported (where the use of the word "should" means that it is not obligatory in order to conform to the 
IEEE standard). 
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2.P - Rounding 

A second paragraph in the IEEE standard requires implementations to provide four rounding modes which take: " ( . . . )  a 
number regarded as infinitely precise and, if necessary, modifies it to fit the destination's format ( . . . ) " .  An implementation 
shall provide round to nearest as the default rounding mode, and three user-selectable directed rounding modes: round to 
+c~, round to - ~  and round to 0. Rounding affects all operations, including conversions, except comparisons and remainder 
(see 2.3). 

2.3 - Operations 

According to the IEEE standard, all conforming implementations provide operations to add, subtract, multiply, divide, 
extract  the square root, find the remainder, convert between different floating-point formats, convert between floating-point 
and integer formats, round to a floating-point integer value, convert between internal floating-point representations and 
decimal strings and compare. It is important to note that  the remainder is defined: "( . . .  ) by the mathematical relation 
r = x - y × n, where n is the integer nearest the exact value x / y  ( . . . ) " .  Each operation must be performed as if it first 
produced an intermediate, infinitely precise result which is then correctly rounded to fit its destination's format, except binary 
to decimal and decimal to binary conversion for which exact rounding is only required for a large but limited subset of values. 
Nowadays, it is possible to convert from binary to decimal and decimal to binary in ways that  always yield the correctly 
rounded result, with little time penalty in common cases [Gay 1990]. Implementations should also provide an unordered 
operator, which returns true if at least one operand is NaN (Not a Number). 

2.4 - Inf ini ty ,  NaNs,  and Signed Zero 

All formats have to provide distinct representations for +0, - 0 ,  +cx~, - ~ ,  at least one quiet NaN and at least one signaling 
NaN. Infinities have the same meaning as in mathematics. They are interpreted in the affine sense, that is -cx~ < (every finite 
number) < +oo. Infinities are created from finite operands by overflow and division by zero. Invalid operations (e.g. 0/0) and 
operations involving NaNs shall deliver a quiet NaN as their result. Moreover, invalid operations and operations involving 
signaling NaNs also raise the invalid exception (see 2.5). High-level languages have to support these special representations 
and should provide strings for input /output  purposes. 

2.5 - Exceptions 

There are five types of floating-point exceptions which must be signaled when detected: invalid operation, division by zero, 
overflow, underflow and inexact. These exceptions entail: " ( . . .  ) setting a status flag, taking a trap, or possibly doing 
both. With each exception should be associated a trap under user control. The default response to an exception is to 
proceed without a trap" (see 2.6). A status flag is set on: "( . . .  ) any occurrence of the corresponding exception when no 
corresponding trap occurs". The user must be able to test and alter each status flag individually. The only exceptions which 
can coincide are inexact with overflow and inexact with underflow. 

2 . 6 -  Traps 

The IEEE standard recommends, but does not mandate, an alternative response to an exception, namely trapping. Trap 
handlers, interrupt handlers or signal handlers are all general terms for what in this context can be called floating-point 
exception handlers. When a floating-point exception whose trap is enabled, is signaled, the execution of the program in 
which the exception occurs, is suspended, and the exception handier which was previously specified by the user, is activated. 
An exception handler behaves like a subroutine which can return a value instead of the exceptional operation's result (such 
as c~ or NAN). Exception handling is often overlooked (or avoided) by programming language standards and cannot be seen 
independently from a general interrupt handling scheme. 

3 - T h e  I S O / I E C  F o r t r a n  90 s t a n d a r d  

According to [Metcalf & Reid 1996]: "Fortran's superiority has always been in the area of numerical, scientific, engineering, 
and technical applications". The ISO/IEC Fortran standard [ISO/IEC 1991], informally known as Fortran 90, was published 
in 1991. With the announced Fortran 2000 standard currently under discussion (see 4), this section reviews why the Fortran 
90 standard does not assure IEEE compatibility. 

3.1 - Formats  

The ways in which numbers are stored internally by a computer are not the concern of the Fortran standard. The standard 
specifies: "The real type has values that approximate the mathematical real numbers. A processor must provide two or more 
approximation methods that define sets of values for data of type real". There is a default real type and a processor-dependent 
number of other kinds of type real, where kind is a non-negative integer value which is used to identify the various kinds of 
type real. Floating-point formats are not specified. To support portability between different processors, the inquiry function 
SELECTED.REAL_KIND(A,B) returns the kind value of a real type on the current processor with at least h significant decimal 
digits and a decimal exponent range of at least -B to +B. 
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3 .2  - t ~ o u n d i n  9 

The standard explicitly excludes: "The physical properties of the representation of quantities and the method of rounding, 
approximately, or computing numeric values on a particular processor". 

3 . 3  - O p e r a t i o n s  

Fortran 90 does not provide all basic IEEE operations. It  is possible to add, subtract, multiply, divide and extract the square 
root of any real number, but the IEEE remainder operation is missing. Instead, Fortran 90 defines two other functions: 

® MOD(A,P) = A - INT(A/P) * P where ZNT rounds to 0 

o NODUL0(A,P) -- A - FL00R(A/P) * P where FLOOR rounds to - ~  

The result is processor-dependent if P equals 0. IEEE requires the division A/P to be rounded to the nearest integer while, if 
P = 0, the operation is invalid and NaN must be returned or a t rap invoked. The following function converts floating-point 
numbers between all supported formats, and between integer formats and floating-point formats, but as stated above (see 
3.2), rounding is not specified: 

• REAL(A,KIND) converts any real or integer A to a real of the given KIND 

For conversions of floating-point formats to integer formats, the standard provides separate functions for each of the four 
rounding modes: 

• NINT(A,KIND) converts a real A to the nearest integer of the given KIND 

• INT(A,KIND) converts a real A to the integer of the given KIND, rounded to 0 

• CEILING(A) converts a real A to the default integer type, rounded to +oo 

• FLOUR(A) converts a real A to the default integer type, rounded to -oo 

Note that the last two functions only provide conversions to the default integer type, which is not predetermined by the 
standard. Two functions round floating-point numbers to integral floating-point values (rounding to +oo or -oo is not 
available): 

• AINT (A,KIND) converts a real A to the integral real of the given KIND, rounded to 0 

• ANINT(A,KIND) converts a real A to the nearest integral real of the given KIND 

Fortran, like any programming language, allows decimal input of floating-point values. The Fortran standard mentions that: 
"The significand may be written with more digits than a processor will use to approximate the value ( . . . ) " ,  but the rounding 
algorithm for either input or output is not specified by the standard. The Fortran standard provides the six required IEEE 
comparisons. It  does not define an unordered predicate. 

3.4  - I n f i n i t y ,  N a N s ,  a n d  S i g n e d  Z e r o  

The Fortran s taadard does not discuss any special representations. 

3 . 5  - E x c e p t i o n s ,  Traps  

Exception handling is described as future work. 

4 - F o r t r a n  95 a n d  B e y o n d  

Fortran 95 is seen as a relatively minor revision of Fortran 90 with the pr imary emphasis on clarifications, corrections and 
interpretations. Especially John Reid [Reid 1996] has tried hard to get an exception handling feature, as well as other aspects 
of the IEEE standard, into the Fortran standard. We will discuss the current draft [ ISO/IEC 1996] of a final report announced 
as [ISO/IEC 1997], which is expected to appear in 1997. It  will enable compiler vendors to add exception handling to their 
compilers before its formal standardization as part  of the Fortran 2000 standard. 
In order to allow implementations on different hardware platforms to provide maximum value to users, the [ISO/IEC 1996] 
report still does not require IEEE conformance. The modules IEEE_EXCEPTIONS, IEEE..ARITHMETIC and IEEE..FEATURES 
provide support for floating-point exceptions and IEEE arithmetic. They are not required for vendors with no IEEE hardware. 

.4.1 - F o r m a t s  

The inquiry function IEEE_SUPPORT._DATATYPE([X]) (where [X] denotes that  the argument X is optional) in the module 
IEEE_EXCEPTIONS returns true if [ISO/IEC 1996]: "( . . .  ) the processor supports IEEE arithmetic for all reals (X absent) or 
for reals of the same kind type parameter  as the argument X ( . . . )  Here, support  means employing an IEEE data  format and 
performing the operations +, - ,  and × as in the IEEE standard whenever the operands and result all have normal values". 
It is sufficient to implement the arithmetic operators in only one of the four IEEE rounding modes (see also 4.2). The Fortran 
report does not precise which rounding mode. 
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4 .2  - Round ing  

The function IEEE_SUPPORT_ROUNDING (ROUND_VALUE [, X] ) returns true if a call to the function 
IEEE_SET_ROUNDING_MODE(ROUND_VALUE) changes the current rounding mode to ROUND_VALUE. The function 
IEEE_GET_ROUNDING_MODE(ROUND_VALUE) can be used to inquire which of the four IEEE rounding modes (or IEEE_0THER if 
the rounding mode is not IEEE-conforming) is in operation. 

4.3  - Operations 

The inquiry function IEEE_SUPPORT._DATATYPE( [X] ) does not guarantee (see 4.1) that  all operations are executed as de- 
fined in the IEEE standard. Supplementary functions, IEEE_SUPPORT_DENOLMAL( [X] ),  IEEE_SUPPORT_DIVIDE( [X] ) and 
IEEE_SUPPORT_SQRT ( [X] ), inquire if IEEE denormal numbers are supported and if division and square root are implemented 
in the IEEE sense. The IEEE remainder function is not mentioned in the report, nor is it possible to inquire if conver- 
sions are available that talce into account IEEE rounding. The module IEEE_ARITHMETIC contains the unordered predicate 
IEEE_UNORDERED (X, Y) for arguments X and Y such that  IEEE_SUPPORT.DATATYPE (X) and IEEE_SUPPORT_DATATYPE (Y) return 
true. 

4.4 - Inf ini ty ,  N a N s ,  and Signed Zero 

Although not explicitly mentioned, signed zeros should be supported if operations are executed in the IEEE sense (see 4.3). 
Two inquiry functions, IEEE_SUPPORT_INF ([X]) and IEEE_SUPPORT_NAN( [X] ), return true if the processor supports special 
representations for infinities and NaNs for all reals (X absent) or only in the same format as the argument X. 

4 .5  - Except ions  

The module IEEE_EXCEPTIONS contains the functions IEEE_SUPPORT_FLAG(FLAG) to inquire if the processor supports 
the requested exception FLAG. The status of supported exceptions can be requested and restored individually by the 
functions IEEE_GET_FLAG(FLAG,FLAG_VALUE) and IEEE_SET_FLAG(FLAG,FLAG_VALUE), and as a whole by the functions 
IEEE_GET_STATUS (STATUSiVALUE) and IEEE_SET_STATUS (STATUS_VALUE). 

4 . 6 -  Traps 

The function IEEE_SUPPORT_HALTING(FLAG) in the module IEEE_EXCEPTIONS returns true if: " ( . . .  ) the processor supports 
the ability to control during program execution whether to abort or continue execution after an exception". The function 
IEEE_GET_HALTING.EODE (FLAG, HALTING) gets the halting mode of an exception and IEEE_SET_HALTING~0DE (FLAG, HALTING) 
sets continuation or trapping on exceptions. The report  remarks that: "Halting is not precise and may occur some time after 
the exception has occurred". The initial trapping mode is processor-dependent, whereas IEEE requires the default behavior 
to proceed without a trap. The report  does not define how to specify a trap handler under user control. 

5 - c / c + +  

The programming language C [Kernighan & Ritchie 1988] and its successor C + +  [Stroustrup 1991] have always been used for 
a wide variety of applications. More and more scientific libraries are being developed in C + +  because of its object-oriented 
features. In the following paragraphs we compare the IEEE standard with the floating-point functionality defined in the 
international standard for the programming language C [ISO/IEC 1990]. Since C + +  is completely based on the language C 
for its floating-point part, this comparison also holds for the C + +  standard in process of formation [ANSI/ISO 1995]. 

5.1 - Forma t s  

The ISO C standard [ISO/IEC 1990] states: "There are three floating-types, designated as float, double, and long double. 
The set of values of the type float is a subset of the set of values of the type double, the set of values of the type double is a 
subset of the set of values of the type long double". There is no guarantee that these types correspond to IEEE single, double 
or extended formats. A header file < f l o a t  .h> is required in which the characteristics of floating-point types are defined in 
terms of a number of parameters. 

5.2 - Round ing  

Rounding is not discussed, except for the parameter FLT_ROUNDS in < f l o a t . h >  which characterizes the rounding mode for 
floating-point addition only. 

5.3 - Operat ions 

It is possible to add, subtract,, multiply and divide. The remainder operation '%' is only applicable to integer types and 
whether, for example, - 2 3 / 4  returns - 5  or - 6 ,  is implementation-dependent. The header file <math .h>  declares mathe- 
matical routines which take double arguments and return double values. Float and long double arguments to these functions 
are automatically converted to double representations, and a double result is always converted when assigned to a float or 
long double variable. An IEEE remainder flmction is not available: "The fmod function returns the value x - i × y, for some 



integer i such that, if y is nonzero, the result has the same sign as x and the magnitude less than the magnitude of y. If 
y is zero, whether a domain error occurs or the fmod function returns zero is implementation-defined". The s q r t  function 
computes the nonnegative square root, but a domain error occurs if the argument is negative, whereas IEEE requires an 
invalid exception. The C standard also gives future library directions. The names of all existing functions in the <math .h>  
header file, suffixed with f or 1, are reserved for corresponding functions with float and long double arguments and return 
values. In addition to the double versions of the math functions in C, the C + +  draft explicitly adds the float and long 
double overloaded versions of these functions. All conversions between internal formats which cannot be represented exactly, 
deliver either the nearest higher or nearest lower value, chosen in an implementation-defined manner. Hence, they are not 
necessarily correctly rounded. The header file <math. h> contains two functions to round double to integral double values: 

• double  c e i l  (double  x) rounds x to the smallest integral value not less than x 

• double  f l o o r  (double  x) rounds x to the largest integral value not greater than x 

The s t r t o d  function in the header file < s t d l i b .  h> is responsible for all decimal to binary conversions. If its string argument 
has the expected form, s t r t o d  converts it to double. All six required comparisons are available, only the unordered predicate 
is absent. 

5.g - I n f i n i t y ,  N a N s ,  a n d  S i g n e d  Z e r o  

Special representations are not discussed. 

5 . 5  - E x c e p t i o n s  

The C standard clearly states that: "If an exception occurs during the evaluation of an expression (that is, if the result is 
not mathematically defined or not in the range of representable values for its type), the behavior is undefined". 

5. 6 - Traps  

On the occurrence of signals or interrupts, it is not guaranteed that  the functions in the standard library (including <math. h>) 
are reentrant. The header file < s i g n a l .  h> contains functions to install a user-specified routine on the occurrence of so-called 
signals such as floating-point exceptions. 

6 - N u m e r i c a l  C E x t e n s i o n s  G r o u p  ( N C E G )  

This section discusses the final proposal of NCEG [Thomas 1996]. The proposal is intended to integrate floating-point C 
extensions into the current revision of the C standard. Although the detailed proposal contains different specifications for 
IEEE and non-IEEE platforms, the discussion will be restricted to IEEE implementations. 

6.1 - F o r m a t s  

The C types float and double correspond to IEEE single and double formats, but the long double type matches an IEEE 
extended format, else a non-IEEE extended format, else the IEEE double format. Any non-IEEE extended format has more 
precision than double precision and at least the range of IEEE double format. The recommended practice is to match an 
IEEE extended format. 

6 . 2  - R o u n d i n g  

The header file < f e n v .  h> declares the necessary types and functions to provide access to the floating-point environment, 
including control of the IEEE rounding directions. 

6 . 3  - O p e r a t i o n s  

All basic IEEE operations are available for all formats. The non-IEEE fmod function is still available for compatibility 
reasons. The rein function in <math .h>  provides the IEEE remainder operation. Floating-point format conversions are 
performed according to the IEEE rules. The following two functions, defined in <math. h>,  convert floating-point arguments 
to integers (only for the type long int), and to integral floating-point values, using the current rounding direction: 

• long int rinttol (double x) rounds x to tile nearest long integer 

• double rint (double x) rounds x to an integral double floating-point value 

For each mathematical function defined in <math. h>, the corresponding functions with float and long double arguments and 
return values are also provided. The proposal defines a constant DECIMAL_DIG in <math. h>, so that all conversions between 
any supported IEEE format and decimal numbers with DECIMAL.DIG or fewer significant digits are correctly rounded. All 

comparisons are available, including an unordered predicate. 
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6.4 - Infinity, NaNs, and Signed Zero 

Infinities, NaNs, and signed zeros are explicitly supported. Decimal to binary conversions and vice versa support infinities, 
NaNs and signed zeros in accordance with the IEEE standard. But a proposal that  the conversion function s t r t o d  be 
allowed to return a NaN for invalid numeric input, was withdrawn because of the incompatibility with the C standard, which 
demands that  this function returns 0 for invalid numeric input. 

6.5 - Exceptions 

The header file < f e n v  .h> defines a type fenv_t  representing tile entire floating-point environment. This environment includes 
exception status flags, dynamic rounding modes and: "(...) other similar floating-point state information". Although it is 
possible to save and restore this whole floating-point environment as one entity, its exact content is implementation-defined. 
The status of floating-point exceptions can be saved and cleared individually and collectively. Individual functions to change 
the trapping or non-trapping behavior of floating-point exceptions are not mentioned explicitly (see 6.6). 

6.6 - Traps 

Trap handlers are outside the scope of the NCEG document. 

7 - On  t h e  I E E E  c o n f o r m a n c e  of  some  p o p u l a r  c o m p i l e r s  

So far, it has been shown that the programming languages Fortran and C are converging slowly towards more compatibility 
with the IEEE standard for floating-point arithmetic. Even so, the current standards of these languages do not address 
the need for predictable floating-point arithmetic. The next paragraph discusses tools which were used to test the IEEE 
conformance of some popular Fortran 90 and C / C + +  compilers. Subsequent paragraphs present a summary of the test 
results for each compiler. A full report,  with an appendix discussing these test results in more detail, can be obtained at URL 
f t p : / / h w i n s . u i a . a c . b e / p u b / c a n t / S I G P L A N / S I G P L A N r e p o r t . p s .  This appendix also describes compiler-specific extensions 
for setting the rounding direction at runtime, detecting floating-point exceptions and changing the trapping or non-trapping 
behavior of exceptions. The test programs which were used to screen the compilers in this section can be found at URL 
ftp: / /hwins.uia.ac.be /pub  / cant / SI G P L A N  / test-programs / .  

7.1 - Verification of floating-point arithmetic 

It is clear that  the number of elements in a chosen floating-point set makes it impossible to test all combinations of operations 
and floating-point arguments. Examples such as the famous Intel Pentium bug illustrate that  even wefl-known hardware 
implementations of the IEEE standard are not necessarily error free. The compilers in the subsequent sections were screened 
using test sets with carefully chosen floating-point arguments, covering all the aspects (including rounding directions and 
exceptions) of all IEEE operations except conversions. For the latter, the test sets only screen decimal to binary conversions 
together with a limited number of special cases for the other conversions. 
The test data for the operations +, - ,  x, / and square root are part of UCBTEST [Hough 1988]. These were extended 
with test sets for the IEEE remainder operation and comparisons. For decimal to binary conversions, the test data include, 
besides some special cases, a list of decimal numbers which are difficult to convert to the IEEE double format, as compiled 
by [Tydeman 1996]. It should be noted that not all decimal numbers in the test set belong to the IEEE range within 
which decimal to binary conversions are correctly rounded. For example, a special case is the decimal representation of the 
expression 1 + 2 -1 + 2 - 2 4 +  2 -52, which equals 15000000596046449974352299250313080847263336181640625.10 -52. This 
number is exactly representable in double precision, yet does not belong to the IEEE range for correct decimal to binary 
conversions. Another decimal number 150000005960464488641292746251565404236316680908203125.10 -53 corresponds to 
the expression 1 + 2 -1 + 2 -24 + 2 -53, but can no longer be represented exactly in double precision. It does not need to be 
correctly rounded to its binary representation according to IEEE. 
All test sets, except conversions, were verified against a straightforward implementation of IEEE double precision arithmetic, 
initially developed by [Snelgrove 1989]. This implementation was extended to include IEEE rounding and the square root, 
remainder and comparisons. The test vectors which were used do not guarantee to discover all errors in a floating-point 
implementation. Note that  all compilers target IEEE-conforming hardware (SUN Sparc stations or Intel PCs). It has never 
been the intention to test these hardware platforms. 
As will become clear from the test results, compilers can hide features from the arithmetic at hand or even introduce errors 
or anomalies which are not present in the underlying hardware. The tests focus on this artificial layer (figure 1) formed by 
compilers which translate the end-user's program to executable machine instructions running on the underlying hardware. 
All tests were performed in double precision and in non-trapping mode. 

7.2 - Fortran 90 

None of the tested Fortran 90 compilers offer the IEEE remainder operation or the unordered comparison, because they are 
not defined in the Fortran 90 standard. 
Edinburgh Portable Compilers Ltd. (EPC) distributes a Fortran 90 compiler for SUN Spare. Various incompatibilities with 
the IEEE standard were found. Arithmetic ol)erations do not signal floating-point exceptions correctly. Decimal to binary 
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Figure 1: Compilers determine the view on the underlying hardware 

and binary to decimal conversions are not always correctly rounded within the range required by IEEE, and are incorrect 
outside this range. Special representations are not converted correctly. Both decimal to binary and binary to decimal 
conversions signal the inexact exception inappropriately. The comparisons >, >, < and < return true instead of false on 
NaNs. Comparisons often raise the invalid exception without reason. 
The SUN Microsystems Inc. f90 compiler for Sparc, version 1.1 (1995) generates code which executes all arithmetic operations 
correctly, except for the comparisons >, >, < and _< which return true instead of false on NaNs. Decimal to binary and binary 
to decimal conversions outside the correctly rounded IEEE range are incorrect. Binary to decimal conversions do not preserve 
the sign of -0. Both decimal to binary and binary to decimal conversions signal the inexact exception inappropriately. 
Another remark is that the compiler option -fnonstop, which masks all exceptions so that the execution of generated 
programs is not halted on floating-point exceptions, is not the default (as IEEE requires). 
A list of other compilers, LF90 version 2.00 (1996) for Intel PCs from Lahey Computer Systems Inc., FortranPlus version 
1.3 (1996) for SUN Spare and version 1.3.02 (1996) for Intel PCs from N.A. Software Ltd. and two compilers for SUN Sparc 
from The Numerical Algorithms Group Ltd. (NAG), NAGWare f90 version 2.2 (1996) and NAG/ACE Fortran 90 release 1.0 
(1996), were not included in our tests because they do not provide Fortran 90 extensions to detect floating-point exceptions 
or change the rounding direction at runtime. Most of these compilers allow to call external C routines to achieve the same 
functionality, but it would be difficult in these cases to pin-point the source of erroneous results. 

7.3 - C / C++ 

The C / C++ compilers which we tested on SUN Spare stations deliver almost fully correct results compared with the above 
Fortran 90 compilers. 
SUN Microsystems Inc. provides a proprietary C+÷ compiler for SUN Sparc stations. We tested version 4.0.1 (1994). All 
arithmetic operations and conversions execute correctly. Only the unordered comparison does not signal the invalid exception 
for signaling NaNs. 
The Free Software Foundation Inc., a non-profit organization, also develops a C+÷ compiler for various platforms. We tested 
GNU C÷÷ version 2.7.2 (1996) for SUN Spare stations. Their compiler produces exactly the same results as the above 
SUN compiler, except for one additional error: binary to decimal conversions often raise the inexact exception flag for some 
unknown reason. 
DJGPP version 2.0 (1996) fi'om Delorie Software contains a C / C++ compiler for Intel PC platforms based on the above 
GNU C++ compiler. Using this compiler, multiplication and division do not always signal the underflow flag. The remainder 
operation does not signal the invalid exception when the first operand is a NaN and the second operand equals zero, which 
is an invalid operation. Decimal to binary conversions and vice versa are not correct and signal the inexact exception flag 
inappropriately. 
For an evaluation of Borland C++ version 4.0 (1993) and Microsoft Visual C++ version 1.52 (1993) for Windows platforms, 
we refer to the appendix. 

8 - Conclusion 

The current standards of the programming languages Fortran 90 and C still do not fully support IEEE floating-point 
arithmetic and pay lit, tie attention to the need for predictable floating-point arithmetic. These standards, for instance, do 
not define the necessary functions to establish the rounding direction or detect floating-point exceptions at runtime. As a 
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consequence, a number of Fortran 90 compilers do not provide this functionality and when compiler-specific extensions are 
available, they are seldom portable. It is clear that the use of such extensions and the lack of attention for predictable 
floating-point arithmetic inhibit the production of fully portable numerical libraries and programs. 
The screening of some popular Fortran 90 and C / C++  compilers has shown that many of them do not conform to the IEEE 
standard. Results of operations and the occurrence of floating-point exceptions are not always reported correctly, although 
the underlying hardware is fully IEEE-conforming. The lack of conformance of these compilers can be attributed in part 
to their respective programming language standards. Today, the Fortran and C / C++  standards are subject to important 
changes, thus converging towards greater compatibility with the IEEE standard for floating-point arithmetic. 
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