Algorithm 871: A C/C++ Precompiler for
Autogeneration of Multiprecision Programs

WALTER SCHREPPERS and ANNIE CUYT
University of Antwerp

In the past decade a number of libraries for multiprecision floating-point arithmetic have been
developed. We describe an easy to use, generic C/C++ transcription program or precompiler for the
conversion of C or C++ source code into new code that uses a C++ multiprecision library of choice.
The precompiler can convert any type in the input source code to another type in the output source
code. The input source can be either C or C++, while the output code generated by the precompiler
and using the new types, is C++. The type conversion is based on a simple XML configuration
file which is provided by either the developer of the multiprecision library or by the user of the
precompiler. The precompiler can also convert to data types with additional features, which are
not supported in the types of the source code. Applicability of the precompiler is shown with the
successful conversion of large subsets of the GNU Scientific Library and Numerical Recipes.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifications;
D.3.2 [Programming Languages]; K.2 [IEEE]: Floating-Point Standard

General Terms: Algorithms, Design, Languages
Additional Key Words and Phrases: Conversion, precompiler, multiprecision, floating-point

ACM Reference Format:

Schreppers, W. and Cuyt, A. 2008. Algorithm 871: A C/C++ precompiler for autogeneration of
multiprecision programs. ACM Trans. Math. Softw. 34, 1, Article 5 (January 2008), 20 pages. DOI
= 10.1145/1322436.1322441 http://doi.acm.org/ 10.1145/1322436.1322441

1. INTRODUCTION

It is well known that the conversion of source code by hand is error-prone and
very time-consuming. In Bailey [1993b, 1993a] a transcription tool for Fortran
programs is described which automates the use of the MPFUN [Bailey 1990]
library. Since then several other multiprecision libraries have been developed
in C++ and Fortran such as Mpleee [Cuyt 2004], MPFR [Zimmermann and
the PolKA Project 2004], ARPREC [Bailey et al. 2002], CLN [Haible 1997],
MPFUNO90 [Bailey 1995] and FMLIB [Smith 1991].

Authors’ address: Universiteit Antwerpen, Middelheimlaan 1, B-2020 Antwerpen, Belgium; email:
walter@schreppers.com, Annie.Cuyt@ua.ac.be.

Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 0098-3500/2008/01-ART5 $5.00 DOI 10.1145/1322436.1322441 http:/doi.acm.org/
10.1145/1322436.1322441

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:2 . W. Schreppers and A. Cuyt

Because the use of types in the existing C++ multiprecision libraries is very
unalike, a transcription program written specifically for one multiprecision li-
brary cannot be reused for another C++ library. We have therefore developed an
easy to use, generic transcription program for the automatic conversion of C or
C++ source code into new code that uses data types of a C++ library. This C++
library can be any multiprecision library of choice, among others [Cuyt 2004;
Zimmermann and the PolKA Project 2004; Haible 1997; Smith 1991; Bailey
et al. 2002]. But it can also be a C++ library with data types for big integer or
exact rational arithmetic. Our precompiler can, however, not be used for the
transcription of Fortran code.

There are many good reasons for using a precompiler instead of, for instance,
a sed or awk script. A precompiler can do variable scoping, it can exclude the
conversion of certain variables or functions and it can automate the conver-
sion of output routines like C stdio printf instructions into C++ iostream
cout instructions. Of course a precompiler is not a true compiler or not even a
cross-compiler. In some cases, the precompiler identifies a tricky situation and
user interaction is needed, for instance when the C functions calloc, malloc,
realloc, free, and sizeof for memory management are used. A more detailed
description on how to resolve these warnings is given in Section 3.

When comparing our precompiler to the Fortran transcription program de-
scribed in Bailey [1993b, 1993al], or to the Simplified Wrapper Interface Gen-
erator SWIG [Beazley 1998] developed at Los Alamos, we point out that our
precompiler does not use directives inside the source code, while this is neces-
sary in both Bailey [1993b, 1993a] and the SWIG tool. The precompiler uses an
XML conversion configuration file in which the conversions from source data
types to destination data types are listed. The actual conversion routines are
part of the C++ library implementing the destination types. It should be pointed
out that the transcription program described in Bailey [1993b, 1993a] for the
MPFUN [Bailey 1990] library, was superseded by the MPFUN90 [Bailey 1995]
library, which uses operator overloading and custom data types.

Yet when comparing the functionality of the precompiler with basic operator
overloading, the advantages of the precompiler stand out. Clearly, operator
overloading is not an option for C source code, while conversion from C to C
++ code is part of the functionality of the precompiler. When the source code
is written in C++ or Fortran 90 and operator overloading is possible, it still
requires a lot of manual work and insight to get it right, especially if the target
class does not contain all operators used by the original hardware type. For C++
libraries this is resolved by the precompiler by mapping missing operators to
regular class member calls. In such instances a precompiler or transcription tool
is the only way to automate the conversion and avoid the introduction of errors
by manual conversion. Finally, since the precompiler is able to convert constants
into a string representation, it avoids possible rounding and conversion errors
which can be introduced when going from hardware precision to multiprecision.

In the next sections we discuss the following topics:

—The internal working of the precompiler
—How to use the precompiler

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:3

—The application of the precompiler to transcribe the GNU Scientific Library
(GSL) [Galassi et al. 2001] and Numerical Recipes (NR) [Press et al. 2002] to
multiprecision versions. The transcription is done for use with the MpIeee
multiradix, multiprecision class library [Cuyt 2004].

We hope this paper might also inspire others to develop precompilers tar-
geted at different programming languages, because the applied conversion tech-
niques such as variable scoping and conversion exclusion, are applicable to
most programming languages. Although we we only describe the precompiler
for automated conversion into the MpIeee type in this paper, our tool can be
used for any C++ multiprecision library. The ARPREC [Bailey et al. 2002] li-
brary provides C++ wrappers to the MPFUN90 datatypes. The precompiler can
also automate the conversion from standard double precision code to the new
ARPREC datatypes by using a different configuration file, which is given in the
algorithm submission [Schreppers 2006].

2. INTERNAL OPERATION OF THE PRECOMPILER

2.1 The XML Conversion Configuration File

To configure the precompiler for transcription to code using a specific multi-
precision library, either the developer of the multiprecision library or the user
of the precompiler needs to provide a configuration file describing the conver-
sion settings. These settings include: identifying the source types and target
types for the conversion, conversion rules between the source and target types,
and specifying how assignments to the variables in the source code have to be
transcribed in the target code. While writing down these settings may seem
cumbersome, in many cases a suitable conversion configuration file already
exists or an existing conversion file can easily be modified.

The format we have chosen to write down the configuration settings is XML,
and we have developed our own lightweight XML parser to generate a n-tree
from the conversion configuration file. This complies with the DOM (Document
Object Model) of XML [Harold and Means 2001]. Our lightweight XML parser
contains the essentials we need, is 400% faster than the parser in the Qt class
framework [Dalheimer 2002], and is easier to use than the alternative C++
XML parsers such as expat [Kim 2001]. Most importantly, by writing our own
XML parser, we are not bound by any licenses.

In Figure 1 we give the Document Type Definition (DTD) [Bia et al. 2001] for
the conversion configuration files. The longer XML Schema [XML Schema 2001]
definitions can be found in the HTML files bundled with the algorithm submis-
sion [Schreppers 2006] in the Documentation directory.! There are 9 different
tags, most of which are illustrated in the example conversion configuration file
in Figure 2.

Based on this conversion configuration file, the precompiler transcribes the
source code in Example A.1 for use with the MpIeee multiprecision library and
generates the output code given in Example A.2.

IThe site is also online at http://www.win.ua.ac.be/u/wschrep/precompiler/paper.html

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:4 . W. Schreppers and A. Cuyt

<IELEMENT include (#PCDATA)>

<!ATTLIST include global (truel|false) #IMPLIED>
<IELEMENT init (#PCDATA)>

<!ELEMENT keyword (#PCDATA)>

<IELEMENT token (#PCDATA)>

<!ELEMENT operation (#PCDATA)>

<!ELEMENT source (keyword|token)+>

<!ATTLIST source name CDATA #REQUIRED>
<!ELEMENT rhs (keyword|token)>

<!ATTLIST rhs name CDATA #REQUIRED>

<!ELEMENT target (keyword)>

<!'ATTLIST target name CDATA #REQUIRED>
<IELEMENT convert ((sourcel|rhs|target),target,operation?)>
<!'ATTLIST convert name CDATA #IMPLIED>

Fig. 1. DTD for the conversion configuration file.

In Figure 2, two source tags are given: each tag identifies one or more key-
words in the source file which will be converted. Keywords listed under the
same source tag, such as float and double, will all be handled in the same way
by the precompiler. One can also define double in a different source tag and
convert it to a different type should one require it. In our example we use the
multiprecision type MpIeee which can extend both float and double correctly.

The target tags similarly give the target type of a conversion. The first con-
version rule states that all variables of a type listed in sfloat will be converted
to variables of the type given in tfloat. In other words, all single- and double-
precision variables will be converted to variables of type MpIeee. To complete
the configuration settings, we need to specify how assignments to single or dou-
ble precision variables must be transcribed in a semantically correct way. For
instance, in the source code in Example A.1, the float variable b is assigned
the value 0.1. With only the first convert rule (named ‘float to mpieee’), the
precompiler transcribes this to

MpIeee b=0.1;

This is not really appropriate because C++ compilers, when parsing constants
such as 0.1, perform a conversion from decimal to double precision binary rep-
resentation, not to a multiprecision representation. In the MpIeee library, as in
many other multiprecision libraries, assignment of constants to multiprecision
variables is done by string initialization. In other words, the precompiler should
generate

MpIeee b=Mpleee("0.1");

This statement avoids conversion from decimal to binary by the C++ compiler.
To achieve this transcription, we specify two things in the conversion configura-
tion file: which right-hand sides of an assignment need special conversion and
what the appropriate conversion rule is. For the former the rhs tag is provided,
and for the latter we use a convert tag with an optional operation specifier.
As illustrated in the rhs tag afloat in Figure 2, special conversion is needed
whenever in the right-hand side of an assignment, either an integer token or a
decimal token is parsed. The meaning of tokens is fixed by the lexical analyzer,

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:5

<?7xml version="1.0"7>

<document>
<include> BigInt.hh </include>
<include> MpIeee.hh </include>

<include> ArithmosIO0.hh </include>
<source name="sfloat">
<keyword> float </keyword>
<keyword> double </keyword>
</source>
<source name="sint"><keyword> int </keyword></source>
<target name="tint"><keyword> BigInt </keyword></target>
<target name="tfloat"><keyword> MpIleee </keyword></target>
<rhs name="afloat">
<token> integer </token>
<token> decimal </token>
</rhs>
<rhs name="aint"><token> integer </token></rhs>
<l=mmmmmm o the conversion rules ------------ >
<convert name="float to mpieee">
<source name="sfloat"/> <target name="tfloat"/>
</convert>
<convert name="int to bigint">
<source name="sint"/> <target name="tint"/>
</convert>
<convert name="decimal to mpieee">
<rhs name="afloat"/> <target name="tfloat"/>
<operation> toStringConstructor </operation>
</convert>
<convert name="integer to bigint">
<rhs name="aint"/> <target name="tint"/>
<operation> toStringConstructor </operation>
</convert>
</document>

Fig. 2. Conversion file for the MpIeee library.

a subset of the precompiler. From the full list of tokens given in Table I, it is
clear that the integer and decimal token correspond to our intuition. The third
conversion rule in Figure 2 specifies the transcription for the right hand side
afloat. It very much resembles the first two conversion rules, except that it
contains an additional operation tag. Without the operation tag, the operation
is one of simple replacement. With the operation tag, one can specify the ap-
propriate conversion format. Each conversion operation is implemented by a
C++ function with the same name. Each such function is a member function of
the ConvertConfig class of the precompiler. Clearly, for different multiprecision
libraries, different transcription operations may be needed. If this is the case,
all the user or developer of the library has to do, is add the appropriate C++
member functions to the ConvertConfig class of the precompiler. Examples of
such operation functions are given in Section 3 and more details about adding
new functions can be found in the algorithm documentation [Schreppers 2006].

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:6 . W. Schreppers and A. Cuyt
#include <stdio.h>

float func(float& a){
float k;
for(int i=1;i<5;i++)
for(int j=1;3j<3;j++){
char k=32;
if (i+3>5) k=’y’;
if (k==’y’) printf("k=Yc, i+j=%i\n",k,i+j);
}
k=2%a;
return 3*a;

}

int main(){
float b=0.1,c=0;
double d[3][3]=

b=func(c);

printf ("b=%f\n",b);
printf("d[1] [2]=Vf\n",d[1][2]);
return O;

Example A.1. C code example (test.cpp).

The only tag which we have not discussed so far is the init tag. When this
tag is used, the PCDATA? inside it will be inserted in the target code as the
first few lines of the main function. The same functionality can be achieved with
a command line option, as discussed in Section 3.1.

2.2 Variable Scoping in the Precompiler

As mentioned in the introduction, the precompiler handles variable scoping,
meaning that variables and functions belong to a certain scope and are removed
from the lookup table when the scope is closed. This is necessary, for example,
when a double and a char with the same name are created. A simple script
without scoping will probably convert assignments to both variables (or none
at all). In most cases we only want to convert the integer variables and without
scoping such a conversion fails.

We outline below the algorithm on which the precompiler is based and which
includes variable scoping. We can separate the algorithm in two parts: handling
of tKnown and handling of tOther variables. The tKnown variables have one of
the types defined in the conversion file to be converted. The tOther variables
have a type not given in the conversion file or they are variables that are to

2PCDATA refers to the literal text between an open and closing XML tag.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 57

#include <iostream>

#include <iomanip>

using namespace std;

#include "BigInt.hh"

#include "MpIeee.hh"

#include "ArithmosIO.hh"

#include <stdio.h>

MpIeee func(Mpleee & a){

MpIeee k;
for(BigInt i= BigInt("1");i<BigInt("5");i++)
for (BigInt j= BigInt("1");j<BigInt("3");j++){
char k=32;
if (i+j>BigInt("5")) k=’y’;
if(k==y’) {cout<<"k="<<k<<", i+j="<<i+j<<"\n";}
}
k=MpIeee("2")*a;
return MpIeee("3")*a;
}
int main({
MpIeee: :fpEnv.setRadix(2); MpIeee::fpEnv.setPrecision(90);
MpIeee: :fpEnv.setExpRange(-126,127); MpIleee::fpEnv.setRound (FP_RN);
ArithmosIO: :setIoMode (ARITHMOS_IO_MPIEEE_DECIMAL |
ARITHMOS_IO_RATIONAL_RATIONAL);
MpIeee b= MpIeee("0.1");MpIeee c= MpIeee("0");
MpIeee d[3][3]=
{

MpIeee("1.0"), MpIeee("2.0"), MpIeee("3"),
MpIeee("4"), MpIeee("5"), MpIeee("6"),
MpIeee("7"), MpIeee("8"), MpIeee("9")

3

c=MpIeee("3")+MpIeee("26");

b=func(c);

{cout<<"b="<<setiosflags((ios::fixed & ios::floatfield))<<b;
cout.precision(6);cout.fill(’ ’);cout.width(0);
cout.setf(ios::dec,ios::basefield);
cout<<resetiosflags((ios::fixed & ios::floatfield))<<"\n";}

{cout<<"d[1] [2]="<<setiosflags((ios::fixed & ios::floatfield))<<d[1][2];
cout.precision(6);cout.fill(’ ’);cout.width(0);
cout.setf(ios::dec,ios: :basefield);
cout<<resetiosflags((ios::fixed & ios::floatfield))<<"\n";}

return O;

Example A.2. C++ code after conversion of Example A.1

be skipped according to the skip configuration file (these are left unchanged by
the precompiler).

(1) Read token T from source file using lexer. See Table I for an overview of the
tokens.

(2) Tis asym word token

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:8 .

W. Schreppers and A. Cuyt

Table I. The Lexer Tokens

| Name Regular Expression or Description
comment a C/C++ comment (meaning /¥ ... */or//...)
directives a C/C++ directive
quoted_string | a quoted string
sym_word a C/C++ word (keyword or variable/function name)
[a-zA-Z_][a-zA-Z_0-9]*
assignment [+-*/1?[=]
comparison [<>][=]21 =) =="7)
stream_op (<< |>>)
mult *
plus +
minus —
div /
double_colon :
pointer_op ->
bool_op C&&CIMICIIICY)
percent %

open_bracket
close_bracket
open_par
close_par
open_brace
close_brace
semi_colon
colon
white_space
integer
decimal
sym_and
comma

tilde

[
]
(
)
{
}

;cabs or spaces

[0-9]1[0-9]*[fFIL]?
[0-91*(".)[0-9]1[0-9]*([eE][+—]1?[0-9] [0-9]*)?[fFIL]?
&

’

~

(a) if T is a C/C++ reserved word

i. and ifreserved word is for: we open a new scope because the running
variable(s) of the for loop belongs to the scope of that loop. Just
after the loop definition we check if an open_brace is found. If this
is the case, we do not have to open a new scope because this was
already done. If it is not found, we have to close the opened scope
when finding the next semi_colon. The same situation arises with
the parameters of a function where we want these to belong to the
scope of the function. In case of a function definition we close the scope
on the first occurrence of a semi_colon, while in the case of a function
implementation we close it when we find the matching close_brace.
Because for loops can be nested, we use a separate stack to determine
whether to close a scope in the variables stack on a semi_colon or on
a close_brace. The -nofor option of the precompiler, discussed later,
causes the variables defined in the for loop definition to be added as
type tOther.

ii. and if reserved word is return: we look at the return type of the
current function and if it is a tkKnown type we convert the expression
after the return as if it were an assignment to a tKnown variable.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:9

iii. in other cases, we copy word literally to output file.
iv. goto step 1.

(b) if T is a previously defined function or variable (using the functions and
variables stack):

i. if T is a variable, we convert any assignments or comparisons to this
variable if it is of type tKnown and if it is not in the skip variables
list (this list is built when the user provides a skip configuration file).
t0ther variables and assignments to them are copied literally.

ii. If T is a function, we just copy T literally to the output file.

(c) if T is one of the tKnown type declarations we add a tKnown vari-
able/function to our variables/functions stack. Again, when it is in the
skip variables list, we add it as a tOther variable here.

(d) if T is a tOther type declaration, add a tOther variable/function to the
variables/functions stack.

(e) if T is printf we use the Printconverter class to convert the printf
statement into a cout statement in the output file.

(f) in other cases just copy the word literally to output file.

(g) goto step 1.

(3) Tis open_brace: We open a new scope by pushing a scope element onto our
variables stack unless the scope stack suggests otherwise.

(4) T is close_brace: We close a new scope by popping all elements from our
variables stack up to and including the scope element.

(5) Tis semi_colon: It is always copied literally and, as mentioned in 2a(i), it is
possible that a scope is closed depending on the contents of the scope stack.

(6) The token T is something different: We copy it as is to the output file.
(7) Goto step 1.

Insight into the variable scoping algorithm of the parser is important to
understand some of the warnings that are raised by the precompiler. These
warnings are discussed in Section 3.2.

2.3 Performance of the Precompiler

Sometimes the conversion rules are such that the precompiler has a choice
between multiple conversions. This is, for example, the case when we add con-
version rules to the conversion file in Figure 2, as is done in Figure 3.

In Figure 3 there are multiple conversion paths from the MpIeee to Bigint
data type. In Examples B.1, B.2, and B.3 we illustrate how these rules are used.
It also shows why conversion rules between target types are needed. To avoid
superfluous conversions, the precompiler builds a graph G = (V, E) where the
edges in E correspond to the conversion rules and the vertices in V correspond
to the known keywords and tokens. The precompiler then uses an unweighted
shortest-path algorithm [Weiss 1997] to find a minimal set of conversion rules
from a source token or keyword to a target keyword.

Without the shortest path algorithm, superfluous conversions are generated,
as is clear from the difference between the two precompiler outputs in Example
B.2 and Example B.3 starting from Example B.1. The unweighted shortest-path

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:10 . W. Schreppers and A. Cuyt

<?xml version="1.0"7>
<N=mmmmmm the conversion rules ------------ >

<convert name="mpieee to rational">
<target name="tfloat"/> <target name="trational"/>
<operation> toConstructor </operation>
</convert>
<convert name="rational to bigint">
<target name="trational"/> <target name="tint"/>
<operation> toConstructor </operation>
</convert>
<convert name="mpieee to bigint">
<target name="tfloat"/> <target name="tint"/>
<operation> toConstructor </operation>
</convert>
</document>

Fig. 3. Additional conversion rules for the Mpleee library.

#include <stdio.h>
int main(){

double b = 2;
int i = 2.345;
return O;

}
Example B.1. Mixed type assignment (test2.cpp).

algorithm that we have implemented is similar to Dijkstra’s algorithm for find-
ing weighted shortest paths. The advantage of the unweighted algorithm is
a better run time complexity for nondense graphs: O(|E| + |V|) instead of
O(|E| + |V|?) = O(|V|?) for the weighted shortest-path algorithm. In dense
graphs where |E| = O(|V|?), the weighted shortest-path algorithm is optimal
and has the same complexity as the unweighted algorithm [Weiss 1997]. The
graphs of our conversion files are not dense and quite small, thus performance
is more than adequate.

The output of the standard unweighted shortest-path algorithm is a set
of successive vertices vy, ...,0, € V, where v; is the source vertex and v, is
the destination vertex. For the purpose of the transcription, the optimal path
needs to be expressed in terms of conversion rules, in other words, as consec-
utive edges ey, ...,e, € E. We have therefore slightly modified the algorithm
so that it includes labeling of the edges E with unique keys corresponding to
conversion rules and then expresses paths in function of edges rather than
vertices.

3. USING THE PRECOMPILER

To automatically transcribe C/C++ code to code that uses a C++ library of choice,
the precompiler needs a conversion configuration file, of which the syntax and
semantics have already been discussed in Section 2.1. In this section, we discuss

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:11

#include <iostream>
#include <iomanip>
using namespace std;

#include "BigInt.hh"
#include "MpIeee.hh"
#include "Rational.hh"
#include "ArithmosIO.hh"
#include <stdio.h>

int main(){
MpIeee b= MpIeee("2");
BigInt i= BigInt(MpIeee("2.345"));
return O;

}

Example B.2. C++ conversion of test2.cpp, with shortest-path algorithm used to find minimal set
of conversion rules.

#include <iostream>
#include <iomanip>
using namespace std;

#include "BigInt.hh"
#include "MpIeee.hh"
#include "Rational.hh"
#include "ArithmosIO.hh"
#include <stdio.h>

int main(){
Mpleee b= MpIeee("2");
BigInt i= BigInt(Rational(MpIeee("2.345")));
return 0;

}

Example B.3. C++ conversion of test2.cpp, without shortest-path algorithm.

additional features of the precompiler, which allow for ease of use and for man-
ual tuning of the automatic conversion procedure.

We start off by going over the conversion of the C code in Example A.1, based
on the conversion rules in Figure 2 and Figure 3. The conversion rules refer to
two conversion functions, toConstructor and toStringConstructor. As men-
tioned in Section 2.1, these are implemented as members of the ConvertConfig
class. The code for these functions is given in Figure 4.

The effect can easily be understood from the generated code in Example A.2.
More advanced conversion functions, as needed for typedef declarations, can
be achieved with different conversion functions. We refer the reader to the
algorithm documentation [Schreppers 2006] for more elaborate examples of
such conversion functions.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:12 . W. Schreppers and A. Cuyt

string

ConvertConfig: :toStringConstructor(const ConvertElem& cElem,
const string& value)

{

return cElem.target.keyword + "(\"" + value + "\")";

}

string
ConvertConfig: :toConstructor(const ConvertElem& cElem,
const string& value)
{
return cElem.target.keyword + "(" + value + ")";

}

Fig. 4. Conversion functions toStrintConstructor and toConstructor in ConvertConfig class.

The code in Example A.2 is the output code generated by the precompiler.?
The readability of the generated code is good, except for the conversion of printf
into cout instructions, which would look better if done by hand.

Example A.1 also shows that scoping is indeed crucial for correct conversion.
Without variable scoping, assignments to both variables with name k would
be handled in the same way by the precompiler, resulting in erroneous assign-
ments to the variable k of type char. Note also that the return statement has
been converted consistently: according to the conversion file, every float type
declaration, including the return type of the function, should be converted from
float into MpIeee. And notice how time consuming it would be to convert the
initialization of a C matrix definition without the precompiler.

A closer look at the code in Example A.2 shows that the type of all integer
variables has been transcribed from int to BigInt, including the running vari-
ables i and j in the for-loops. It is very unlikely that this is as the user intends,
and we will indicate below how the precompiler can be told to skip the conver-
sion of certain variables. Also, the first few lines of code in the main function in
Example A.2 are not the result of transcription. These lines of code initialize
the floating-point environment of the multiprecision library MpIeee. Including
such additional lines of code is also a feature of the precompiler, as discussed
below.

3.1 Command Line Options

When calling the precompiler without arguments, the command line options
are listed in familiar *nix style. The abbreviated output is shown in Figure 5.

The -preparse option can be used to get a list of variables that will be con-
verted using the current configuration file. We used this option on the source
code shown in Example A.1 to generate the output given in Example A.3. Us-
ing the -constants option on the source code from Example A.1 will generate
the output given in Example A.4. Skipping conversion for specific variables and

3Some white space has been removed to make it fit on one page.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:13
./precompile

Usage: ./precompile [options] <inputfile> <outputfile>

Options:
-x <configfile> specifies the conversion configuration file
-preparse preparse rather than precompile to generate a list of all
variables and functions that would normally be converted.
-c <skipfile> specifies a file containing functions and/or variables

which must not be converted

more options follow ...

Fig. 5. Executing precompiler without arguments.

func func float
func a float&
func k float
func i int
func j int
main b float
main c float
main d double

Example A.3. Output of the precompiler with the -preparse option.

functions can be done with the -skip option. Skipping all loop variables created
in C++ for-loop declarations can be done with the -nofor option.* By default
printf instructions are converted into std: : cout instructions. This can be dis-
abled using the -noprintf option. A successful printf conversion can be seen
when comparing Examples A.1 and A.2.

For other and more advanced options, like adding initialization code to the
main function, we refer the reader to the documentation supplied in the algo-
rithm submission [Schreppers 2006].

3.2 Warnings

There are a number of instances where manual intervention is needed for cor-
rect precompilation. In these instances the precompiler raises a warning.

An important area where user interaction is necessary is when the source
code contains calls to the stdlib.h C functions calloc, malloc, realloc and
free. The transcription of these functions will work fine when converting from
one basic C/C++ type to another basic C/C++ type (e.g., conversion from int into
long int), but not when conversion into a C++ class is required. The reason is
that the constructor of the class will most likely allocate additional memory.
Furthermore, when calling calloc or malloc, often the sizeof function is used
to compute how much memory needs to be allocated. When using the sizeof
function for C++ classes the code can crash when executed. For these reasons
the precompiler gives a warning when the source code contains calls to calloc,

4This option is used to optimize loops in precompiled code.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:14 . W. Schreppers and A. Cuyt

<!ELEMENT skip ((function,variable) | function | variable) >
<!ATTLIST skip name CDATA #IMPLIED >

<!ELEMENT function >

<!ATTLIST function name CDATA #REQUIRED >

<!ELEMENT variable >

<!ATTLIST variable name CDATA #REQUIRED >

Fig. 6. DTD for the skip configuration file.

CONSTANTS IN FILE : ’test.cpp’
constant: ’1’ at line 5, col 13
constant: ’5’ at line 5, col 17
constant: ’1’ at line 6, col 15
constant: ’3’ at line 6, col 19
constant: ’32’ at line 7, col 14
constant: ’5’ at line 8, col 14
constant: ’2’ at line 11, col 5
constant: ’3’ at line 12, col 10
constant: ’0’ at line 16, col 11
constant: ’0’ at line 16, col 15
constant: ’3’ at line 17, col 12
constant: ’3’ at line 17, col 15
constant: ’1.0’ at line 19, col 7
constant: ’2.0’ at line 19, col 12
constant: ’3’ at line 19, col 17
constant: ’4’ at line 20, col 7
constant: ’5’ at line 20, col 10
constant: ’6’ at line 20, col 13
constant: ’7’ at line 21, col 7
constant: ’8’ at line 21, col 10
constant: ’9’ at line 21, col 13
constant: ’3’ at line 23, col 5
constant: ’26’ at line 23, col 7
constant: ’1’ at line 26, col 27
constant: ’2’ at line 26, col 30
constant: ’0’ at line 27, col 10

Example A.4. Output of the precompiler with the -constants option.

malloc, realloc and free. The user then needs to convert this part of the code
manually, using the new C++ statement for allocating the class or using the
Standard Template Library (STL) vector class [Musser et al. 2001] to allocate
instances of the converted type.

Warnings are also issued by the precompiler when variables with “incompati-
ble” types occur in a same expression. As discussed in the algorithm for variable
scoping, variables are either tagged as tKnown, if they are of a source type listed
in the conversion file, or tagged as tOther otherwise. When a variable or func-
tion of type tOther is assigned to or compared with a variable of type tKnown, a
warning is raised. In Example C.1 we see a converted file with a mixed expres-
sion for which the precompiler raises a warning: Assignment or comparison to

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:15

int main(){
MpIeee a; Mpleee b= MpIeee("2");
MpIeee c= MpIeee("1");
int n=3;
a=b+c/ n;
cout << "a=" << a << endl;
return O;

}

Example C.1. Mixed expresssions initial output with warning.

int main(){
MpIeee a; Mpleee b= MpIeee("2");
MpIeee c= MpIeee("1");
MpIeee n= MpIeee("3");
a=b+c/ n;
cout << "a=" << a << endl;
return O;

}

Example C.2. Mixed expresssions converted without warnings.

type Mpleee may contain wrong conversion for ’n’ at line: 6. When we
extend the conversion file to also convert the variable n, no warnings are raised
and the output is given in Example C.2.

When a tKnown variable is assigned to a tOther variable no warning is given,
even though this could lead to a compilation error after the precompilation
phase. The reason for this is that warnings for assignments to tOther variables
will clutter the more important warnings for assignments to tKnown variables.
The precompiler also gives a warning whenever the right hand side of an as-
signment to a tKnown variable is a call to a function, which is implemented in
an external header file. Such a warning is necessary since the precompiler does
not recursively parse the include files.

4. PRECOMPILATION OF SCIENTIFIC LIBRARIES

To illustrate the applicability of the precompiler, we have converted two ex-
isting numerical libraries into libraries that use multiprecision floating-point
data types. The first is the GNU Scientific Library which is written in C. The
challenge here is not only the type conversion but also the transition from C
to C++ since our target types are classes. The second library is the C++ ver-
sion of Numerical Recipes. The resulting multiprecision libraries can be used
standalone or in our MPL programming environment [Schreppers et al. 2005].

4.1 The GNU Scientific Library

We have applied the precompiler to convert the GNU Scientific Library GSL so
that it uses the C++ multiprecision data type MpIeee instead of float, double
and long double [Cuyt 2004].

Table II shows the successfully converted directories. The directories which
are marked with an * superscript needed minor manual changes. Only

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

. W. Schreppers and A. Cuyt

Table II. Successfully Converted GSL Directories (* = needed minor
manual modifications)

blas * doc min rng *
block * eigen monte * roots *
cblas * err multifit * siman
cdf * fft multimin * sort
cheb fit multiroots * statisticsx*
combination | gsl ntuple * sum
complex histogram ode-initval * | sys *
const integration * | permutation * | test
deriv interpolation | poly * utils
dht linalg * qrng vector *
diff matrix * randist * wavelet

two directories in the GSL library are not listed in Table II specfunc and
ieee-utils. The reasons for this are explained below.

We comment on some of the most common manual modifications needed to
resolve compilation problems.

—Problems related to the target MpIeee library:

—? statements : These C short-hand if statements within an assignment
can cause compilation errors due to the unary operators + and — com-
bined with the delayed evaluation techniques used by MpIeee. For example
when writing MpIeee a = bTest ? b : -b;, this will generate a compila-
tion error because -b returns a DelMpleee (delayed type MpIeee) object.
The manual work around is done by changing the statement into : MpIeee
a = bTest 7 b : MpIeee(-b);. This occurs in directory sys.

—Constants: Often mathematical constants such as Pi, machine epsilon,
e,...areused in the GSL routines. For a proper conversion, these constants
have to be replaced by function calls to the appropriate multiprecision
implementation of these constants. These multiprecision counterparts, if
available in the target library, are very library specific and hence automatic
conversion is not obvious. The -constants option will help in identifying
constants for which manual conversion is required by the user.

—Precompiler-related problems:

—External functions: Very often, and certainly in large libraries such as
GSL, functions are defined in external header files. Even though the pre-
compiler does not parse header files recursively, its default behavior gives
good but not perfect conversion results due to this lack of recursive check-
ing. As described in Section 2.2, the processing of function calls implies
that, whenever they occur in the right hand side of an assignment to a
variable of type tKnown, the parameters and return type of the call are con-
verted to the type of the left hand side. Function calls which are assigned
to a variable of type tOther, or do not occur in an assignment statement,
are copied literally. For the conversion of the GSL library, this gives good
results because both the function definition and the call are processed by
running the precompiler on all files in the GSL directory. In certain cases,
however, the automatic conversion of function calls in the right-hand side

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:17

of assignments leads to errors. This is only the case in the matrix and
vector directories of GSL. For example the function gsl matrix_get has
double as a return type, while one of its parameters is of type int. The
automatic conversion by the precompiler of a constant integer parameter
to the target type for double, is therefore incorrect. This problem occurs in
the directories matrix , vector, linalg, multimin, multifit and rng and
has been resolved manually.

—printf to cout conversion: Although this automatic conversion works in
most cases there are a few limitations. One of the many printf variations
allows changing of the value of its parameters through a pointer object.
Since this cannot be converted using a regular cout instruction a warning is
issued. This occurs once in the test directory and we converted it manually.
Another limitation is that the format string has to be declared in the printf
statement and not defined as a char* variable somewhere else.

—Problems specific to the conversion of GSL:

—Woriting matrix or block objects to file using fprintf gives non-POD warn-
ings. Such errors can be manually corrected by rewriting the statements
using std: : fstream.

—When converting GSL complex type tuples to multiprecision, we get com-
pilation errors. This is mainly due to the assignment of constant 0- or
1-valued tuples, for which GSL uses an unnamed struct. Such a construc-
tion is not allowed for classes. This problem occurs in the directories block,
matrix and vector and is manually solved by leaving out the complex
datatypes.?

—Ambiguity errors: when compiling the original GSL library, a warning is
given in the statistics directory. The sources contain a macro wrapper
around functions in minmax_source.c to turn on debugging output. The
macro contains a construct of the form BASE FUNCTION(gsl stats,max)
where BASE is a double in the original source and MpIeee in the con-
verted source. Unfortunately the functions in the GSL library do not all
respect the macro definition and some functions give back an unsigned int
instead of the required BASE type. With BASE being a double this only gives
a compiler warning, but after conversion to MpIeee this gives an error. This
is fixed manually by returning the correct BASE type.

—The ieee-utils directory does not compile after conversion. We get errors
in the form of: make _float_bigendian(MpIeee*)::<anonymous union>::f
with constructor not allowed in union. Again this is a C to C++ prob-
lem, where anonymous unions on classes are not allowed. Fortunately all
functionality implemented in the ieee-utils directory is also available in
the multiprecision MpIeee class library (for example, functions to check if
a number is Not-a-Number, is finite, etc.).

—Problems in the specfunc directory can be fixed by doing some manual
changes (like implementing the missing atan2 function for MpIeee) but
since the used algorithms for the special functions are specific for hardware
precisions, it is left out.

5A complex version of the Mpleee multiprecision datatype is under development.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:18 . W. Schreppers and A. Cuyt

—Macros sometimes have wrong effects after conversion. One is the GSL_MAX
macro used in the monte, multiroots, roots and cdf directories. This gives
the same type of error as described for ‘7 statements. The same macro
also gives a problem analogous to the problem encountered with external
functions. In the second part of the ‘”-statement, a tkKnown assignment to
a tOther left hand side is copied literally by the precompiler, causing a
compilation error after conversion.

To improve efficiency of the precompiled code, extra effort has been expended
in the conversion of the cblas routines. In these routines GSL uses defines
for BASE and INDEX types, the former for data and the latter for indexing. We
converted every occurrence of a BASE define using a find/replace script and
added an extra precompiler rule to convert assignments to the BASE type. We
manually disabled the complex routines to get a fully functional multiprecision
blas subset.

Apart from some problems due to the transcription from C to C++ and
the occasional failure of a macro after precompilation, the conversion of the
GSL library is quite satisfactory. The scripts, configuration files and precom-
piler sources used to automate the GSL are included in the algorithm submis-
sion [Schreppers 2006].

4.2 Numerical Recipes

We have also applied the precompiler to the C++ version of Numerical
Recipes [Press et al. 2002]. This library is constructed around a typedef DP,
which is defined as double. In the ideal case, all that is needed for transcription
to a multiprecision data type is the replacement of this typedef. In practice the
precompiler is yet again a valuable tool since the typedef is not used properly in
all the sources. The remaining instances of double in the sources are replaced
using the precompiler. After conversion about 290 routines could be compiled
successfully. There are 28 files which failed due to missing functionality in
the Mpleee target library (atan2, ldexp, ...). This shows that precompilation
from C++ to C++ using different data types is much more successful and would
even be completely successful if the target library provides all the functionality
available for the source type.

Of the 290 successfully transcribed files, 270 are linked into a multiprecision
library. The other 20 or so files are left out of the library because they are test
files or separate programs with a main routine not suited to be included in a
library.

5. CONCLUSION

Based on our experience with the automatic transcription of the GSL and Nu-
merical Recipes library, we can conclude that our precompiler is a stable tool for
the automatic conversion of C/C++ source code into new code that uses the data
types of a C/C++ library. The reason we cannot get all converted code working
without manual intervention is not shortcomings of the precompiler but rather
missing functionality for the target data type or to the transition from C into
C++.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

Algorithm 871 . 5:19

The precompiler saves a lot of time and avoids errors that would otherwise
occur during manual conversion. Also the readability of the automatically gen-
erated code is good. Exactly how much time is gained with the precompiler
depends on how long it takes to write a custom conversion file or, if one has
already been written, on how much source code needs to be converted and on
the complexity of that code.

The precompiler has been developed in such a way that the performance of
the precompiled code is very similar to the performance of manually converted
code. One of the ways to achieve this has been explained in Section 2.3.

Of course, whether the conversion is done manually or automatically, the
performance of the transcribed code also depends on the performance of the
C++ (multiprecision) library and on the (in)appropriate use of the data types of
that library. A good example where manual conversion is inevitable is discussed
in the previous section for the CBLAS routines.

Finally, we observe that the precompiler also has an unintended but quite
useful application: it is an easy way to get familiar with a C++ (multiprecision)
library. Starting from own C/C++ code, anyone can experiment with a multi-
precision library using the precompiler to do the conversion. By looking at the
precompiled code, the user can instantly see how to use the library for his or
her specific applications.

REFERENCES

Bamey, D. H. 1990. MPFUN: A portable high performance multiprecision package. Technical
rep. RNR-90-022, NASA Ames Research Center.

Bamey, D. H. 1993a. Multiprecision translation and execution of Fortran programs. ACM Trans.
Math. Softw. 19, 3, 288-319.

Bamey, D. H. 1993b. Automatic translation of Fortran programs to multiprecision. Tech. rep.,
NAS Applied Research Branch.

Bamey, D. H. 1995. MPFUN90: A Fortran-90 based multiprecision system. ACM Trans. Math.
Softw. 21, 4, 379-3817.

Baney, D. H,, Hina, Y., L1, X. S., anp THOMPSON, B. 2002. Arprec: An arbitrary precision compu-
tation package. Tech. rep., Lawrence Berkeley National Laboratory, Berkeley, CA.

Braziey, D. 1998. SWIG users manual. Technical rep. UUCS-98-012, Department of Computer
Science, University of Utah.

Bia, A., Carrasco, R. C., anD Forcapa, M. L. 2001. Identifying a reduced DTD from marked up
documents. In Proceedings of the IX Spanish Symposium on Pattern Recognition and Image
Analysis (SNRFAI-01). 385-390.

Cuvt, A. 2004. [libMpleee. University of Antwerp. http:/www.mpieee.ua.ac.be.

DaraEmvER, M. K. 2002. Programming with Qt: Writing Portable GUI Applications on Unix and
Win32, 2nd Ed. O’Reilly & Associates, Inc., Newton, MA.

Garasst, M. ET AL. 2001. GNU Scientific Library Reference Manual: Edition 1.0 for GSL Version
1.0. Network Theory, Bristol, UK.

Hamre, B.. 1997. CLN, a class libary for numbers. http://www.ginac.de/CLN/.

Harorp, E. R. aAND MEaNs, W. S. 2001. XML in a Nutshell. O’'Reilly & Associates, Inc., Newton,
MA.

Kiv, E. E. 2001. A triumph of simplicity: James Clark on markup languages and XML. Dr. Dobb’s
J. Softw. Tools 26, 7, 56, 58—60.

MussgR, D. R., DERGE, G. J., AND SAINI, A. 2001. STL Tutorial and Reference Guide: C++ Program-
ming with the Standard Template Library, 2nd Ed. Addison Wesley, Boston, MA.

Press, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 2002. Numerical Recipes in
C++. Cambridge University Press, Cambridge, UK.

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

5:20 . W. Schreppers and A. Cuyt

ScureppERs, W. aND Cuvt, A. 2008. A C/C++ Precompiler for autogeneration of multiprecision
programs. ACM Trans. Math. Softw. 34, 1, Article 5.

ScurepPERs, W., Backerjauw, F., anp Cuvyt, A. A. M. 2005. Mpl: A multiprecision Matlab—like
environment. In International Conference on Computational Science, V. S. Sunderam, G. D. van
Albada, P. M. A. Sloot, and J. Dongarra, Eds. Lecture Notes in Computer Science, vol. 3514.
Springer, Berlin, Germany, 295-303.

Smrra, D. M. 1991. Algorithm 693: A FORTRAN package for floating-point multiple-precision
arithmetic. ACM Trans. Math. Softw. 17, 2, 273-283.

Werss, M. A. 1997. Data Structures and Algorithm Analysis in C++ (2nd Ed.). Addison-Wesley
Publishing Company, Boston, MA.

XML Schema 2001. XML Schema Part 1: Structures, W3C Recommendation. http://www.w3c.
org/TR/xmlschema-1/.

ZIMMERMANN, L. AND THE PoLkA ProJECT. 2004. MPFR, 2.1.0 ed. INRIA Lorraine and LORIA.

Received July 2005; revised May 2006, January 2007; accepted February 2007

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 5, Publication date: January 2008.

