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Risk neutral probability density functions (RNDs) play a central role in assessing models for
stock market behavior. However, it remains challenging to distill a realistic estimate for the
RND from empirical data. In this work we introduce a novel method to infer a RND estimate
from observed option prices. Our method efficiently yields a realistic rational function
approximation to the RND, it is flexible w.r.t. the shape of the underlying distribution
and robust in the presence of noise. To show this, we first investigate how well a method
can actually retrieve a known distribution from noisy option prices. Then we consider real
market data and show how our method can be used to derive a single continuously
differentiable RND estimate from empirical call and put option price data.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic models for option pricing implicitly assume an underlying risk neutral probability density function (RND). In
order to calibrate these models as well as to identify limitations of these models, a comparison to the experimentally realized
probability density function (PDF) is required. The most well-known example of such a comparison is the empirical
observation that the tails of the reported return PDFs are fatter than expected under the Black–Scholes model [1]. This
led to the development of improved models based on stochastic volatility, such as the Heston model [2], or jump-diffusion
models [3,4], or models based on Lévy processes [5,6].
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The main goal of the present paper is to introduce a new global and nonlinear approximation method to estimate the
implied RND from option prices. Our new method is designed to tackle the two main problems that arise in determining
option implied densities. These problems are (1) that there are only option prices for discrete sets of strikes, and (2) that these
prices contain errors (e.g. due to the bid-ask spread, there is an ‘error bar’ on the price of any given option). Such errors can
cause unrealistic density approximations. Our method attempts to overcome these drawbacks and yields a rational function
approximation from interval data. Therefore we refer to our novel Rational Interval Interpolation method as the RII method.

Before the RII method is applied to real market data, we first compare it to some commonly used methods using simulat-
ed data with added noise. Only a small part of the literature [7,8] uses simulated data to test the performance of methods to
derive the implied RND. Nevertheless, we believe that simulated data from a known underlying PDF guarantees a fair com-
parison of the methods in a controlled environment. After confirming that our method yields reliable results, we then look at
real data and estimate RNDs from S&P 500 index options. It is shown how our method is used in practice: how to deal with
no-arbitrage considerations and exploit the availability of put prices.

The paper is structured as follows. In Section 2 we detail on some selected methods to estimate a RND from option price
data. In Section 3 we present the details of our novel RII method to estimate a RND. In Section 4 we discuss how simulated
data are generated and we present our benchmark, we compare and discuss the performances of the aforementioned
approaches. Section 5 is devoted to the application of our RII method to real market data. And finally, a conclusion is drawn
in Section 6.

2. Selected methods

There exist a variety of approaches for extracting the RND in the literature that can be followed. For instance, in the
Maxent method [9] and subsequent developments [10–13], the asset distributions are obtained by maximizing an entropy
representing the information content. Maximizing the entropy corresponds to minimizing the amount of uncontrolled
assumptions in the derivation [14,15]. It can be shown [16] that using Shannon’s entropy (or, equivalently, minimizing
the Kullback–Leibler distance) leads to distributions within the exponential family. Hence, in these approaches, the choice
of distribution family is linked to the choice of entropy function, whereas in our approach we want to include the possibility
of non-exponential distributions. Without the intend to be exhaustive, we refer to [17–23,8,24] for other possible methods to
infer the implied RND.

Methods for extracting an estimate for the RND from option prices basically rely on the following. Suppose that at a
certain time t ¼ T the asset price ST has a conditional RND PðST ; TjS0Þ, where the condition stipulates the initial value S0

of the asset at time t ¼ 0. Since the payoff of a plain vanilla European call option with strike K and maturity T is
max ST � K;0½ �, the price C of this call option can be calculated as
CðS0;K; TÞ ¼ e�rT
Z 1

K
ðST � KÞPðST ; TjS0ÞdST ; ð1Þ
where e�rT is a discount factor with interest rate r. Differentiating this formula twice with respect to K we get
@2CðS0;K; TÞ
@K2

�����
K¼ST

¼ e�rT @

@K
�
Z 1

K
PðST ; TjS0ÞdST

� �����
K¼ST

¼ e�rT PðST ; TjS0Þ:
Note that the PDF is normalized, hence we get
Z 1

�1

@2CðS0;K; TÞ
@K2

�����
K¼ST

dK ¼ e�rT :
The implied RNDs is then straightforwardly given by [25]
PðST ; TjS0Þ ¼ erT@
2CðS0;K; TÞ

@K2

�����
K¼ST

: ð2Þ
As already mentioned there are some problems to bring this theoretical relation into practice, such as the fact that only a
discrete set of strikes is available. Also, the market mechanism of bidding and asking results in a ‘‘measurement error’’ or
uncertainty on the observed option prices, through the bid-ask spread.

2.1. Implied volatility surface (IVS) approach

A popular approach to cope with these problems is the one based on smoothing the volatility smile like in [26–28]. For
this method, option prices are first transformed to a certain volatility curve. In a Black–Scholes setting with risk neutral
interest rate r and volatility r, the European vanilla call option price is given by:
C ¼ S0NðdþÞ � Ke�rT Nðd�Þ; ð3Þ
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where Nð:Þ is the standard normal cumulative distribution function, and
d� ¼
1

r
ffiffiffi
T
p ln

S0

K
þ r � r2

2

� �
T

� �
: ð4Þ
Expressions (3) and (4) can be used to convert the option prices CðS0;K; TÞ into an implied volatility surface rðS0;K; TÞ. Next,
this implied volatility surface is smoothed with a cubic spline, and the smoothed surface is mapped back onto a smoothed
option price function. This smoothed option price function allows for taking a second derivative and determining the
(discounted) RND through expression (2).

2.2. Double lognormal (DLN) approach

Another commonly used approach is the DLN approach [29,7,30,31]. In this framework, one assumes that the RND of ST is
given by a double lognormal distribution:
PðSTÞ ¼
b

STr1

ffiffiffiffiffiffiffiffiffi
2pT
p exp � 1

2r2
1T

ln ST=S0ð Þ � m1 �
r2

1

2

� �
T

� �� 	
þ 1� b

STr2

ffiffiffiffiffiffiffiffiffi
2pT
p exp � 1

2r2
2T

ln ST=S0ð Þ � m2 �
r2

2

2

� �
T

� �� 	
:

In this expression, the fitting parameters m1;m2 are drifts, r1;r2 are volatilities and b determines the relative contribution of
the two lognormal densities. The price of a European vanilla call option is then given by
C ¼ be�rT em1T S0Nðdð1Þþ Þ � KNðdð2Þ� Þ
h i

þ 1� bð Þe�rT em1T S0Nðdð1Þþ Þ � KNðdð2Þ� Þ
h i

; ð5Þ
with
dðjÞ� ¼
1

rj

ffiffiffi
T
p ln

S0

K
þ mj �

r2
j

2

 !
T

 !
:

The parameters m1;m2;r1;r2; b and r in (5) are determined by minimizing the least squares distance to the observed market
prices. Since this method requires six nonlinear parameters to be determined, it can easily strand in a local minimum and
thus is prone to yield unreliable results.

3. Rational interval interpolation (RII) approach

For an in-depth discussion about the approximation properties of rational functions we refer to [[32], p.187 §§23–28],
[33] and the references therein. In the current context, the basic problem statement of RII starts from the following. Instead

of an observed option price point value eCi, it is assumed that an interval ½ci; ci� is given at each (distinct) strike Ki ði ¼ 0; . . . ; nÞ.
In practice the bounds ci < ci are in a natural way obtained from the market mechanism of bidding and asking, as illustrated
in Section 5.

We then look for an irreducible rational function r‘;mðKÞ ¼ p‘ðKÞ=qmðKÞ consisting of a numerator polynomial p‘ðKÞ of
degree at most ‘ and a denominator polynomial qmðKÞ of degree at most m, with ‘þm� n and such that the interval inter-
polation conditions
r‘;mðKiÞ 2 ½ci; ci� () ci 6 r‘;mðKiÞ 6 ci; i ¼ 0; . . . ;n ð6Þ
are satisfied. Provided that qmðKiÞ > 0, it is detailed in [34] that the coefficients of r‘;mðKÞ have to satisfy the linear
inequalities
�ciqmðKiÞ þ p‘ðKiÞ 6 0
ciqmðKiÞ � p‘ðKiÞ 6 0

�
; i ¼ 0; . . . ; n: ð7Þ
Note that the rational interval interpolant r‘;mðKÞ carries a double index to indicate the numerator and denominator degree.
Although it may be preferable to carry this double index over to the numerator and denominator polynomial, we prefer to
write r‘;mðKÞ ¼ p‘ðKÞ=qmðKÞ. This is more convenient in the sequel (see Appendix B) when we compute two rational interval
interpolants interpolating in different regions but sharing a common denominator. The context in which the rational interval
interpolants are used ensures that our notation does not become ambiguous.

Our goal is not merely to approximate option prices, but also to derive an approximation from it for the (discounted) RND
using the relation (2), i.e. by differentiating an approximation r‘;mðKÞ for the option price twice w.r.t. K. One of the advantages
of using a rational approximation r‘;mðKÞ is the fact that it is infinitely differentiable and its second derivative can easily be
written down explicitly. However, by definition, derivatives are quite sensitive to small oscillations of the underlying
function. Artificial oscillations typically appear in approximations constructed from data subject to (heavy) noise. This
may result in inaccurate and unrealistic density approximations. Fortunately, the theoretical prices of European vanilla call
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options are known to be convex decreasing functions of K. Hence, in order to guide the approximations towards more real-
istic shapes, we add the following (discrete) conditions for the first and the second derivative.

The theoretical price of a European vanilla call option is monotonically decreasing with respect to the strike K and the
value of its derivative is bounded between �e�rT and 0. It is known that [25]
@C
@K
ðKÞ ¼ �e�rT 1� CDFðKÞð Þ;
where CDFðKÞ is the cumulative distribution function corresponding to the underlying PDF. Therefore we add the conditions
at the locations Ki that
�e�rT
6 r0‘;mðKiÞ ¼

p0‘ðKiÞ � r‘;mðKiÞq0mðKiÞ
qmðKiÞ

� 0; i ¼ 0; . . . ;n: ð8Þ
Here r0‘;mðKÞ denotes the first derivative of r‘;mðKÞ w.r.t. K. Provided that both qmðKiÞ > 0 and (6) are satisfied, (8) is also sat-
isfied if
p0‘ðKiÞ � ci q0mðKiÞ 6 0
p0‘ðKiÞ � ci q0mðKiÞ 6 0

�e�rT qmðKiÞ � p0‘ðKiÞ þ ci q0mðKiÞ 6 0
�e�rT qmðKiÞ � p0‘ðKiÞ þ ci q0mðKiÞ 6 0

8>>><>>>: ; i ¼ 0; . . . ;n: ð9Þ
Second, because a CDF is monotonically increasing w.r.t. its random variable, the first (partial) derivative of the theore-
tical European vanilla call option price is also monotonically increasing with respect to K. Therefore we also add the discrete
conditions for i ¼ 0; . . . ;n
0 6 r00‘;mðKiÞ ¼
p00‘ ðKiÞ � r‘;mðKiÞq00mðKiÞ � 2r0‘;mðKiÞq0mðKiÞ

qmðKiÞ
: ð10Þ
Provided that (6), (8) and qmðKiÞ > 0 hold, (10) is satisfied if
�p00‘ ðKiÞ þ ci q00mðKiÞ � 2e�rT q0mðKiÞ 6 0
�p00‘ ðKiÞ þ ci q00mðKiÞ 6 0

�p00‘ ðKiÞ þ ci q00mðKiÞ � 2e�rT q0mðKiÞ 6 0
�p00‘ ðKiÞ þ ci q00mðKiÞ 6 0

8>>><>>>: ; i ¼ 0; . . . ;n: ð11Þ
Although the conditions (8) and (10) are merely imposed on a discrete set and therefore do not prevent violations in between
given strikes, they seem to work very well in practice [35]. Moreover, it can be shown that when discrete conditions are
imposed at sufficiently many locations, the condition is implied in between all locations [36]. Unfortunately, the theoretical
number of discrete conditions needed for this implication to hold is often too high to be of practical use. Guaranteeing a
rational approximation with a nonnegativity second derivative on the entire real line is currently out of scope here, but
the interested reader is referred to [37].

For fixed ‘ and m, the problem that remains, is to obtain nonzero values for the coefficients of r‘;mðKÞ such that the homo-
geneous linear inequalities (7), (9) and (11) are satisfied. We propose the computation of a Chebyshev direction [34], which
essentially requires solving a strictly convex quadratic programming (QP) problem. Further details are given in Appendix B.
To improve the numerical conditioning of the optimization problem, it is advised to rescale the given strikes Ki to the interval
½�1;1� and to use orthogonal polynomials (e.g. Chebyshev polynomials) as basis functions rather than the monomials.

Concerning the values of ‘ and m, we remark the following. The total model complexity is determined by the total number
of coefficients, i.e. ‘þmþ 2. A low model complexity is desired to avoid overfitting effects such as artificial oscillations
occurring due to modeling noise rather than (price) information. However, for a priori fixed ‘ and m, the QP problem may
not have a solution when the required accuracy and derivative conditions cannot be met with the current choice for ‘
and m. In search for a feasible solution, the values of ‘ and m can first be varied by keeping ‘þm constant. The sum
‘þm is increased slowly but steadily until a solution is found. To reduce the overwhelming choice for the degrees ‘ and
m, we can restrict ourselves in practice to the diagonal interpolants rm;mðKÞ and the para-diagonal rmþ1;mðKÞ and rm�1;mðKÞ.
These three types of rational interpolants model all types of asymptotic behavior. In Section 4 our focus is mainly on the
center of the distribution. To maintain comparable results among the different settings, we fix the possible values for ‘
and m to those where ‘ ¼ mþ 1. With this choice the rational function can exhibit an oblique as well as an almost horizontal
asymptote (with a very small leading numerator coefficient). Hence, in Section 4 we only consider ‘ ¼ mþ 1 and for increas-
ing values of m ¼ 0;1;2; . . . we solve a QP problem until a feasible solution is found. As an example, when using the afore-
mentioned solver it takes about half a second (0.5 s) on a standard desktop computer for MATLAB to enumerate over
increasing m ¼ 0;1;2; . . . and determine the existence and the coefficients of the rational function with ‘ ¼ 21 and m ¼ 20
shown in Fig. 5. We reconsider the choice for ‘ and m in the more realistic case of Section 5, when the tails of the distribution
can be modeled more accurately using both call and put prices.
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4. Benchmark

4.1. Simulated data and market models

A large part of the literature (for a typical example, see [17]) uses market data to test the performance of methods for
option implied densities. In [18], the robustness of the DLN and IVS methods is investigated by comparing the obtained
implied densities from real option prices to those obtained by adding a small error to these market prices. Rather than using
market data directly, with an essentially still uncertain RND, we use simulated data based on known RNDs first, and then add
noise. This allows us to accurately test and benchmark the different approaches to imply a probability density function from
noisy data.

Three different models of the market are considered in this paper. The first model to simulate market data is of course the
Black–Scholes model [1], characterized by the following stochastic differential equation for the asset price dS ¼ lSdtþ
rSdW ,where dW is a Gaussian process, and where we choose as a drift l ¼ 0:05, volatility r ¼ 0:2, a risk neutral interest rate
r ¼ 0:03 and the value S0 ¼ 925. The same parameter values for r;l and S0 are used for the next two models.

The second model, also not a surprise, is the Heston model [2], characterized by two coupled stochastic differential
equations
dS ¼ lSdt þ
ffiffiffiffi
v
p

SdW1

dv ¼ jðh� mÞdt þ rv
ffiffiffiffi
v
p

dW2

(
;

with dW1 and dW2 two Gaussian processes. The parameters for the Heston model are chosen so that the resulting distribu-
tion lies close to a lognormal distribution: the mean reversion rate is j ¼ 2, the mean reversion level is h ¼ 0:04 and the vola-
tility is rv ¼ 0:1. The correlation q ¼ dW1dW2h i is chosen to be q ¼ 0:5, and the variance at inception (at time t ¼ 0) is set to
v0 ¼ 0:0437. This model allows to check whether a small deviation from the lognormal model already influences the perfor-
mance of the methods.

The third model belongs to a class of models known as Lévy models [5], where the increments of the logreturn
XT ¼ lnðST=S0Þ are drawn from a Lévy distribution. We choose the CGMY model [38], where the characteristic function
/ðxÞ associated with the distribution of the increments dX can be written as /ðxÞ ¼ exp f ðxÞdt½ � with the characteristic
exponent [39]
f ðxÞ ¼ C Cð�YÞ M � ixð ÞY þ Gþ ixð ÞY � GY �MY
h i

;

where C;G;M;Y are the parameters giving this model its name, and Cð�Þ is the Euler gamma function. In the mean-correcting

martingale measure [5], a new characteristic exponent f̂ ðxÞ ¼ f ðxÞ þ ix r � f ð�iÞð Þ is used, such that the asset price dis-
counted by the bank account is a martingale
E
ST

erT

� �
¼ S0 e�rTE exT½ � ¼ S0 ef̂ ð�iÞT�rT ¼ S0:
We choose parameter values C ¼ 0:0244;G ¼ 0:0765, M ¼ 7:5515; Y ¼ 1:2945. The corresponding distribution differs
substantially from the lognormal distribution as illustrated in Fig. 1. Nevertheless the parameter values for this model are
realistic since they are obtained by calibrating a set of European call options on the S&P500 index [5].

We first analytically generate option prices [40–43] for various strikes Ki. In total 56 distinct strikes are chosen at equidis-
tant locations in the interval (including the endpoints) with mid-point equal to the forward value F ¼ S0erT and radius equal
to 4 times the standard deviation of the underlying PDF. At a single maturity time, such a number of strikes is typical. Illus-
trations of the associated denstities following this setup are shown in Fig. 1.

Then noise is added to the corresponding exact option prices Ci and we apply the option implied density methods
(DLN, IVS and RII) to see how well they perform in retrieving the original, known RND. This allows us to learn how different
aspects of the market (Lévy nature, stochastic volatility, etc.) influence the performances of the aforementioned three meth-
ods. Moreover, we calculate the results for different time to maturities to see how the duration affects their performances as
well.

The prices plus noise should be similar to market data. We construct the noise in such a way that it replicates the fact that
the noise of financial data is smallest around the forward value F and largest in the tails. Here F ¼ S0erT for all three above
mentioned models and the values T ¼ 0:0384; T ¼ 0:5 and T ¼ 1:5 (year) are chosen. Hence F ¼ 926:78; F ¼ 948:42 and
F ¼ 997:04 respectively. To determine where the tails start we use the standard deviation s. For each option price a relative
error is chosen from a uniform distribution on an interval ½�b; b� where b is determined by
bðKÞ ¼ g 0:00025
F � Kj j

s
þ 0:0001

� �
: ð12Þ
Fig. 2 illustrates the typical behavior of the relative errors for chosen values of the control parameter g equal to 1;10 and
100 respectively.



Fig. 1. Illustration of the different distributions (top panels) used to test the DLN, the IVS and the RII method. From left to right, time ranges from 0:0384 to
0:5 to 1:5 year. The full black curve represents the lognormal distribution, the gray line the Heston distribution and the black dashed line the CGMY
distribution. The bottom panels illustrate the lognormal nature of each of the distributions. The logarithm of the distributions is shown in function of the
logreturns lnðST=S0Þ. As envisioned, the Heston distribution closely resembles the parabola of the lognormal distribution; whereas the CGMY distribution
deviates substantially from it.

Fig. 2. This figure represents a sample set of the relative errors for different values of g (and time to maturity T in years). In the left panel g ¼ 1 (and
T ¼ 0:0384), in the middle one g ¼ 10 (and T ¼ 0:5), and in the right one g ¼ 100 (and T ¼ 1:5). The relative errors increase as the value of g grows
(independent of T).
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For the RII method, intervals ½ci; ci� ¼ ½Ci ð1� diÞ;Ci ð1þ �iÞ� are constructed for each of the strikes Ki (i ¼ 0; . . . ;55). Like
before, Ci denotes the analytically obtained option price value at strike Ki. The relative errors �i ¼ di > 0 are chosen according
to (12). Hence the widths of the intervals mimic the typical behavior of uncertainty in observed financial data: small for
strikes close to the forward value and increasingly larger for strikes away from the forward value. Notice that in practice,
bid and ask prices can be used directly to obtain ½ci; ci�.

4.2. Results and discussion

The performance of the different methods is summarized in Table C.1. In this table a method which renders a better
implied distribution has more þ signs, if the implied distribution is unacceptable a � is assigned to it. We discriminate
between good and bad fits in the following way. Given N strikes Ki, let di denote the associated values of the exact distribu-
tion and d0i the values of the approximated distribution, then we calculate a normalized average error ne as:
ne ¼ 1
N max dið Þ

X
i

di � d0i
�� ��: ð13Þ
Absolute errors are used instead of relative errors because we want to concentrate on the center of the distribution. To com-
pare the average errors of different PDFs, each average error is divided by the maximum value of the PDF. For example if



Table C.1
Summary of the performances of the different methods to derive the implied RNDs. The double lognormal method is abbreviated by DLN, the method based on
smoothing the volatility surface by IVS, and the method based on rational interval interpolation by RII. The results are presented for different times to maturity
T and values of the noise control parameter g. We assign a � sign when the average error ne as defined in (13) satisfies ne > 0:1. If 0:02 6 ne 6 0:1 then a þ sign
is assigned, when 0:004 6 ne < 0:02 a þþ sign and when ne < 0:004 a þþþ sign.

g T Black–Scholes Heston CGMY

DLN IVS RII DLN IVS RII DLN IVS RII

0:038 þþ þþ þþþ þþ þþ þþþ þ þþ þþþ
1 0:5 � þþ þþþ þ þ þþþ � þþ þþþ

1:5 � þþ þþþ þ þ þþþ � � þþþ

0:038 þþþ þ þþ þ þ þþ þ þ þþ
10 0:5 � þ þþþ þ � þþþ � þ þþ

1:5 þþþ þ þþþ þ � þþþ � � þþ

0:038 þþ � þþ þ � þþ þ � þþ
100 0:5 þ � þþ þ � þþ þ � þþ

1:5 � � þþ � � þþ � � þþ
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ne ¼ 1 then, on average, the absolute error in each point is as large as the maximum value of the distribution, and the cor-
responding implied distribution is obviously worthless. If the implied distribution is zero in every data point then ne lies
close to 0:5. When ne 6 0:1 then the implied distribution starts to look like the original distribution. The obtained values
ne are given in the appendix (Table C.4). Following the logic above and to facilitate the analysis below, we summarize these
values as follows.We assign a � sign when ne > 0:1. If 0:02 6 ne 6 0:1 then a þ sign is assigned, when 0:004 6 ne < 0:02 a
þþ sign and when ne < 0:004 a þþþ sign.

Analyzing Figs. 3, 4, 5 and Tables C.1,C.3 and C.4 leads to the following conclusions regarding the three tested methods.
First, it is apparent that only our newly introduced RII method delivers satisfactory RND approximations for each scenario.
Second, the DLN method is unstable due to the six-dimensional nonlinear optimization problem involved (Table C.4).
Although the RII method also yields a nonlinear function and in general has even more parameters, it does not suffer from
such effects because the involved optimization is strictly convex. This makes the approach extremely tractable. Third, the
DLN method, entirely as expected, is least flexible concerning the reproduction of RNDs differing substantially from the log-
normal one. The IVS method on the other hand, seems to be flexible as far as it concerns handling data coming from models
differing from the lognormal one. Nevertheless also for this method, the data can be from a model with a PDF which is too far
from the lognormal one to be tractable. Fourth, it is seen that the IVS method is particularly sensitive to random errors, while
the RII method is the most robust method in the presence of such errors.

Regarding the results of our RII method, we can say the following. First, for each market model and each time to maturity
T, the deviation between the RII implied density and the original PDF understandably becomes larger as the value of the error
control parameter g grows. Second, when keeping g and T fixed, the performance of the RII method typically decays with
increasing skewness and kurtosis (Table C.3) of the underlying PDF. However, the final results are always satisfactory. Third,
for each market model and each g, the values of the error criteria parameter ne are fairly similar for different time to matu-
rities (Table C.4). Hence the maturity time T of the option hardly influences the performance of the method. Fourth, for each
RII implied density, it is seen that the left tail approximation can be worse than the right tail approximation. It is worth not-
ing that a similar phenomenon can be observed in the PDFs obtained in [24]. Here, this is mainly due to the fact that relative
errors on large option prices (for small strikes) result in much larger absolute deviations than on small option prices (for
large strikes). However, for small relative deviations (i.e. g ¼ 1) the RII method is seen to deliver acceptable approximations.

The benchmark leads us to conclude that the commonly used DLN and IVS methods may lack reliability in a market that
behaves more Heston-like or that has CGMY characteristics, and that the RII method is the most promising of the three con-
sidered techniques for implying RNDs from real option price data.

5. Application to market data

Now that it is demonstrated from simulated data that our RII implied density method produces reliable results, we are
ready to apply the technique to real market data. We extract the implied RNDs from the daily closing bid and ask prices
for Standard and Poor’s 500 (S&P 500) Index options.

Unlike with simulated data, we now have no exact original density to benchmark, neither do we have the risk neutral
interest rate r to discount the expected value to current time. By contrast, we have bid and ask prices from the market, which
are quoted for all traded strikes no matter whether transactions occur or not. We use bid and ask prices directly to define the
interval data for our RII method and to measure the goodness of the estimated implied RND. If ½ci; ci� is the bid and ask inter-
val at strike price Ki and ImpliedPriceðKiÞ is the implied European vanilla option price derived from the (estimated) implied
RND for that strike, then we define the relative position (RP) of this implied option price as:
RPðKiÞ ¼
ImpliedPriceðKiÞ � ci

ci � ci
: ð14Þ



Fig. 3. This figure illustrates the RII implied RNDs for the Black–Scholes data. From top to bottom, time T to maturity takes the value 0:0384;0:5 and 1:5. In
each panel, the full gray line is the exact PDF, while the squares, the circles and the triangles are the RII implied density approximations from the scenarios
with control parameter g ¼ 1;10 and 100 respectively.
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If RPðKiÞ equals 0:5, then the implied price is exactly in the middle between bid and ask at strike price Ki. We call the implied
density good if RPðKiÞ lies in between 0 (at the bid price) and 1 (at the ask price). The further the distance between the value
RPðKiÞ and the interval ½0;1�, the worse the achieved implied RND.

Another difference between real data and the previously considered simulated data is the availability of put option prices.
Analogous to the price of a European vanilla call option, the price of a European vanilla put option is given by the basic pric-
ing formula
PðS0;K; TÞ ¼ e�rT
Z K

0
ðK � STÞPðST ; TjS0ÞdST : ð15Þ
Our RII method can be applied directly to derive an implied density from the put option prices after taking some straight-
forward modifications into account (which we omit due to space restrictions).

The goal of this section is to find a single implied RND and verify whether it reproduces feasible implied call and put
option prices, i.e. the ImpliedPrice from the basic pricing formulas (1) and (15). A good implied RND reproduces implied
option prices that are within the given bids and asks. We start with a detailed description of one example to explain the prac-
tical application of our RII method. Other examples, following the same reasoning, are given at the end of this section.

For data, we take the S&P 500 index call option prices as well as the put option prices of January 5th, 2005 with maturity
time on March 18th, 2005 (72 days) [[44], Table C.1]. The S&P 500 index closing level is 1183.74, the interest rate is



Fig. 4. This figure illustrates the RII implied RNDs for the Heston data. From top to bottom, time T to maturity takes the value 0:0384;0:5 and 1:5. In each
panel, the full gray line is the exact PDF, while the squares, the circles and the triangles are the RII implied density approximations from the scenarios with
control parameter g ¼ 1;10 and 100 respectively.
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r ¼ 2:69%, and the dividend yield is d ¼ 1:7%. To determine the value of the discount factor e�rT , we rely on the put-call
parity
CðS0;K; TÞ � PðS0;K; TÞ ¼ e�rTðF � KÞ; ð16Þ
where the forward price F is the expected price of ST . The forward price F together with the discount factor e�rT are obtained

from a linear approximation of values eCi � ePi as a function of common strike prices Ki. Here we obtain them from a best lin-
ear ‘1-norm approximation [45] using the midpoints of the given intervals as data values. Such an ‘1-approximation is least
sensitive to outliers (for more details we refer to [[46], Section 6.1]. The results of this approximation are shown in Fig. 6
(right). We find F ¼ 1182:9 and e�rT ¼ 0:9948. Since T ¼ 72=365, we have the option traders’ expected risk neutral return
r ¼ 2:64%, which is a realistic value. Though the value F is slightly smaller than the index closing level 1183:74, it is still
realistic due to the large uncertainty of that single last trade price.

Given the value of the discount factor above, we apply the RII method to both the call price interval data and the put price
interval data. We obtain two rational approximations rcall

5;4 ðKÞ and rput
5;4 ðKÞ shown in Fig. 6 (left). Note that, in general, the

obtained numerator and denominator degrees need not be the same for puts and calls. The two resulting implied densities
are shown in Fig. 7 (left). We find that these two implied RNDs differ too much to be reliable. Our goal is to obtain a single
implied RND, suitable for both call price data and put price data.



Fig. 5. This figure illustrates the RII implied RNDs for the CGMY data. From top to bottom, time T to maturity takes the value 0:0384;0:5 and 1:5. In each
panel, the full gray line is the exact PDF, while the squares, the circles and the triangles are the RII implied density approximations from the scenarios with
control parameter g ¼ 1;10 and 100 respectively.

O. Salazar Celis et al. / Applied Mathematics and Computation 258 (2015) 372–387 381
For this purpose, first, we note that we can bring both curves rcall and rput in better agreement by forcing the denominator
polynomials to be the same, and the degrees of the numerator polynomials to be equal. The details of this procedure are out-
lined in Appendix B. Basically, the coefficients of both rational approximations are obtained from a single QP problem, which
combines the QP problem of the RII method for call with the QP problem of the RII method for put into one. This is a simul-
taneous call-put RII method.

The idea behind the next step is that we use the call curve in the region where call prices are most reliable, and the put
curve in the region where put prices are most reliable, and then glue the two curves together at an intermediate value: the
forward price F, at which point the European vanilla call option price coincides with the European vanilla put option price.
Put options are out-of-the-money when K < F, whereas for call options this is K > F. Then, we propose to use the implied
density curve derived from rputðKÞ for K < F and from rcallðKÞ for K > F. This choice is supported by practice: the CBOE also
calculates the VIX index by combining only out-of-the-money call and put contracts [47]. Moreover, we already obtain F
from the determination of the discount factor. The results of this piecewise procedure with the basic RII method are shown
in Fig. 7 (top, left).

Subsequently, we ensure continuous differentiability at F, as explained in Appendix C, and obtain rcall
7;8 ðKÞ and rput

7;8 ðKÞ. The
resulting (normalized) implied RND is shown in Fig. 7 (top, right). The relative positions (14) are shown in Fig. 7 (bottom).
Almost all the implied prices are within their bid and ask intervals, from which we conclude with confidence that this RND
reliably represents the single implied RND we are looking for.



Fig. 6. Left, the bid and ask call (black) and put (gray) price intervals from the S&P 500 index options of January 5th, 2005 with maturity date on March 18th,
2005. No-arbitrage lower bounds are shown with dots. Right, obtaining the forward value F and the discount factor e�rT from the best linear ‘1-norm
approximation of C � P, with circles the data and line the linear approximation. The vertical dashed line indicates the location of the forward price F.

Fig. 7. In the top panels, the thin gray line represent the implied RND derived from put option prices, the thin black line represent the one from call option
prices, and the thick gray lines are the piecewise RNDs from the basic RII method for the left panel, and from the final improved RII method for the right
panel. The bottom panel illustrates the relative positions of implied option prices, see expression (14). The vertical dashed line indicates the location of the
forward price F.
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A final important aspect is to guard against (static) arbitrage. In line with the reasoning of [20,27,48], we already imposed
the shape constraints on the price approximations such as monotonicity, bound constraints on the first derivative and con-
vexity/concavity (see Appendix (B.1)). However, no-arbitrage considerations also require the following conditions to be
satisfied
max 0; erT K � e�dT S0

 �

6 CðS0;K; TÞ 6 e�dT S0

max 0; e�dT S0 � erT K

 �

6 PðS0;K; TÞ 6 e�dT K

(
: ð17Þ
We may discard the right-hand sides of (17), because they are generally less stringent than the upper bounds given by the
bid-asks. However, the left-hand sides of (17), illustrated in Fig. 6 by dotted lines, may tighten the bid-ask bounds for the put
and call prices. In this example, the spot price S0 ¼ 1180:8 has been determined from the previously established forward value
F ¼ S0eðr�dÞT . Note that the forward value now includes the dividend yield. Since the rational approximations shown in Fig. 6



Fig. 8. The top panel illustrates the single continuously differentiable implied RNDs derived from S&P 500 index option prices of September 3rd, 2010 with
different maturity times by using our final improved RII method. The bottom panel represents their corresponding relative positions, defined in expression
(14), for both European vanilla put option prices and call option prices with different maturity dates.
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already satisfy the (discretized) lower bound conditions (17), the previously presented results remain valid including no-ar-
bitrage considerations. But we emphasize that the lower bounds of the bid-ask intervals should be intersected with the left-
hand sides of (17). Also, recall from Appendix B that rational functions are determined with numerator degrees smaller than
their denominator degrees, hence their values go asymptotically to zero in the respective regions where they are defined.

To illustrate the robustness of our RII method, we consider some additional S&P 500 index options. We arbitrarily choose
the date of September 3rd, 2010, then extract the single continuously differentiable implied RNDs from the closing bid and
ask prices with maturity times ranging from 2 weeks to around 3 months, that is, with the maturity dates on September
18th, 2010 (15 days), October 16th, 2010 (43 days), November 20th, 2010 (78 days) and December 18th, 2010 (106 days).
The obtained implied RNDs as well as their corresponding relative positions for both implied European vanilla put option
prices and call option prices are shown in Fig. 8. The worst result is in the scenario with 15 days to maturity. The PDF of such
short maturity contracts are often badly behaved because of the price effects from trading strategies related to contract expi-
ration and rollover of hedge positions into later expirations [44]. Even for this worst case, the relative positions are mostly
within their bid and ask intervals, i.e. between ½0;1� in Fig. 8 (bottom). For other cases, the results are much better.

6. Conclusions

We find that for any setting, the RII method presented here is more robust to increasing noise levels on the option prices
than both the DLN and IVS method. Moreover, in contrast to the DLN and IVS method, the RII method retains the ability to
retrieve an acceptable RND in the more realistic test cases of the Heston and CGMY model. The RII method is also better suit-
ed for working with longer maturity options, a property that may be related to its ability to recover distributions with fat
tails. The only region where significant discrepancies between the option implied RND and the test RND can be found is
for option prices well in-the-money: this tail of the distribution can be overestimated when the absolute noise on the option
price becomes large.

When applying the method to real market data, we rely on both European vanilla call and put options, combining the
complementary out-of-the-money regions. We use the relative position of the result within the bid and ask interval as an
indicator for the quality of the result.



Table C.2
Summary of the parameters and their chosen values for the three market
models used in the benchmark.

Black–Scholes Heston CGMY

S0 ¼ 925; r ¼ 0:03 S0 ¼ 925; r ¼ 0:03 S0 ¼ 925; r ¼ 0:03

l ¼ 0:05;r ¼ 0:2 l ¼ 0:05;rv ¼ 0:1 C ¼ 0:0244;G ¼ 0:0765
j ¼ 2; h ¼ 0:04 M ¼ 7:5515;Y ¼ 1:2945
q ¼ 0:5;v0 ¼ 0:0437

Table C.3
Summary of skewness and kurtosis values for each of the distributions and different times to maturity T.

T Black–Scholes Heston CGMY

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

0:0384 0:0998 1:3833 0:0544 1:3834 1:6037 4:1906
0:5 0:1361 1:3970 0:1524 1:4151 0:8156 2:1193
1:5 0:2139 1:4365 0:2732 1:4839 0:4892 1:6625

Table C.4
Summary of the normalized errors of the different methods to derive the implied RNDs. The results are presented for different times to maturity T and values of
the noise control parameter g.

g T Black–Scholes Heston CGMY

DLN IVS RII DLN IVS RII DLN IVS RII

0:038 0:0052 0:0060 0:0009 0:0056 0:0095 0:0009 0:054 0:0066 0:0026
1 0:5 0:455 0:010 0:0011 0:069 0:038 0:0013 0:13 0:0139 0:0029

1:5 0:429 0:012 0:0006 0:064 0:047 0:0008 0:15 3:4153 0:0017

0:038 0:003 0:069 0:0061 0:029 0:069 0:0055 0:056 0:0338 0:0080
10 0:5 0:455 0:099 0:0021 0:070 0:31 0:0028 0:13 0:0907 0:0078

1:5 0:0009 0:096 0:0022 0:067 0:496 0:0025 0:104 3:4584 0:0057

0:038 0:006 6:5 0:0072 0:030 5:3 0:0068 0:055 1:0549 0:0099
100 0:5 0:030 1:40 0:0147 0:060 2:7 0:0137 0:075 3:1959 0:0156

1:5 0:432 0:92 0:0140 0:288 7:1 0:0119 0:36 0:6260 0:0145
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The method and techniques outlined here allow to determine implied RNDs that are model-independent and do not suf-
fer from time-dependent effects in historical data. As future work, this opens the way to study the role of the scale-free char-
acteristics of these densities near critical points. In [49], it is shown that the (short-time) non-Gaussian nature of the
detrended log returns of the S&P 500 shows a scale-invariant behavior when the black Monday crash is included in the time
series used to reconstruct the distribution of log returns. They interpret this as the onset of critical phenomena usually linked
to phase transitions in physical systems. In order to avoid using large time windows for time series [49], it can be useful to
study this criticality by reconstructing the market expectation for the distribution of log returns from option price data
rather than from time series. The formalism proposed in this paper suits this purpose while not making an a priori choice
for the form of the overall distribution.

Appendix A. Benchmark details

Table C.2 summarizes the parameters of each of the three market models used in the benchmark. Table C.3 summarizes
the skewness and kurtosis values of the associated distributions. Table C.4 summarizes the normalized errors of the different
methods to derive the implied RNDs.

Appendix B. The simultaneous call-put RII method

Of the same underlying, we assume to be given n1 þ 1 call intervals ½ci; ci� at strike locations Kcall
i ði ¼ 0; . . . ;n1Þ and n2 þ 1

put intervals ½pi; pi� at strike locations Kput
i ði ¼ 0; . . . ;n2Þ. Denote the common call-put denominator polynomial of degree m by
qmðKÞ ¼
Xm

i¼0

biK
i:
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We are looking for two rational functions
rcall
‘1 ;m
ðKÞ ¼

pcall
‘1
ðKÞ

qmðKÞ
and rput

‘2 ;m
ðKÞ ¼

pput
‘2
ðKÞ

qmðKÞ
;

with respective numerator polynomials
pcall
‘1
ðKÞ ¼

X‘1
i¼0

að1Þi Ki; pput
‘2
ðKÞ ¼

X‘2

i¼0

að2Þi Ki;
for which the following conditions are satisfied:
ci 6 rcall
‘1 ;m
ðKcall

i Þ 6 ci; i ¼ 0; . . . ; n1;

pi 6 rput
‘2 ;m
ðKput

i Þ 6 pi; i ¼ 0; . . . ; n2;

�e�rT
6 r0call

‘1 ;m
ðKcall

i Þ 6 0; i ¼ 0; . . . ; n1;

0 6 r0put
‘2 ;m
ðKput

i Þ 6 e�rT ; i ¼ 0; . . . ; n2;

0 6 r00call
‘1 ;m
ðKcall

i Þ; i ¼ 0; . . . ; n1;

0 6 r00put
‘2 ;m
ðKput

i Þ; i ¼ 0; . . . ; n2:

8>>>>>>>>>>><>>>>>>>>>>>:
ðB:1Þ
Denote the vector of combined coefficients by
c ¼ ðað1Þ0 ; . . . ;að1Þ‘1
;að2Þ0 ; . . . ;að2Þ‘2

;b0; . . . ; bmÞ
T
2 R‘1þ‘2þmþ3
and denote by A the ð10n1 þ 10n2 þ 20Þ � ð‘1 þ ‘2 þmþ 3Þ constraint matrix composed of the linear inequalities ensuring
(B.1). Note that this matrix has many zero entries. A nontrivial vector c – 0 which strictly satisfies the component wise
inequalities Ac 6 0, can then be obtained in a similar way as before. Hence by solving the strictly convex quadratic program-
ming (QP) problem:
arg min
c2R‘1þ‘2þmþ3

kck2ð Þ2

subject to Ajc 6 �ekAjk2; j ¼ 1; . . . ;10n1 þ 10n2 þ 20:
Here e > 0 is an arbitrary positive constant, Aj denotes the j-th row of the matrix A and k � k2 is the Euclidean norm.
When rcall

‘1 ;m
ðKÞ and rput

‘2 ;m
ðKÞ are only evaluated when they are out-of-the-money, as detailed in Appendix C, a natural choice

for ‘1 and ‘2 is ‘1 ¼ ‘2 < mþ 1: like their associated option prices, such rational functions go asymptotically to zero.

Appendix C. Ensuring continuously differentiability

At the location of the forward value F, we add to the simultaneous call-put RII method that the piecewise implied density
derived from rcall

‘1 ;m
ðKÞ ¼ pcall

‘1
ðKÞ=qmðKÞ and rput

‘2 ;m
ðKÞ ¼ pput

‘2
ðKÞ=qmðKÞ is continuously differentiable at K ¼ F. So we require
r00call
‘1 ;m
ðFÞ ¼ r00put

‘2 ;m
ðFÞ;

r000call
‘1 ;m
ðFÞ ¼ r000put

‘2 ;m
ðFÞ:

(
ðC:1Þ
Without any further consideration, these conditions are essentially nonlinear equations in the unknown coefficients. How-
ever, we show how (C.1) can be guaranteed by the following linear conditions. Basically, the rational approximations rcall

‘1 ;m
ðKÞ

and rput
‘2 ;m
ðKÞ need to share some additional theoretical relations that exist between CðS0;K; TÞ and PðS0;K; TÞ at K ¼ F.

First, it is known that at-the-money (hence when K ¼ F) is the only status where the price of a call option and a put option
are the same. Therefore we impose that
rcall
‘1 ;m
ðFÞ ¼ rput

‘2 ;m
ðFÞ: ðC:2Þ
Provided that qmðFÞ – 0, one readily obtains that (C.2) implies
pcall
‘1
ðFÞ � pput

‘2
ðFÞ ¼ 0: ðC:3Þ
Without loss of generality, we put qmðFÞ > 0. At this point it is worth emphasizing that, when ci < ci and if the linear inequal-

ities (7) are strictly satisfied, then it follows that qmðKcall
i Þ > 0. A similar reasoning holds of course for qmðK

put
i Þ. As a conse-

quence, the denominator qmðKÞ obtained from solving the proposed QP problem(s) always satisfies qmðK
call
i Þ > 0 and

qmðK
put
i Þ > 0 by construction. Because the forward value F may not belong to either the given Kcall

i or the given Kput
i , a nonzero

condition such as qmðFÞ > 0 needs to be added for (C.3) to imply (C.2).
Second, from the put–call parity (16) follows
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@PðS0;K; TÞ
@K

¼ e�rT þ @CðS0;K; TÞ
@K

:

Therefore we also impose that
r0put
‘1 ;m
ðFÞ ¼ e�rT þ r0call

‘2 ;m
ðFÞ: ðC:4Þ
Given that qmðFÞ > 0 and rcall
‘1 ;m
ðFÞ ¼ rput

‘2 ;m
ðFÞ, (C.4) is satisfied if and only if
p0 put
‘2
ðFÞ � p0 call

‘1
ðFÞ � e�rT qmðFÞ ¼ 0: ðC:5Þ
Combining all the above, it is not difficult to find that (C.1) is satisfied if the linear inequality qmðFÞ > 0, the linear equalities
(C.3), (C.5) and
p00 put
‘2
ðFÞ � p00 call

‘1
ðFÞ � 2e�rT q0mðFÞ ¼ 0; ðC:6Þ

p000 put
‘2
ðFÞ � p000 call

‘1
ðFÞ � 3e�rT q00mðFÞ ¼ 0; ðC:7Þ
are satisfied. The converse is also true after (re) normalizing such that qmðFÞ > 0. Following a similar reasoning, even higher
orders of smoothness can be imposed if desired.
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