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Abstract. A typical problem with rational interpolation is that of a so-called unattainable point, when the interpolation 
condition cannot be met by the rational interpolant of the specified degree. The problem can be dealt with in at least two 
approaches, one of which is novel and practically oriented. We admit infinity in the independent variable as well as in the 
function value. Rational interpolation is solved symbolically in its full generality by Van Barel and Bultheel [9]. The authors 
return a parameterized set of rational interpolants of higher degree than requested but without unattainable points. In many 
practical applications however, observations are not exact but prone to imprecise measurements. A natural way for dealing 
with uncertainty in the data is by means of an uncertainty interval. It is shown in [1] how a rational function of lowest 
complexity can be obtained which intersects all uncertainty intervals and avoids the typical problem of unattainable data. 
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RATIONAL INTERPOLATION 

Given finite real data {(xo, /o), • • •, (x„, /„)}, the classical problem of univariate rational interpolation [2, 3, 4] consists 
in finding an irreducible rational function p{x)/q{x) that satisfies the interpolation conditions 

^ = f , / = 0,...,« (1) 

and is such that the numerator and denominator polynomials satisfy the degree conditions dp < i, dq < m with 
i + m = n. Non-trivial polynomials p{x) and q{x) of degree at most dp < i and dq <m that satisfy the linearized 
interpolation conditions 

p{xi)-q{xi)f = 0, i = 0,...,n (2) 

always exist. Indeed, when expanding p{x) and q{x) in terms of basis functions, for instance the monomials, 

i m 

p{x) = Y, ock^, q{x) = Y, Pk^ (3) 
k=0 k=0 

then (2) reduces to a homogeneous system of linear equations in the unknown coefficients of p{x) and q{x). Since 
this system has one more unknown than its total number of linear equations, the linearized interpolation problem (2) 
always has a non-trivial solution. Moreover, for any two non-trivial solutions pi (x), qi (x) and p2 (x), q2 (x) of (2) the 
polynomial {piq2 - P2G1) (x) of degree at most i + m = n vanishes at« + 1 distinct points: 

(piqi -P2qi){xi) = [{fq2 -p2)qi - (fqi -pi)q2] (xi) = 0, / = 0,. . . ,«. 

Therefore it must vanish identically and we have pi{x)q2{x) = p2{x)qi{x). Hence all solutions of (2) are equivalent 
and, up to a normalization, have the same irreducible form rt^„{x) = po{x)/qo{x), which is called the rational 
interpolant. 

It is well-known that the interpolating polynomial of degree at most n, interpolating « + 1 points always exists and 
is unique. The condition i + m = n is imposed in order to obtain this exact same analogy. It is true that the linearized 
rational interpolation problem (2) maintains the analogy to some extent, because it always has a solution and delivers 
the unique representation rg^mix). However, in contrast with polynomial interpolation, the rational interpolation 
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problem (1) is not always soluble and may give rise to unattainable points [5]. An interpolation point is called 
unattainable for a non-trivial solution p{x),q{x) of (2) if and only if q{xi) = 0 = p{xi) and, after cancellation of 
(x - Xi) in p{x)/q{x), in addition p{xi)/q{xi) ^ f{xi). A solution to the rational interpolation problem (1) exists if and 
only if the polynomials po{x) and qo{x) themselves satisfy the linearized interpolation problem (2) [6]. 

As an example, consider the data given in Table 1, for which we compute the rational interpolant r3_3(x). 

TABLE 1. 
x: II -1.5708 I -0.9425 | -0.3142 0.0000 0.3142 0.9425 1.5708 

fi 0.0000 0.5878 0.9511 I 1.0100 I 0.9511 I 0.5878 | 0.0000 

Polynomials p{x) and q{x) that satisfy the linearized problem (2) are for instance given by 

p{x) = -x{x+ 1.5708)(x- 1.5708) 

^(x)= 2.466 lx +0.2482x1 

Clearly/7(0) =0 = q{0) andaftercancellationof thefactorxin/7(x)/ig(x), wehaver3_3(x) = (2.4674-x^)/(2.4661-
0.2482x^) and r3_3(0) = 1.0005 ̂  1.01. The rational interpolant r3_3(x) for these data is shown in Figure 1. 

FIGURE 1. The rational interpolant rss (x) for the tabulated data (dots) which does not interpolate in 0 (star). 

Hence no interpolating rational function of degree 3 in numerator and denominator exists for these data. Note that 
(xj, fi) = (0, fi) easily becomes attainable when f is perturbed such that (0, f) hes on the curve of r3_3 (x)! 

SYMBOLIC RATIONAL INTERPOLATION 

Several numeric algorithms for rational interpolation exist that are able to detect and report unattainable points. 
We mention in particular the continued fraction algorithm by Werner [7] or approaches based on the barycentric 
formula [8]. When working in a symbohc environment, a very elegant solution to unattainabihty is due to Van Barel 
and Bultheel [9]. The authors solve this problem by returning a parameterized set of rational functions of higher 
degree without unattainable points. In order to increase the degree as httle as possible, the degree of a polynomial 
couple {p{x),q{x)) is defined by max{dp,dqy. The goal is to find a polynomial couple {p{x),q{x)) that satisfies 
the linearized problem (2) and for which max{dp, dq} is minimal. It is shown in [9] that all polynomials couples of 
minimal degree that satisfy the linearized problem (2) are parameterized by a basic pair (v(x), w(x)), consisting of two 
polynomial couples 

v(x) = {nv{x),dv{x)), 

w(x) = {nw{x),dw{x)). 

For an algorithm to compute a possible choice for (v(x), w(x)) we refer to [9]. If the rational function corresponding 
to v(x) does not interpolate in all points (hence there are unattainable points), then it is also shown in [9] that the set 

A slightly more general concept of degree is used in [9] by defining a shift parameter. 
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given by polynomial linear combination of v(x) and w(x) parameterizes all interpolating rational functions of minimal 
degree in the following way 

p{x) _ a{x)nv{x) + b{x)nw{x) 
q (x) a (x) dv (x) +b{x)dw{x)' 

As explained in [9], the degrees of the polynomials a{x) and b{x) depend on the given problem. 
We illustrate this by an example. Consider again the data given in Table 1. A basic pair (v(x),w(x)) is given by 

v(x) = («v(-^),^vW) where 

«v(x) = -x(x+1.5708)(x-1.5708) 

4(x) = 2.466 lx + 0.2482x^ 

andw(x) = («>v(x),rf>v(x)) with 

«w(x) = - 2 . 3 2 0 9 + 5.017X-1.5268x2-2.0333x^+x'^ 

rf„(x) = -2.2979+ 5.0143X-2.9446x2+ 0.5047x1 

Clearly v(x) does not solve (1). If we take for instance v(x) - w(x) then the following rational function results 

^ 2.3209-2.55X+1.5268x2 +1.0333x3-x'^ 
'"'̂ '3'̂ '̂' ^ 2.2979 - 2.5482X+ 2.9446x2 - 0.2565x3 

which now, as shown in Figure 2, does interpolate all data. 

-2 -1 5 -1 -0 5 05 1 15 2 

FIGURE 2. A rational function r*^ 3 (x) which interpolates all tabulated data (dots). 

INTERVAL RATIONAL INTERPOLATION 

In practice, data are by nature uncertain and hence intervals. We assume that the uncertainty in the independent variable 
is neghgible and that for each observation an uncertainty interval can be given which contains the (unknown) exact 
value. Hence, given vertical segments Sn = {{XO,FQ), ... ,{xn,Fn)} where Fi = [fi, fi] and ft <fi, the goal is to determine 
r̂_m (x) such that 

re.,m{xi) e Fi, i = 0,...,n 

and£ + m^nh minimal. Clearly 

When q{xi) > 0, then (4) implies 

&Fi <^ fi< —-— <fi, i = 0,...,n. 
qixi) qixi) 

-p{xi)+fiq{xi) > 0 
p{xi) - fiq{xi) > 0 = 0,. . . ,«. 

(4) 

(5) 
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For p{x) and q{x) expanded in terms of basis functions, such as the monomials in (3), denote the vector of unknown 
coefficients by A = (ao,. . . , a«, /3o, • • •, /3m) and let 

/ -

U 
Xn 

fyxl 

JnX„ 

-fiix'o 

VxO 

JnX„ 

~JnXn I 

e.+m+2 I jj^ > Q|̂  which is a convex polyhedral cone 

{S„), i.e. UX > 0, then the rational function rg^mix) 
Then the solution space of (5) is given by ^t^m{Sn) = {A G 
with apex in the origin. If A G R*+™+2 is an interior point of Jzfg 
with coefficients equal to tX,t >0, solves (4). Hence no interpolation points are unattainable when restricting to the 
interior of ^t^m{S„). It is shown in [1] that finding an interior point X of ^t^m{S„) such that the rational function 
rt,m{x) with coefficients equal to X intersects the vertical segments S„ approximately at maximal distance from fi and 
fi {i = 0,...,n), is equivalent to solving a quadratic programming problem with a strictly convex objective function in 
n(+m+2 

If we construct vertical segments from the data in Table 1 by adding random noise from the interval ]0,0.0623] to 
the function values, then the following rational function is obtained 

'"2,2 (x) 
p{x) _ 1.6979-0.0169X-0.6961x2 
q(x)^ 1.6837-0.0440X +0.1565x2 

which is a rational function of lowest complexity intersecting all vertical segments. The vertical segments and r2^2ix) 
are illustrated in Figure 3. 

-1.5 -1 -0.5 0.5 1 1.5 

FIGURE 3. A rational function r2_2 (x) which intersects all vertical segments. 
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