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Abstract In many applications, observations are prone to imprecise measure-
ments. When constructing a model based on such data, an approximation
rather than an interpolation approach is needed. Very often a least squares
approximation is used. Here we follow a different approach. A natural way for
dealing with uncertainty in the data is by means of an uncertainty interval. We
assume that the uncertainty in the independent variables is negligible and that
for each observation an uncertainty interval can be given which contains the
(unknown) exact value. To approximate such data we look for functions which
intersect all uncertainty intervals. In the past this problem has been studied for
polynomials, or more generally for functions which are linear in the unknown
coefficients. Here we study the problem for a particular class of functions which
are nonlinear in the unknown coefficients, namely rational functions. We show
how to reduce the problem to a quadratic programming problem with a strictly
convex objective function, yielding a unique rational function which intersects
all uncertainty intervals and satisfies some additional properties. Compared to
rational least squares approximation which reduces to a nonlinear optimization
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problem where the objective function may have many local minima, this makes
the new approach attractive.

Keywords Rational approximation · Rational interpolation · Noise interval ·
Modeling · Polyhedral cone · Optimization · Quadratic programming

1 Problem statement

To approximate noisy or imprecise data, very often a least squares approach
is used. The idea here is to deal with uncertainty in another, very natural
way: by means of an uncertainty interval. We assume that the uncertainty
in the independent variables is negligible and that for each observation, an
uncertainty interval can be given which contains the (unknown) exact value.
We study the problem of approximating these data with a rational function
which intersects the given uncertainty intervals.

Both the problem statement and the algorithm that we develop to solve it
can be written down for any number of independent variables. For ease of
notation, we consider the bivariate instead of the general high dimensional
case. Consider the set of n + 1 vertical segments

Sn = {(x0, y0, F0), (x1, y1, F1), . . . , (xn, yn, Fn)}, (1)

where Fi = [ f
i
, f i] are real finite intervals with f

i
< f i (i = 0, . . . , n) and none

of the points (xi, yi) ∈ R
2 coincide. Let N� and Dm be two finite subsets of N

2

of the form

N� = {(i0, j0), . . . , (i�, j�)}, (2)

Dm = {(d0, e0), . . . , (dm, em)}, (3)

with which we associate the bivariate polynomials

p(x, y) =
�∑

k=0

akxik y jk,

q(x, y) =
m∑

k=0

bkxdk yek . (4)

Further, denote the irreducible form of p(x, y)/q(x, y) by r�,m(x, y) and let

R�,m(Sn) = { r�,m(x, y) | r�,m(xi, yi) ∈ Fi, q(xi, yi) > 0, i = 0, . . . , n }. (5)

As we see in the next section, changing the conditions on the sign of q(xi, yi)

does not change the nature of the problem. Therefore there is no loss of
generality in describing the problem with the conditions q(xi, yi) > 0.

For given segments Sn and given sets N� and Dm, we are concerned with the
problem of determining whether

R�,m(Sn) �= ∅. (6)
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We call this the existence problem. In addition to the existence problem, finding
a representation for R�,m(Sn) is referred to as the representation problem.
Whereas in classical rational interpolation � and m are chosen so that � + m +
1 = n + 1, here we pursue � + m � n.

A problem similar to (5) and (6) has already been studied in [7]. Instead
of considering rational models r�,m(x, y) in (5), the authors consider models
which are linear in the unknown coefficients. Although we solve a linearized
version of (5) and (6), our problem does not reduce to the one described in [7]
since our solution set is unbounded while the solution set in [7] is bounded. We
discuss the connection of [7] with our work in more detail in Section 3.

Without the intent of being exhaustive, we also mention the interval ap-
proach of Markov [5, 6]. This approach applies only to a special case of the
problem (5) and (6), where instead of multivariate rational functions r�,m(x, y),
univariate polynomials are considered to approximate univariate data. The
method is based on the interval Lagrange representation of the interpolating
polynomial. An algorithm is given that reliably solves the existence problem
after performing a number of interval intersections which is combinatorial
in the number of data points. With respect to the representation problem,
piecewise upper and lowerbounds are provided for the univariate polynomials
which satisfy the special case of (5) and (6). These are found after yet another
combinatorial number of interval intersections. Due to its computational
complexity, this approach is limited to low degree polynomials and small
datasets.

Least squares approximation is the conventional way to model noisy or
uncertain data. For non-linear models in general and rational models in
particular, the least squares problem may have many local minima and the
quality of the computed model therefore highly depends on the provided
starting value. This is illustrated numerically in Section 4. In contrast, we prove
in Section 3 that the existence and representation problem (5) and (6) reduce
to solving a quadratic programming problem of which the objective function is
strictly convex. Hence our problem has a unique solution, if it exists.

2 Linearization

The interpolation conditions

r�,m(xi, yi) ∈ Fi i = 0, . . . , n, (7)

in (5) amount to

f
i
≤ p(xi, yi)

q(xi, yi)
≤ f i, i = 0, . . . , n.

Under the assumption that q(xi, yi) > 0, i = 0, . . . , n, we obtain the following
homogeneous system of linear inequalities after linearization

{−p(xi, yi) + f iq(xi, yi) ≥ 0
p(xi, yi) − f

i
q(xi, yi) ≥ 0

, i = 0, . . . , n. (8)
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There is no loss of generality in assuming that q(x, y) is positive in the
interpolation points: the interpolation conditions (7) can be linearized for
arbitrary non-zero q(xi, yi), without changing the nature of the problem.

For ease of notation, let λ = (a0, . . . , a�, b0, . . . , bm)T and k = � + m + 2.
We denote by U the (2n + 2) × k matrix

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−xi0
0 y j0

0 . . . −xi�
0 y j�

0 f 0xd0
0 ye0

0 . . . f 0xdm
0 yem

0
...

...
...

...

−xi0
n y j0

n . . . −xi�
n y j�

n f nxd0
n ye0

n . . . f nxdm
n yem

0

xi0
0 y j0

0 . . . xi�
0 y j�

0 − f
0
xd0

0 ye0
0 . . . − f

0
xdm

0 yem
0

...
...

...
...

xi0
n y j0

n . . . xi�
n y j�

n − f
n
xd0

n ye0
n . . . − f

n
xdm

n yem
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the sequel, we abbreviate (8) to Uλ ≥ 0 and denote

L�,m(Sn) = { λ ∈ R
k | Uλ ≥ 0 }. (9)

Geometrically, the set (9) is the intersection of a finite number of closed half
spaces, whose boundary hyperplanes pass through the origin in R

k. We assume
that U has full column rank k, such that L�,m(Sn) is a pointed polyhedral
convex cone with apex in the origin [3, 4]. A property of polyhedra that is
important for the sequel is full-dimensionality. A polyhedron P ⊆ R

k is said to
be full-dimensional if it contains k + 1 points x0, . . . , xk such that the vectors
x1 − x0, x2 − x0, . . . , xk − x0 are linearly independent. A polyhedron P ⊆ R

k

determined by the linear inequalities Uλ ≥ 0 is full-dimensional if and only if
it contains a point λ for which Uλ > 0. Such a point is called an interior point. It
follows immediately that if the linear inequalities determining the polyhedron
do not contain any (implicit) equality constraints, then the polyhedron is full-
dimensional [9]. Hence, if any of the vertical segments Fi is such that f

i
= f i,

the polyhedron L�,m(Sn) is not full-dimensional. But assuming that all Fi are
such that f

i
< f i, as we have done, is not enough to guarantee that L�,m(Sn) is

full-dimensional.
The linearized version of the existence problem (6) consists in determining

whether

L�,m(Sn) �= {0}. (10)

Accordingly, the linearized representation problem is concerned with finding
a non-zero element λ in L�,m(Sn).

Two important remarks need to be made before solving the linearized
existence and representation problem. First, observe that if λ ∈ L�,m(Sn),
then also tλ ∈ L�,m(Sn) for any t > 0 and all points on the ray tλ =
t(a0, . . . , a�, b0, . . . , bm)T lead to the same rational function. Hence finding
a rational function satisfying (8) corresponds to finding a ray tλ with λ ∈
L�,m(Sn). It is clear that when solving the linearized problem, no normal-
ization can be imposed a priori on the coefficients of the rational function.
Imposing such a normalization, say b0 = 1, adds an additional constraint to
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the system (9) which potentially causes loss of solutions. For example, if the
unnormalized cone (9) lies in an orthant where b0 < 0, the intersection with the
hyperplane b0 = 1 is empty, so that the normalized problem has no solution.
Such dependence on the chosen normalization is undesirable.

Second, it is well known from the theory of rational interpolation that
solutions of the linearized problem (8) not necessarily solve the original
problem (7) due to the possibility that, for some i ∈ {0, . . . , n},

p(xi, yi) = 0 = q(xi, yi). (11)

Such points (xi, yi) are called unattainable [1]. If we assume that the cone
L�,m(Sn) is full-dimensional, then (10) and (6) are equivalent, in other words

L�,m(Sn) �= {0} ⇔ R�,m(Sn) �= ∅.

Indeed, in this case, a point in the interior of L�,m(Sn) exists for which the
inequalities (8) are strict and hence the coefficients of the corresponding
rational function are such that for none of the interpolation points (11) is
satisfied. Therefore (10) implies (6). Observe that R�,m(Sn) �= ∅ always implies
L�,m(Sn) �= {0}, even if L�,m(Sn) is not full-dimensional.

In the next section, we investigate the linearized representation problem
and provide an algorithm to compute a ray tλ �= 0 with λ ∈ L�,m(Sn), if such
a λ exists. The computed ray is such that the corresponding rational function
contains no unattainable points and satisfies certain properties that are impor-
tant from the point of view of numerical stability. We assume that the cone
L�,m(Sn) is full-dimensional, so that (6) and (10) are equivalent.

3 Solution of the existence and representation problem

Throughout this section, we denote by u j the j th row ( j = 1, . . . , 2n + 2) of U .
Unless specifically mentioned otherwise, the norm ‖ · ‖ is Euclidean.

The algorithm we develop, simultaneously solves the linearized existence
problem (10) and, if a solution exists, computes a non-zero λ ∈ L�,m(Sn) in
such a way that λ satisfies certain essential properties, which we discuss next.

From the point of view of numerical stability, a rational function passing
closely through the centers of the intervals Fi is more appropriate. Computing
rational functions with this property is also consistent with the maximum
likelihood assumption of standard regression techniques that the noise is
normally distributed with zero mean (see for example chapter 13 of [8] and
section 15.1 of [10]). Adopting this view, we need to avoid points λ which
are not interior points of L�,m(Sn). Indeed, for any non-interior point λ, the
corresponding rational function exactly fits at least one of the bounds of the
interval data.

Another consideration are unattainable points. Because unattainable points
necessarily imply that the corresponding inequalities in (8) are equalities, they
must occur on a boundary hyperplane of the polyhedral cone. In order to avoid
solutions λ yielding unattainable points, we again look for rays that lie strictly
in the interior of the polyhedral cone. The ray (or direction) that we aim for
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has maximal depth. Such a ray is called a Chebyshev direction. In what follows,
we state precisely what that means and show how such a ray can be computed.

Denote the Euclidean ball of radius r and center λ by

B(λ, r) = {λ + h | ‖h‖ ≤ r}.
Let P ⊂ R

k be a bounded polyhedron (a polytope) and let λ ∈ P. We recall
from [11] that the depth of λ with respect to P is defined by

depth(λ, P) = dist(λ, R
k \ P)

= inf
z∈Rk\P

‖λ − z‖

= max
B(λ,r)⊂P

r, (12)

and that a Chebyshev center [11] of a polytope P ⊂ R
k is given by

λc = argmax
λ∈P

depth(λ, P) (13)

In words, a Chebyshev center of a polytope P is every point λc ∈ P for which
the distance to the exterior of P is maximal. It is also the center of a largest
inscribed ball. In analogy, let C ⊂ R

k be a pointed polyhedral convex cone
with apex in the origin. We define the depth of a non-zero point λ ∈ C with
respect to C as follows

depth(λ, C) = dist
(

λ

‖λ‖ , R
k \ C

)

= inf
z∈Rk\C

∥∥∥∥
λ

‖λ‖ − z

∥∥∥∥ . (14)

The depth(λ, C) is the distance of the normalized vector λ/‖λ‖ to the exterior
of C. Due to the normalization, depth(λ, C) is bounded. We then call λc a
Chebyshev direction of C ⊂ R

k if and only if

λc = argmax
λ∈C

depth(λ, C). (15)

Since depth(λ, C) is equal for all λ that make up the same direction, (15) can
be reformulated as

λc = t argmax
λ∈C,‖λ‖=γ

depth(λ, C) t, γ > 0,

= t argmax
λ∈C,‖λ‖=γ

dist(λ, R
k \ C)

γ
t, γ > 0. (16)

In words, among all vectors λ with ‖λ‖ = γ , a Chebyshev direction of C
maximizes the distance from λ to the exterior of the polyhedral cone C. Since
depth(λ, C) = dist(λ, R

k \ C)/‖λ‖, a Chebyshev direction is also a direction
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that, among all vectors λ with distance δ to the exterior of C, minimizes the
norm of λ:

λc = t argmax
λ∈C,dist(λ,Rk\C)=δ

depth(λ, C) t, δ > 0,

= t argmax
λ∈C,dist(λ,Rk\C)=δ

δ

‖λ‖ t, δ > 0. (17)

Analogous to a Chebyshev center, a Chebyshev direction corresponds to the
axis of a largest cone inscribed in the pointed polyhedral cone C.

The main result of this section is the following.

Theorem 1 Let L�,m(Sn) be the polyhedral cone (9). Then L�,m(Sn) is full-
dimensional and R�,m(Sn) �= ∅ if and only if, for some δ > 0, the quadratic
programming problem

argmin
λ∈R�+m+2

‖λ‖2

s.t. u jλ − δ‖u j‖ ≥ 0, j = 1, . . . , 2n + 2 (18)

has a solution. If (18) has a solution for some δ > 0, then this solution λmin is
unique and the ray tλmin, t > 0, is the unique Chebyshev direction of L�,m(Sn).
The corresponding rational function is an element of R�,m(Sn).

Proof We start by characterizing balls inscribed in C = L�,m(Sn). For a single
half space u jλ ≥ 0, the ball B(λ, r) lies in the correct half space if and only if

inf
‖h‖≤r

u j(λ + h) ≥ 0.

We express this into a form independent of h, by noting that

inf
‖h‖≤r

u j(λ + h) ≥ 0 ⇔ inf
‖h‖≤r

u jλ − |u j · h| ≥ 0

and also

inf
‖h‖≤r

u jλ − |u j · h| = u jλ − sup
‖h‖≤r

|u j · h|

= u jλ − r‖u j‖.
Hence, balls B(λ, r) inscribed in the polyhedral cone C = L�,m(Sn) satisfy

u jλ − r‖u j‖ ≥ 0, j = 1, . . . , 2n + 2. (19)

If we set r = dist(λ, R
k \ C) in (19), then λ ∈ C = L�,m(Sn), if and only if

u jλ − dist(λ, R
k \ C)‖u j‖ ≥ 0, j = 1, . . . , 2n + 2. (20)

It follows from (20) that there exists an interior point λ in L�,m(Sn) if and only
if the quadratic programming problem (18) has a solution. Hence L�,m(Sn) is
full-dimensional and R�,m(Sn) �= ∅ if and only if the quadratic programming
problem has a solution.
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We now assume that there exists a λ �= 0 in L�,m(Sn). By combining (20)
with (17), we find that λ is a Chebyshev direction of the polyhedral cone C =
L�,m(Sn) if and only if for some fixed δ > 0,

λc = t argmax
λ∈Rk

δ

‖λ‖ t > 0

s.t. u jλ − δ‖u j‖ ≥ 0, j = 1, . . . , 2n + 2, (21)

or equivalently

λc = t argmin
λ∈Rk

‖λ‖2 t > 0

s.t. u jλ − δ‖u j‖ ≥ 0, j = 1, . . . , 2n + 2. (22)

Since ‖λ‖2 is a strictly convex function, the minimizer λmin of (18) is unique and
hence the corresponding direction tλmin is the unique Chebyshev direction of
C = L�,m(Sn). This concludes the proof. �


Observe that the Chebyshev direction obtained by solving (18) is indepen-
dent of the choice of δ > 0. How to best choose δ is discussed in Section 4.

Let us briefly come back to the relation between the results presented
here and in [7]. Considering the representation problem for models which are
linear in the unknown coefficients as in [7], rather than for rational models
r�,m(x, y) as in (5), changes the nature of the problem. Indeed, for the former
the problem can be reduced to the computation of a Chebyshev center of
a bounded polyhedron [7]. This amounts to solving a linear programming
problem. For the latter, we have shown that the problem can be reduced
to the computation of a Chebyshev direction of an unbounded polyhedral
set, resulting in a quadratic programming problem. Only if we add additional
linear constraints to bound L�,m(Sn), can we reduce the problem to the one
discussed in [7]. A possible way to bound L�,m(Sn) is by imposing conditions
on the coefficients of the rational function. We have already indicated that
a normalization where one of the coefficients is chosen a priori, e.g. b0 = 1,
potentially causes loss of solutions. But what happens to the solution set if we
add the conditions |λ j| ≤ 1, j = 1, . . . , k, where λ j denotes the j th element of
the vector λ = (a0, . . . , a�, b0, . . . , bm)T? For L > 0, let

BL�,m(Sn, L) = {λ ∈ R
k | Uλ ≥ 0, |λi| ≤ L, i = 1, . . . , k}. (23)

A Chebyshev center of this bounded polyhedron is found by solving the
linear programming problem [11]

max r

s.t. u jλ − r‖u j‖ ≥ 0, j = 1, . . . , 2n + 2,

λ j − r ≥ −L, j = 1, . . . , k,

−λ j − r ≥ −L, j = 1, . . . , k,

r ≥ 0. (24)
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Since (24) is a linear programming problem, and (18) is a quadratic pro-
gramming problem, it seems natural to solve (24) and not (18). We have
reformulated the problem as a quadratic programming problem for the fol-
lowing important reasons. First, as is clear from Fig. 1, a Chebyshev center
of the bounded polyhedron is not necessarily the Chebyshev direction of
the corresponding unbounded polyhedral cone. Second, in case the bounded
polyhedron BL�,m(Sn, L) has different Chebyshev centers, as is the case in
Fig. 1, the solution of the linear programming problem (24) is not unique.
In contrast, the polyhedral cone L�,m(Sn) has a unique Chebyshev direction,
which is the solution of the quadratic programming problem (18). Third, as
noted in [2], for linear programming problems that are highly homogeneous,
such as is the case in (24), computer cycling of the simplex method is the
rule rather than the exception. We have found in practice that solving the
quadratic programming problem is far more accurate and faster than solving
the corresponding LP problem, either by the simplex method or by an interior
point method.

The following theorem summarizes the relation between the linear pro-
gramming problem (24) and the quadratic programming problem (18).

Theorem 2 Let L�,m(Sn) be the polyhedral cone (9) with apex at the origin and
let BL�,m(Sn, L1) be the corresponding polytope (23). Then L�,m(Sn) �= {0} if
and only if BL�,m(Sn, L) �= {0} for any L > 0. Moreover, If λ1 is a Chebyshev
center of BL�,m(Sn, L1) with radius r1, then there exists a t > 0 such that tλ1 is a
Chebyshev center of BL�,m(Sn, L2) for any L2 > 0.

Proof If L�,m(Sn) �= {0} then for any non-zero vector λ ∈ L�,m(Sn) also tλ ∈
L�,m(Sn) for all t > 0. Therefore BL�,m(Sn, L) �= {0} for any L > 0. Conversely,
if there exists a vector λ ∈ BL�,m(Sn, L) with λ �= 0, then Uλ ≥ 0, hence λ ∈
L�,m(Sn).

If λ1 is a Chebyshev center of BL�,m(Sn, L1) with radius r1, it satisfies (24)
with L = L1 and r = r1. It follows immediately that for any L2 > 0, L2λ/L1

is a Chebyshev center of BL�,m(Sn, L2) with radius L2r1/L1. This concludes
the proof. �


Fig. 1 The boldface lines
denote the boundary of the
polyhedral cone L�,m(Sn),
and λc denotes its Chebyshev
direction. The center of the
disk is a Chebyshev center of
BL�,m(Sn, 1)
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It follows from Theorem 2 that if the bounded polyhedron has a unique
Chebyshev center, the rational function that corresponds to the solution λ of
(24) is independent of the constant L. If the Chebyshev center of the bounded
polyhedron is not unique, solving (24) for different values of L may yield
Chebyshev centra which are not on the same ray through the origin and hence
different rational functions.

4 Algorithmic aspects and numerical examples

In this section we discuss a number of aspects related to the solution of the
representation problem for (5):

– Given n + 1 vertical segments, how do we determine the numerator and
denominator degrees of the rational function to fit these data?

– How do we choose δ in (18)?

We then illustrate our technique with some numerical examples.
First, the complexity of a rational function is determined by its degree sets

N� and Dm. As � and m increase, so does the complexity of the rational
function r�,m(x, y). For � = 0, 1, . . . and m = 0, 1, . . . , we organize the rational
functions r�,m(x, y) in a two-dimensional table as indicated in Table 1. In order
to determine the rational model of lowest complexity for which R�,m(Sn) �= ∅,
we enumerate over the upward sloping diagonals of Table 1, each time
solving the quadratic programming problem (18). The following pseudocode
summarizes the algorithm.

solution= ∅
for d = 0, 1, 2, . . .

for � = d, . . . , 0
solve (18) for numerator degree set N�

and denominator degree set Dd−�

if (18) has the unique solution λmin

let r�,d−�(x, y) be the irreducible rational function
derived from the coefficients in λmin

solution:= solution ∪{r�,d−�(x, y)}
endif

endfor
if solution �= ∅ return solution
endfor

Table 1 Table of rational
interpolants

r0,0(x, y) r0,1(x, y) r0,2(x, y) · · ·
r1,0(x, y) r1,1(x, y) r1,2(x, y) · · ·
r2,0(x, y) r2,1(x, y) r2,2(x, y) · · ·

.

.

.
.
.
.

.

.

.
. . .
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We call the rational functions r�,m(x, y) in solution the rational functions
of minimal complexity satisfying the interpolation conditions (7). We remark
that there may exist a rational function rν,μ(x, y) with ν + μ < � + m and
such that rν,μ(xi, yi) ∈ Fi, i = 0, . . . , n. Indeed, we recall from Theorem 1 that
the quadratic programming problem has a solution if and only if Lν,μ(Sn) is
full-dimensional. If this is not the case, this does not imply Lν,μ(Sn) = {0}.
However, for any non-zero element in Lν,μ(Sn), the corresponding rational
function then exactly fits at least one of the bounds of the interval data and
may have unattainable points, which is not desirable.

Second, it follows from Theorem 1 that solving the representation problem
for (5), amounts to computing the solution of the quadratic programming
problem (18) for some δ > 0. It seems natural to set δ = 1. Instead of this
obvious choice, it is better, from a numerical point of view, to determine δ

differently and take into account the condition number of the matrix U in (9).
If the matrix U in (9) is almost rank deficient, then the depth of any point λ

strictly in the interior of the cone determined by Uλ ≥ 0 is close to zero. Since

depth(λ, C) = dist(λ, C)

‖λ‖ = δ

‖λ‖
the choice δ = 1 implies that the norm of λ obtained from (18) is large. In
order to avoid explosive growth of the elements of λ, we need to choose δ

much smaller when U is ill-conditioned. Therefore, we set δ = 1/κ(U), where
κ(U) is the condition number of the matrix U defined by

κ(U) = σmax(U)

σmin(U)
, (25)

and σmax(U) and σmin(U) are, respectively, the largest and the smallest singular
value of U .

We next illustrate our technique for several datasets. To improve the
numerical conditioning of the problem, the independent variables xi, yi are
each rescaled to the interval [−1, 1] and products of Chebyshev polynomials
Ti(x) and Tj(y) of the first kind are used as basis functions. The coefficients
of p(x, y) and q(x, y) with respect to these basis functions are denoted by λ̃ =
(ã0, . . . , ã�, b̃0, . . . , b̃m)T . The quadratic programming problem (18) is solved
using the optimization toolbox of Matlab Release 2006a.

A first univariate illustration is the Kirby2 dataset, part of the NIST Sta-
tistical Reference Datasets.1 There are 151 observations (xi, fi). From the
NIST Statistical Reference Datasets website we find an indication that an error
margin on the fi values is of the order of

Fi = [ fi − 2σ, fi + 2σ ]
with σ = 0.163545351311. For the vertical segments S150 = {(xi, Fi)|i = 1, . . . ,

151}, our algorithm returns solution= {r2,2(x)}. The rational function r2,2(x)

1http://www.itl.nist.gov/div898/strd/index.html

http://www.itl.nist.gov/div898/strd/index.html
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has coefficients ã0 = 31.82, ã1 = 43.55, ã2 = 11.83, b̃0 = 0.53, b̃1 = 0.32, b̃2 =
0.11 and is plotted in Fig. 2a.

For the same data set, we also compute the rational least squares model
rrls

2,2(x) of degree 2 in numerator and denominator with the nlinfit function
of the Statistics Toolbox for Matlab. In rational least squares, the coefficients
of the regression model r(x) are estimated by minimizing the least squares
criterion

n∑

i=0

( fi − r(xi))
2 (26)

over all rational functions r(x) of fixed numerator and denominator degree.
As already pointed out, the solution of non-linear least squares approximation
problems depends on the starting values, since the objective function (26)
may have many local minima. With the starting values ã0 = ã1 = ã2 = b̃0 =
b̃1 = b̃2 = 1, the procedure to minimize (26) over all rational functions of
degree 2 in numerator and denominator stops with an objective function
value of 1.333 ∗ 105, while the global minimum is 3.905! If we choose as
starting values the coefficients of r2,2(x), normalized such that b0 = 1, then
the optimization procedure does converge to the global minimum. This is not
surprising: evaluating (26) for r(x) = r2,2(x) gives the value 7.418, while the
optimal value obtained for r(x) = rrls

2,2(x) is 3.905. In Fig. 2b, the absolute error
of r2,2(x) is compared with that of rrls

2,2(x). From this plot one can see that r2,2(x)

stays within the required bound 2σ ≈ 0.32709 of the point data.
The second example is another benchmark problem, the bivariate

Kotancheck function

f (x, y) = e−(y−1)2

1.2 + (x − 2.5)2
. (27)

a   Fitted versus observed values b  Absolute error
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Fig. 2 Kirby2 dataset. a shows the vertical data segments and r2,2(x), which is the rational model
of minimal complexity satisfying the interpolation conditions. b shows the absolute error of r2,2(x)

(plus) and of the rational least squares model of degree 2 in numerator and denominator (star).
The two lines represent the boundaries ±2σ
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a  [6/12] rational model b  Absolute error
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Fig. 3 Kotancheck function. a shows r6,12(x, y) which is the rational model of minimal complexity
satisfying the interpolation conditions. b shows the absolute error over the entire interval. Also the
location of the 100 scattered data points is indicated

There are 100 scattered samples (xi, yi, fi), selected from the interval
[0, 4] × [0, 4]. Each observation has been corrupted by random noise in
[−0.0252, 0.0252], to generate vertical segments of different width enclosing
the function value. If we enumerate N

2 along downward sloping diagonals to
construct the numerator and denominator index sets N� and Dm for increasing
values of � and m, then the algorithm returns solution= {r6,12(x, y)}, where
the numerator and denominator degree sets are respectively given by

N6 = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3)}
D12 = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2),

(2, 1), (3, 0), (0, 4), (1, 3), (2, 2)}
and where r6,12(x, y) is plotted in Fig. 3. To evaluate the goodness of fit of
r6,12(x, y), we also plot the absolute error |r6,12(x, y) − f (x, y)| in Fig. 3b,
and observe that it is much smaller than the maximum width of the vertical
segments over the entire interval.

5 Conclusion and future work

A very natural way to deal with uncertainty in data is by means of an uncer-
tainty interval. Here, we have assumed that the uncertainty in the independent
variable is negligible and that for each observation, an uncertainty interval
can be given which contains the (unknown) exact value. We have presented
an approach to compute rational functions intersecting the interval data and
shown that the problem reduces to a quadratic programming problem, which
has a unique solution and which is easy to solve by standard methods. In the
future, we intend to investigate the behaviour of the poles of the approximating
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rational function. In none of the examples we have run, did the approximating
rational function have poles in the domain of interest.
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