
Numer Algor
DOI 10.1007/s11075-017-0370-5

ORIGINAL PAPER

Deterministic sparse FFT for M-sparse vectors

Gerlind Plonka1 ·Katrin Wannenwetsch1 ·
Annie Cuyt2 ·Wen-shin Lee2

Received: 24 January 2017 / Accepted: 26 June 2017
© Springer Science+Business Media, LLC 2017

Abstract In this paper, we derive a new deterministic sparse inverse fast Fourier
transform (FFT) algorithm for the case that the resulting vector is sparse. The sparsity
needs not to be known in advance but will be determined during the algorithm. If
the vector to be reconstructed is M-sparse, then the complexity of the method is at
most O(M2 logN) if M2 < N and falls back to the usual O(N logN) algorithm for
M2 ≥ N . The method is based on the divide-and-conquer approach and may require
the solution of a Vandermonde system of size at most M × M at each iteration step
j if M2 < 2j . To ensure the stability of the Vandermonde system, we propose to
employ a suitably chosen parameter σ that determines the knots of the Vandermonde
matrix on the unit circle.

Keywords Sparse signals · Vandermonde matrices · Discrete Fourier transform ·
Sparse FFT

� Gerlind Plonka
plonka@math.uni-goettingen.de

Katrin Wannenwetsch
k.wannenwetsch@math.uni-goettingen.de

Annie Cuyt
annie.cuyt@uantwerpen.be

Wen-shin Lee
wen-shin.lee@uantwerpen.be

1 Institute for Numerical and Applied Mathematics, University of Göttingen, Lotzestr. 16-18,
37083 Göttingen, Germany

2 Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1,
2020 Antwerpen, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-017-0370-5&domain=pdf
mailto:plonka@math.uni-goettingen.de
mailto:k.wannenwetsch@math.uni-goettingen.de
mailto:annie.cuyt@uantwerpen.be
mailto:wen-shin.lee@uantwerpen.be

Numer Algor

Mathematics Subject Classification (2010) 65T50 · 42A38

1 Introduction

Usual fast Fourier transform (FFT) algorithms require O(N logN) operations for
the discrete Fourier transform of length N . But assuming that some further a priori
information about the resulting vector is available, the question arises, whether this
computation can be done even faster.

Let us assume that x = (xk)
N−1
k=0 ∈ C

N is a vector of length N = 2J , and denote

by x̂ := FN x ∈ C
N its discrete Fourier transform, where FN := (ω

jk
N)N−1

j,k=0 with

ωN := e−2π i/N is the Fourier matrix of order N . In this paper, we will derive a
stable deterministic algorithm to reconstruct x from x̂ using the assumption that x is
an M-sparse vector. The proposed algorithm uses only at most M logN components
of the vector x̂ = (̂xk)

N−1
k=0 . We do not assume that the possible sparsity M < N is

known in advance. Applying an iterative procedure, we will adaptively choose the
components x̂k being used for the reconstruction of x. The number of needed values
at each level will depend on the sparsity of the periodization of x found so far and thus
is always at most M . In order to compute a new periodization of x of double length
from the preceding one, we have to solve a Vandermonde system of size at most
O(M), where the system matrix is a special partial matrix of the Fourier matrix. The
arithmetical complexity will be O(min{M2 logN, N logN}), where the O constant
is small. Particularly, if no (exploitable) sparsity of x is recognized, then we fall back
to the usual inverse FFT.

While the sparse FFT algorithm is described here for the inverse transform, the
idea can be simply transferred to the case when x ∈ C

N is given and x̂ ∈ C
N has to

be computed and is a priori known to be sparse.
Sparse FFT methods can be applied in many different applications, where it is a

priori known that the resulting signal in time/space or frequency domain is (approxi-
mately) sparse, as, e.g., for computing cross-correlation signals for GPS systems [9]
or pattern matching problems, see, e.g., [12].

Our proposed sparse FFT algorithm to compute the sparse vector x is completely
deterministic and exact if for each nonzero (significant) component xk of x the sums

x
(j)

kmod 2j := ∑N/2j −1
�=0 xk+2j � do not vanish for all j = 0, . . . , J − 1. For randomly

chosen signals, this condition is satisfied with high probability and it is obviously
true, if, e.g., all nonzero components of x lie in the same quadrant of the complex
plane.

In recent years, different approaches have been suggested to derive sparse FFT
algorithms. Usual assumptions on the signal to be recovered are, e.g., sparsity or a
small amount of significant signal components. Often, further a priori knowledge is
used, as, e.g., that components to be recovered are from a finite range of real values
(see, e.g., [8]), or that the significant components of x are clustered, see [2, 18, 19].

There exist deterministic [1, 2, 10, 11, 15, 17–19] and randomized methods [8, 16,
20] for sparse FFT. We also refer to the recent review [7] that describes some basic

Numer Algor

principles of sparse FFT algorithms. Randomized methods are usually faster but do
not always produce correct results.

Compared to other deterministic sparse FFT algorithms based on combinatorial
approaches, see [1, 2, 10, 11, 15], our method has the advantage that the recovery of
x only employs components of the DFT vector x̂ ∈ C

N and is therefore directly com-
parable to the usual discrete Fourier transform. The reconstruction based on Prony’s
method in [17] may still suffer from occurring numerical instabilities. In [5, 6], the
ill-conditioning is alleviated with high probability by a random redistribution of the
nodes on the unit circle. All previous sparse FFT approaches (except for [19]) need a
priori knowledge on the sparsity M or need to run repeatedly for different guesses of
M , while our approach automatically recognizes a possible sparsity of the resulting
vector.

Indeed, our algorithm can be seen as a generalization of [19], where non-negative
vectors with short support have been computed by (inverse) sparse FFT. However,
this generalization is essential, the transfer from one short support to general sparsity
of a vector requires new ideas for stable recovery of x.

The paper is structured as follows. In Section 2, we derive the main algorithm
that is based on a multi-scale reconstruction technique. In order to determine a well-
conditioned coefficient matrix to compute the next periodization x(j+1) ∈ C

2j+1
of

x at level j , we restrict ourselves to matrices with a Vandermonde structure that are
determined by the indices of the nonzero entries found so far and on one further
parameter σ that we have to choose suitably. Section 3 is devoted to some general
considerations on the problem to find a suitable σ and also answers the question
which improvement can be expected by employing only one single parameter σ .
Assuming that the indices 0 ≤ n1 < . . . < nMj

< 2j of nonzero entries are
known, we show that σ should be chosen in a way such that the new knots ω

σnk

2j

determining the Vandermonde matrix are well distributed on the unit circle. This can
be achieved by maximizing the minimal distance between two neighboring values
σnk on the 2j -periodic interval. It is also shown that, in rare cases, even the opti-
mal parameter only leads to the minimal distance 2j /M2 while the optimal distance
in the case of M equidistant values is 2j /M . Section 4 provides further ideas on
efficient computation of σ . We present some insights on how to determine σ and
propose two approaches to find a suitable σ with a computational effort not exceed-
ing O(M2). Moreover, we show that if the sparsity Mj of the periodized vector does
not change compared to the previous iteration step, σj can just be taken as 2σj−1.
The ideas are illustrated by different examples. In Section 5, numerical experiments
are presented.

2 Multi-scale reconstruction

Assume that x ∈ C
N is M-sparse, where 0 ≤ M ≤ N , i.e., x possesses M significant

nonzero components. Let x̂ = FNx = (̂xk)
N−1
k=0 be the discrete Fourier transform of

x. Assume further that N := 2J with some J > 0. We want to derive an iterative

Numer Algor

stable procedure to reconstruct x from adaptively chosen Fourier entries of x̂. For that
purpose, we consider the periodized vectors as follows:

x(j) = (x
(j)
k)2

j −1
k=0 :=

⎛

⎝

2J−j −1
∑

�=0

xk+2j �

⎞

⎠

2j −1

k=0

∈ C
2j

, j = 0, . . . , J. (2.1)

Hence, x(0) =
N−1
∑

k=0
xk is the sum of all components, x(1) = (

N/2−1
∑

�=0
x2�,

N/2−1
∑

�=0
x2�+1)

T ,

and x(J) = x. As already mentioned in the introduction, we assume that no cancella-
tion appears in the periodic vectors, i.e., for each significant component xk �= 0 of x,
we have the following:

x
(j)

kmod 2j �= 0 for all j = 0, . . . , J − 1. (2.2)

Numerically, we suppose that |x(j)

kmod 2j | > ε for a fixed shrinkage constant ε.

Throughout the paper, we assume that Eq. (2.2) is satisfied.
We recall the following relationship from [18] for the discrete Fourier trans-

form of the vectors x(j), showing that the components of x̂(j) are already given by
components of x̂.

Lemma 2.1 For the vectors x(j) ∈ C
2j
, j = 0, . . . , J , in Eq. (2.1), we have the

discrete Fourier transform

x̂(j) := F2j x(j) = (

x̂2J−j k

)2j −1
k=0 ,

where x̂ = (̂xk)
N−1
k=0 = FN x is the discrete Fourier transform of x ∈ C

N .

Idea of the algorithm Assume now that x ∈ C
N is M-sparse but the sparsity 0 ≤

M ≤ N is not known a priori.

Step 0. We start by considering x(0). Obviously,

x(0) =
N−1
∑

k=0

xk = x̂0.

From Eq. (2.2), we can conclude that for x̂0 = 0 the vector x is the
zero-vector, i.e., it is 0-sparse.

Step 1. Having found x(0) = x̂0 �= 0, we proceed and consider x(1). Obviously,
we have x(1) = (x

(1)
0 , x

(1)
1)T , where x

(1)
0 + x

(1)
1 = x(0) = x̂0 is already

known. Choosing now the Fourier component x̂
(1)
1 = x̂N/2 = x

(1)
0 −

x
(1)
1 and using x

(1)
1 = x(0) − x

(1)
0 , we obtain x̂N/2 = 2x(1)

0 − x(0), i.e.,

x
(1)
0 = 1

2

(

x(0) + x̂N/2

)

, x
(1)
1 = 1

2

(

x(0) − x̂N/2

)

= x(0) − x
(1)
0 .

Numer Algor

If x
(1)
0 = 0, we can conclude that all even components of x vanish,

and we do not need to consider them further. If x
(1)
1 = 0, it follows

analogously that all odd components of x are zero.
Step j + 1. Assume now that we have computed x(j) ∈ C

2j
at the j -th level of

iteration, and let Mj ≤ 2j be the found sparsity of x(j). Obviously, we
have Mj ≤ M . Further, let

0 ≤ n
(j)

1 < n
(j)

2 < . . . < n
(j)
Mj

≤ 2j − 1

be the indices of the corresponding nonzero components of x(j).

Observe that generally for x(j+1) =
(

x
(j+1)
k

)2j+1−1

k=0
we have

x
(j+1)
k + x

(j+1)
k+2j = x

(j)
k , k = 0, . . . , 2j − 1. (2.3)

Hence, in order to compute now x(j+1), we only need to consider the
2Mj components x

(j+1)
nk

and x
(j+1)
nk+2j for k = 1, . . . , Mj as candidates

for nonzero entries in x(j+1) while all other components of x(j+1) can
be assumed to be zero. Moreover, Eq. (2.3) provides already Mj condi-
tions on these values, so that we need only Mj suitably chosen further
Fourier data to recover x(j+1). In particular, we have

Theorem 2.2 Let x(j), j = 0, . . . , J , be the vectors defined in Eq. (2.1) satisfying
Eq. (2.2). Then, for each j = 0, . . . , J − 1, we have the following: If x(j) ∈ C

2j
is

Mj -sparse with support indices 0 ≤ n
(j)

1 < n
(j)

2 < . . . < n
(j)
Mj

≤ 2j − 1, then the

vector x(j+1) can be uniquely recovered from x(j) and Mj components x̂k1 , . . . , x̂kMj

of x̂ = FNx, where the indices k1, . . . , kMj
are taken from the set {2J−j−1(2� + 1) :

� = 0, . . . 2j − 1} such that the matrix
(

ω
kpn

(j)
r

N

)Mj

p,r=1
=

(

e−2π ikpn
(j)
r /N

)Mj

p,r=1
∈ C

Mj ×Mj

is invertible.

Proof Using the vector notation x(j+1)
0 :=

(

x
(j+1)
k

)2j −1

k=0
and x(j+1)

1 :=
(

x
(j+1)
k

)2j+1−1

k=2j
, we have

x(j) = x(j+1)
0 + x(j+1)

1 (2.4)

such that we only need to compute x(j+1)
0 in order to recover x(j+1). By Lemma 2.1,

we find

(

x̂2J−j−1k

)2j+1−1
k=0 = x̂(j+1) = F2j+1

(

x(j+1)
0

x(j+1)
1

)

= F2j+1

(

x(j+1)
0

x(j) − x(j+1)
0

)

=
(

ωk�
2j+1

)2j+1−1,2j −1

k=0,�=0
x(j+1)
0 +

(

(−1)kωk�
2j+1

)2j+1−1,2j −1

k=0,�=0

(

x(j) − x(j+1)
0

)

.(2.5)

Numer Algor

We simply observe that the even indexed entries x̂
(j+1)
2� = x̂

(j)
� = x̂2J−j � do not

further contribute to the recovery of the vector x(j+1)
0 but are determined already from

x(j) that is known from the previous step. Let now 0 ≤ n
(j)

1 < n
(j)

1 < . . . < n
(j)
Mj

≤
2j −1 be the indices of the nonzero entries of x(j). Then, by Eq. (2.4) also x(j+1)

0 can
have nonzero entries only at these components. We restrict the vectors accordingly to

x̃(j+1)
0 :=

(

x
(j+1)

n
(j)
r

)Mj

r=1
∈ C

Mj , x̃(j) :=
(

x
(j)

n
(j)
r

)Mj

r=1
∈ C

Mj .

Further, let k1, . . . , kMj
be pairwise different indices from {2J−j−1(2� + 1) : � =

0, . . . 2j − 1}, i.e., we have kp := 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1}
for p = 1, . . . , Mj . We now restrict the system in Eq. (2.5) to the Mj equations
corresponding to these indices k1, . . . , kMj

and find

ẑ(j+1) :=
⎛

⎜

⎝

x̂k1
...

x̂kMj

⎞

⎟

⎠ =

⎛

⎜

⎜

⎝

x̂
(j+1)
2κ1+1

...

x̂
(j+1)
2κMj

+1

⎞

⎟

⎟

⎠

= A(j+1) x̃(j+1)
0 − A(j+1)

(

x̃(j) − x̃(j+1)
0

)

,

(2.6)
where

A(j+1) =
(

ω
kpn

(j)
r

N

)Mj

p,r=1
=

(

ω
κpn

(j)
r

2j

)Mj

p,r=1
diag

(

ω
n

(j)

1
2j+1 , . . . , ω

n
(j)
Mj

2j+1

)

. (2.7)

If A(j+1) resp. (ω
κpn

(j)
r

2j)
Mj

p,r=1 is invertible, it follows from Eq. (2.6) that

A(j+1)x̃(j+1)
0 = 1

2

(

ẑ(j+1) + A(j+1)x̃(j)
)

, (2.8)

and we can recover x̃(j+1)
0 by solving this (Mj × Mj) equation system. Hence, the

components of x(j+1) ∈ C
2j+1

are given by

x
(j+1)
� =

⎧

⎪

⎨

⎪

⎩

(

x̃(j+1)
0

)

k
for � = n

(j)
k ,

(

x̃(j)
)

k
− (

x̃(j+1)
0

)

k
for � = n

(j)
k + 2j ,

0 else.

Theorem 2.2 yields that we essentially have to solve a linear system in Eq. (2.8)
of size Mj in order to compute x(j+1) from x(j). We summarize our findings in the
following Algorithm, where we use the conventional FFT at each step as long as this
is more efficient than solving the system in Eq. (2.8).

Numer Algor

Algorithm 2.3 (Reconstruction of a vector from Fourier measurements)

Input : N = 2J (length of the vector x);
possible access to Fourier values x̂k , k = 0, . . . , N − 1;
shrinkage constant ε.

Set M := 0 and K := {0}. Choose the Fourier value x̂0.
If |̂x0| < ε, then x = 0 and I (J) = ∅.
If |̂x0| ≥ ε, then

1. Set M := 1, I (0) := {0} and x̃(0) = x̂0.
2. For j = 0 to J − 1 do

If M2 ≥ 2j , then

Choose ẑ(j+1) :=
(

x̂
(j+1)
2p+1

)2j −1

p=0
= (

x̂2J−j−1(2p+1)

)2j −1
p=0

∈ C
M and solve the

linear system

F2j diag
(

(ωk
2j+1)

2j −1
k=0

)

x(j+1)
0 = 1

2

(

ẑ(j+1) + F2j diag
(

(ωk
2j+1)

2j −1
k=0

)

x(j)
)

using an FFT algorithm
else

2.1 Choose M indices kp = 2J−j−1(2κp + 1) with κp ∈ {0, . . . , 2j − 1} for
p = 1, . . . , M such that

A(j+1) :=
(

ω
kp�

N

)

p=1,...,M;�∈I (j)

is well-conditioned and set K := K ∪ {k1, . . . , kM}.
2.2 Choose the Fourier values ẑ(j+1) := (̂xkp)Mp=1 ∈ C

M and solve the linear
system

A(j+1)x̃(j+1)
0 = 1

2

(

ẑ(j+1) + A(j+1) x̃(j)
)

.

2.3 Set x̃(j+1)
1 := x̃(j) − x̃(j+1)

0 and x̃(j+1) :=
(

(

x̃(j+1)
0

)T
,
(

x̃(j+1)
1

)T
)T

.

end (if)
2.4 Determine the set of active indices I (j+1) ⊂ (

I (j) ∪ (I (j) + 2j)
)

by delet-
ing all indices in I (j) ∪ (I (j) + 2j) that correspond to entries in x̃(j+1) with
modulus being smaller than ε. Set M := #I (j+1) being the number of nonzero
entries of x(j+1).

end (do)

Output : I (J), the set of active indices in x with M = #I (J);
x̃ = x̃(J) = (xk)k∈I (J) , the vector restricted to nonzero entries;
K , the index set of used Fourier values from x̂.

Numer Algor

Note that the matrices A(j+1) are just restrictions of the Fourier matrices FN to
the columns n

(j)

1 , . . . n
(j)
Mj

and the rows k1, . . . , kMj
. Equivalently, they can be rep-

resented by Eq. (2.7) using a matrix product, where one factor is the restriction of
F2j to the columns n

(j)

1 , . . . , n
(j)
Mj

and the rows κ1, . . . , κMj
, and the other factor is a

unitary diagonal matrix. Observe that we can always choose kp = 2J−j−1(2κp + 1)
with κp = p − 1, for p = 1, . . . , Mj to ensure invertibility.

Example 2.4 Assume that we want to recover the 5-sparse vector x ∈ C
64 with

xk = 1 for k ∈ I (6) := {1, 5, 6, 13, 59}. For the periodizations of x, we find the index
sets and the sparsities

I (0) = {0}, M0 = 1;
I (1) = {0, 1}, M1 = 2;
I (2) = {1, 2, 3}, M2 = 3;
I (3) = {1, 3, 5, 6}, M3 = 4;
I (4) = {1, 5, 6, 11, 13}, M4 = 5;
I (5) = {1, 5, 6, 13, 27}, M5 = 5.

For j = 0, 1, 2, we have M2
j ≥ 2j and therefore just apply the FFT of length 2j

to recover x(3) = (0, 1, 0, 1, 0, 2, 1, 0)T . Although M2
3 = 24, we apply for j ≥ 3

the new approach for illustration. To recover x(4) ∈ C
16, the index set of possible

candidates for nonzero entries is I (3) ∪ (I (3) + 8) = {1, 3, 5, 6, 9, 11, 13, 14}. We
simply choose the indices kp = 2J−j−1(2κp+1)with κp = p−1, for p = 1, . . . , Mj

at each level. This choice relates to taking just the first Mj rows of F2j in Eq. (2.7).
Here, we get for j = 3 the product of the restriction of F8 to the first four rows and
the four columns n

(3)
r from the set I (3) and a unitary diagonal matrix,

A(4) =
(

ω
(p−1)n(3)

r

8

)4

p,r=1
· diag

(

ω1
16, ω

3
16, ω

5
16, ω

6
16

)

with condition number 2.69 to recover x(4). Similarly, we find at the next iteration
steps

A(5) =
(

ω
(p−1)n(4)

r

16

)5

p,r=1
· diag

(

ω1
32, ω

5
32, ω

6
32, ω

11
32, ω

13
32

)

with condition number 3.93 to recover x(5) and

A(6) =
(

ω
(p−1)n(5)

r

32

)5

p,r=1
· diag

(

ω1
64, ω

5
64, ω

6
64, ω

13
64, ω

27
64

)

with condA(6) = 35.57 to recover x(6). Thus, we have employed only the Fourier
entries x̂8k , k = 0, . . . , 7, in the first three iteration steps (j = 0, 1, 2) to recover x(3),
the entries x̂4(2k+1), k = 0, 1, 2, 3, at level j = 3, x̂2(2k+1), k = 0, 1, 2, 3, 4, at level
j = 4, and x̂2k+1, k = 0, 1, 2, 3, 4, at level j = 5. Summing up, we have to employ
22 of the 64 Fourier components to recover x, while the arithmetical complexity is
governed by solving the three equation systems of size 4 resp. 5 with coefficient
matrices A(4), A(5), and A(6).

Numer Algor

While the condition numbers of A(j) in the small example above are moder-
ate, the condition of A(j) can be a serious problem for numerical stability in other
examples. Recovering the 5-sparse vector x ∈ C

2048 with the same nonzero entries,
i.e., I (11) := {1, 5, 6, 13, 59}, we obtain with the procedure above at the last level

A(10) =
(

ω
(p−1)n(10)

r

1024

)5

p,r=1
·diag (ω1

2048, ω
5
2048, ω

6
2048, ω

13
2048, ω

27
2048

)

with condition

number 2.29 · 107. Therefore, it remains to answer the following question:
How should the M = Mj indices k1, . . . , kMj

be chosen in dependence on the

found index set I (j) = {nj

1, . . . , n
(j)
Mj

} at the j -th iteration step such that the matrix

A(j+1) has a small condition number leading to a numerically stable algorithm?
We restrict the adaptive search for suitable indices k1, . . . , kMj

in a special way
such that at each level j the first factor of the obtained coefficient matrix A(j+1) in
Eq. (2.7) is a Vandermonde matrix with knots on the unit circle. We introduce one
parameter σ ∈ {1, . . . , 2j − 1} such that the first factor of A(j+1) is the restric-
tion of F2j to the fixed columns n

(j)

1 , . . . , n
(j)
Mj

from the index set I (j) and the rows

0, σ, 2σ, . . . (Mj − 1)σ . More precisely, we consider kp = 2J−j−1(2κp + 1) from
Theorem 2.2 with κp := σ(p − 1)mod 2j for p = 1, . . . , Mj . The idea is now to
choose σ = σj ∈ {1, . . . , 2j − 1} such that A(j+1) in Eq. (2.7) is well-conditioned.
Observe that A(j+1) is of the form

A(j+1) = VMj
diag(ω

n
(j)

1
2j+1 , . . . , ω

n
(j)
Mj

2j+1),

with the Vandermonde matrix

VMj
:= VMj

(

ω
σn

(j)

1
2j , . . . , ω

σn
(j)
Mj

2j

)

:=
(

ω
σ(p−1)n(j)

r

2j

)Mj

p,r=1
=

(

ω
κpn

(j)
r

2j

)Mj

p,r=1
,

being determined by the knots ω
σn

(j)

1
2j , . . . , ω

σn
(j)
Mj

2j . In Sections 3 and 4, we will dis-
cuss the problem of efficiently finding a suitable parameter σ and ensuring a stable
reconstruction of x(j) at each level in more detail.

For A(j+1) in Eq. (2.7) being determined by a Vandermonde matrix, we can esti-
mate the complexity of Algorithm 2.3. For a stable computation of the equation
system in step 2.2, we may apply a QR decomposition to A(j+1) with complexity of
O(M2) arithmetical operations as suggested, e.g., in [4]. Thus, as long as M2

j ≥ 2j ,

the FFT of length 2j is more efficient than solving this system. As suggested in the
algorithm, we employ the FFT if M2

j ≥ 2j since theO-constants of the FFT are very
small. Algorithm 2.3 requires at most

O(min{M2(logM2
 + �log2(N/M2)�), N logN)}) = O(min{M2 log2 N, N logN)})

arithmetical operations, where the first L = 	logM2
 steps of the iteration
use O(L2L) operations while the remaining steps require O(M2(J − L)) =
O(M2(logN − logM2)) operations. A more detailed analysis of the arithmetical
complexity is given in Section 5.

Numer Algor

Remark 2.5 In case that the condition number of the quadratic Vandermonde matrix

VMj

(

ω
σn

(j)

1
2j , . . . , ω

σn
(j)
Mj

2j

)

is not small enough, we can add further lines and use a

rectangular Fourier matrix. This means that we apply the rectangular Vandermonde

matrix V(j)

M ′
j ,Mj

(σ) =
(

ω
σkn

(j)
p

2j

)M ′
j −1,Mj

k=0,p=1
with an improved condition number. The

algorithm in [4] still provides a QR decomposition for rectangular Vandermonde
matrices with complexityO(M2) as long as M ′

j ≤ cMj with a fixed constant c being
independent of Mj .

3 Adaptive approach for stable reconstruction

Let us now consider the question, how to find an optimal σ = σj at each iteration
step in order to ensure a well-conditioned Vandermonde system. For simplicity, we
neglect the subscripts j in this section and reformulate the problem as follows. Let
0 ≤ n1 < n2 < . . . < nM < N be a known set of indices. We want to find an
optimal parameter σ such that the M ′ × M Vandermonde matrix

VM ′,M(σ) :=
(

ω
σnk(p−1)
N

)M ′,M

p=1,k=1

(with N > M ′ ≥ M) determined by the knots ω
σnk

N , k = 1, . . . , M , has a suitably
bounded condition number. At the same time, M ′ should stay in the same size as M

in order to reduce the costs for solving a corresponding Vandermonde system.
It is well-known that the Vandermonde matrix VM,M is invertible if and only if

the support indices (σnk modN) are pairwise distinct for k = 1, . . . , M . Thus, we
can choose σ = 1 to ensure invertibility of VM,M . This choice is non-adaptive, it is
not related to the knowledge of the index set {n1, . . . , nM}. However, as seen in the
previous section, this can lead to bad condition numbers.

We aim at deriving suitable conditions for the parameter σ to ensure a good
condition of VM ′,M .

Indeed, the condition of the matrix VM ′,M strongly depends on the distribution of
the M values ω

σnk

N on the unit circle. The condition number of VM,M can be even
one, if and only if the values ω

σnk

N are equidistantly distributed on the unit circle, i.e.,
if M is a divisor of N and

{ωσnk

N : k = 1, . . . , M} = {c ωr
M : r = 1, . . . , M},

where c is a unitary constant, see [3].
Recall that the condition number of an (M ′ × M) matrix VM ′,M(σ) based on the

spectral norm is determined by

κ2(VM ′,M(σ)) :=
max

u∈CM,‖u‖2=1
‖VM ′,M(σ)u‖2

min
u∈CM,‖u‖2=1

‖VM ′,M(σ)u‖2 .

Numer Algor

In order to bound the condition number of VM ′,M , an observation by Moitra [13]
comes to our help. We slightly modify his result and give a different proof that
directly adapts Hilbert’s inequality in [14].

Theorem 3.1 Let 0 ≤ n1 < n2 < . . . < nM < N be a given set of indices. For a
given σ ∈ {1, . . . , N − 1} let

dσ := min
1≤k<�≤M

(±σ(n� − nk))modN (3.1)

be the smallest (periodic) distance between two indices σn� and σnk , and assume
that dσ > 0. Then, the condition number κ2(VM ′,M(σ)) of the Vandermonde matrix

VM ′,M(σ) :=
(

ω
σnk�
N

)M ′−1,M

�=0,k=1
satisfies

κ2(VM ′,M(σ))2 ≤ M ′ + N/dσ

M ′ − N/dσ

, (3.2)

provided that M ′ > N
dσ
.

Proof 1. Assume that ñk := σnk modN
N

for k = 1, . . . , M . By assumption, the values
ñk are distinct numbers in [0, 1) and the minimal (cyclic) distance between two of
these values is dσ /N . Considering the matrix (VM ′,M(σ))∗VM ′,M(σ) = (bk,�)

M
k,�=1

we find

bk,� =
M ′−1
∑

r=0

e−2π i(ñ�−ñk)r =
{

1−e−2π i(ñ�−ñk)M′

1−e−2π i(ñ�−ñk) ñk �= ñ�,

M ′ ñk = ñ�,

i.e., we have

bk,� = e−2π i(ñ�−ñk)(M
′−1)/2)DM ′ (2π(ñ� − ñk)) ,

where

DM ′(x) =
{

sin(M ′x/2)
sin(x/2) x �= 0

M ′ x = 0

denotes the Dirichlet kernel. Hence, the symmetric and positive semidefinite matrix

BM = (DM ′(2π(ñ� − ñk)))
M
�,k=1

possesses the same eigenvalues as (VM ′,M(σ))∗VM ′,M(σ) since

(VM ′,M(σ))∗VM ′,M(σ) = diag
(

e2π iñk(M
′−1)/2

)M

k=1
BM diag

(

e−2π iñ�(M
′−1)/2

)M

�=1
.

Let us first consider the Frobenius norm ‖VM ′,M(σ)‖F . Since BM(�, �) = M ′ for
all � = 1, . . . , M , it follows that

‖VM ′,M(σ)‖2F = tr(VM ′,M(σ))∗VM ′,M(σ)) = trBM = MM ′,

such that the spectral norm is bounded by ‖VM ′,M(σ)‖2 ≤ ‖VM ′,M(σ)‖F = √
M ′M .

Numer Algor

2. We consider now for arbitrary u ∈ C
M

uT BMu =
M
∑

k=1

M
∑

�=1

uku� DM ′(2π(ñk − ñ�))

= M ′
M
∑

k=1

|uk|2 +
M
∑

k,�=1
k �=�

uku�

sin(M ′π(ñk − ñ�))

sin(π(ñk − ñ�))
.

We recall the following result by Montgomery and Vaughan, see Theorem 1 in
[14]. Let 0 ≤ x1 < x2 < . . . < xR < 1 and δ = min{|(xk − x�) mod 1| : k, � =
1, . . . , R, k �= �}. Then

∣

∣

∣

∣

∣

∣

∣

∣

R
∑

k,�=1
k �=�

uku�

sin(π(xk − x�))

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1

δ

R
∑

k=1

|uk|2. (3.3)

Using sin(M ′π(ñk − ñ�)) = 1
2i (e

M ′π i(ñk−ñ�) − e−M ′π i(ñk−ñ�)), we now apply the

Eq. (3.3) twice, with uk replaced by uke
M ′

j π iñk and uke
−M ′

j π iñk , respectively. Thus,
we obtain with δ = dσ /N

∣

∣

∣

∣

∣

∣

∣

∣

M
∑

k,�=1
k �=�

uku�

sin(M ′π(ñk − ñ�))

sin(π(ñk − ñ�))

∣

∣

∣

∣

∣

∣

∣

∣

≤ N

dσ

‖u‖2.

This observation yields now

‖VM ′,M(σ)‖22 = max
u∈CM,‖u‖2=1

uT BMu ≤ M ′ + N

dσ

,

‖(VM ′,M(σ))−1‖22 =
(

min
u∈CM,‖u‖2=1

uT BMu
)−1

≤
(

M ′ − N

dσ

)−1

.

Thus, we find the condition of VM ′,M(σ) as given in Eq. (3.2).

The observation in Theorem 3.1 leads us to the problem to optimize for given
indices 0 ≤ n1 < n2 < . . . < nM < N the parameter σ such that dσ in Eq. (3.1) is
maximized. Before presenting an algorithm to compute the optimal σ̃ , that satisfies

dσ̃ := max
σ∈{1,...,N−1}

dσ (3.4)

with dσ defined in Eq. (3.1), we want to answer the question, how small dσ̃ can
happen to be.

Theorem 3.2 Let N be of the form N = 2J , J ∈ N, and d = dσ̃ := max
σ∈{1,...,N−1}

dσ

with dσ defined in Eq. (3.1) be the distance obtained for the optimally chosen
parameter σ̃ . Then, we have

N

M2
≤ d ≤ N

M
.

Numer Algor

Proof 1. Considering the M knots 0 ≤ n1 < n2 < . . . < nM < N and the corre-
sponding knots σ̃ nk modN , the distance d is obviously maximal if the knots σ̃ nk

are equidistantly distributed on the (periodic) interval of length N , i.e., if d = N/M .

2. In order to show the lower bound, we apply a counting argument. Let us consider
the set D of M(M − 1) distances d�,k := (n� − nk)modN for �, k = 1, . . . ,M ,
� �= k. Assume that ν indices n� are odd, and M − ν indices are even. Then, we
obtain 2ν(M − ν) odd distances d�,k and M(M − 1) − 2ν(M − ν) even distances.

We assume now to the contrary that d = dσ̃ < N/M2. Thus, dσ < N/M2

for all σ ∈ {1, . . . , N − 1}, i.e., for each σ there exists a distance dσ
�,k ∈ D with

σdσ
�,k modN < N/M2. We will show that this assumption leads to a contradiction.
For each distance d�,k ∈ D, we now determine the largest possible number of odd

integers σ such that σd�,k modN < N/M2. We distinguish between odd and even
distances d�,k and consider two cases.

Case 1: If the fixed distance d�,k ∈ D is odd, then σd�,k modN is again odd,
and for two pairwise different odd integers σ1, σ2 ∈ {1, . . . , N − 1} the
corresponding values σ1d�,k modN and σ2d�,k modN are different, since
σ1d�,k = σ2d�,k modN yields (σ1 − σ2)d�,k = 0modN with the only
solution σ1 = σ2.

Observe that there are �N/(2M2) + 1/2� − 1 (distinct) odd num-
bers in the interval [0, N/M2]. Thus, there exist at most �N/(2M2) +
1/2� − 1 pairwise different odd integers σ in {1, . . . , N − 1} such that
σd�,k modN < N/M2.

Since we have at most 2ν(M − ν) distinct odd distances in D, there can
be at most

2ν(M − ν)

(⌈

N

2M2
+ 1

2

⌉

− 1

)

pairwise different odd integers σ in {1, . . . , N − 1} such that the condition
σdσ

�,k modN < N/M2 (3.5)

is satisfied with an odd distance d�,k . Observe that this upper bound can be
only achieved if all occurring odd distances d�,k inD are pairwise different.

Case 2: Let now d�,k be a fixed even distance. Then, there exists a positive inte-
ger μ such that d�,k = 2μd̃�,k and d̃�,k is odd. Thus, the condition
σd�,k modN < N

M2 can be simplified to

σ d̃�,k mod
N

2μ
<

N

2μM2
.

Hence, at most �N/(2μ+1M2) + 1/2� − 1 pairwise different odd integers
σ in {1, . . . , N − 1} can exist such that Eq. (3.5) is satisfied.

Since we have M(M − 1) − 2ν(M − ν) even distances d�,k , it follows
that at most

(M(M − 1) − 2ν(M − ν))

(⌈

N

4M2
+ 1

2

⌉

− 1

)

Numer Algor

odd integers σ in {1, . . . , N − 1} can exist, such that the condition (3.5)
is satisfied with an even distance d�,k . Observe that this upper bound can
be only achieved if all occurring even distances d�,k are pairwise different
and of the form d�,k = 2d̃�,k with some odd d̃�,k .

3. We now consider the following cases.

a) For N > 4M2, the number of odd σ satisfying Eq. (3.5) for at least one distance
d�,k is bounded by

2ν(M − ν)

(

N

2M2
+ 1

2

)

+ (M(M − 1) − 2ν(M − ν))

(

N

4M2
+ 1

2

)

= 2ν(M − ν)
N

4M2
+ M(M − 1)

(

N

4M2
+ 1

2

)

≤ M2

2

N

4M2
+ N

4
− N

4M
+ M2

2
− M

2

<
N

8
+ N

4
+ N

8
− N

4M
− M

2
<

N

2
,

where we have used that 2ν(M − ν) ≤ M2

2 for all ν ∈ {0, . . . ,M}. Hence, not
all values σ satisfy the condition (3.5) in this case.

b) For 3M2 < N ≤ 4M2, we have
⌈

N

2M2
+ 1

2

⌉

− 1 = 2,

⌈

N

4M2
+ 1

2

⌉

− 1 = 1.

Thus, the number of odd integers σ satisfying Eq. (3.5) is bounded by

4ν(M − ν) + M(M − 1) − 2ν(M − ν) = 2ν(M − ν) + M(M − 1)

≤ M2

2
+ M2 − M = 3M2

2
− M <

N

2
,

i.e., not all values σ satisfy (3.5) also in this case.
c) For 2M2 < N ≤ 3M2, it holds that

⌈

N

2M2
+ 1

2

⌉

− 1 = 1,

⌈

N

4M2
+ 1

2

⌉

− 1 = 1,

and therefore the number of odd integers σ satisfying (3.5) is bounded by

2ν(M − ν) + M(M − 1) − 2ν(M − ν) = M(M − 1) < M2 <
N

2
.

Hence, also for 2M2 < N ≤ 3M2, not all values σ satisfy Eq. (3.5).
d) For M2 < N ≤ 2M2, we have

⌈

N

2M2
+ 1

2

⌉

− 1 = 1,

⌈

N

4M2
+ 1

2

⌉

− 1 = 0.

and thus, the number of odd integers σ satisfying Eq. (3.5) is bounded by

2ν(M − ν) ≤ M2

2
<

N

2
,

Numer Algor

i.e., also in this case, not all values σ satisfy Eq. (3.5).
e) For N ≤ M2, no odd integer satisfies Eq. (3.5).

Thus, the number of odd integers σ for which there exists a dσ
�,k ∈ D such that

Eq. (3.5) holds, is strictly smaller than N/2, i.e., there exists at least one odd σ ∈
{1, . . . , N − 1} with

σdσ
�,k modN ≥ N

M2

for all d�,k ∈ D.

Remark 3.3 1. The lower bound d = N/M2 can be indeed achieved if N = 2J =
2αM2 for some α ∈ N0, and if all distances of the form

d�,k = 2α(2r + 1), r = 0, . . . ,
N

2α+2
− 1

occur. Choosing, e.g., N = 16, M = 4, α = 0, and the four indices n1 =
0, n2 = 1, n3 = 3, n4 = 8, then

D := {d�,k : �, k = 1, . . . , 3; � < k} = {1, 2, 3, 5, 7, 8}
contains all odd numbers in {0, . . . , N/2} and we find d = N/M2 = 1.

2. Observe that this case d = N/M2 is very rare. It occurs only for very special
choices of indices {nk}Mk=1 (as well as its shifts {nk + �}Mk=1, � = 0, . . . , N − 1,
and shifted reflections {(N − nk) + �}Mk=1, � = 0, . . . , N − 1. In the above case

N = 16, M = 4, there are
(

N
4

) = 1820 possibilities to fix four (ordered) indices,
where d = N/M2 = 1 only occurs in 128 cases.

4 Efficient parameter computation

In this section, we will derive a method to compute the optimal parameter σ̃ such that
the optimization problem

σ̃ = argmax
σ∈{1,...,N−1}

dσ (4.1)

with dσ in Eq. (3.1) is solved for a given index set

0 ≤ n1 < n2 < . . . < nM < N,

where N = 2j and M2 ≤ N . Our considerations will lead to an algorithm providing
a suboptimal σ̃ ensuring a large distance dσ̃ . If two or more found values σ̃ satisfy
the distance criterion with the same distance dσ̃ , then we will choose from the set of
these parameters the one which minimizes the value

∣

∣

∣

∣

∣

M
∑

k=1

ω
σ̃nk

N

∣

∣

∣

∣

∣

thereby enforcing a better distribution of the knots ω
σ̃nk

N on the unit circle.
As before, let d�,k := |n� − nk| for �, k = 1, . . . M , � > k, and d̃�,k = N − d�,k =

−d�,k modN be the periodic distances modulo N . The set D contains all distinct

Numer Algor

values d�,k and d̃�,k . Clearly, D has at most M(M − 1) elements and can be also
smaller since distances d�,k and d�′,k′ can coincide. Further, 0 /∈ D since d�,k �= 0.

We use σD to denote the set that contains all the distances d ∈ D multiplied
by σ modulo N . For our problem, we look at σD (mod N). Our goal is to seek
σ ∈ � = {1, 2, . . . , N − 1} such that

either the minimum value of σD (min σD) is enlarged to a chosen value;
or the minimum value of σD (min σD) is maximized.

Our main idea is now to efficiently determine subsets �(L), L = 0, 1, 2, . . ., such
that min σD > L for all �(L), i.e., σd > L for all d ∈ D and all σ ∈ �(L) ⊂ �.

For this purpose, we consider the following disjoint subsets D(�) of D. Recalling
that N = 2j for some j > 0, each d ∈ D can be uniquely written in the form
d = 2�d̄ with d̄ odd and � ∈ {0, 1, . . . , 2j−1}. We write

D(�) := {d ∈ D : d = 2�d̄, d̄ odd}, � = 0, . . . , j − 1, (4.2)

such thatD = ∪j−1
�=0D

(�). Obviously, each d ∈ D(�) possesses 2�−1 nonzero divisors
modulo 2j , namely 2j−�r , r = 1, . . . , 2� − 1.

Construction of �(0) To obtain �(0), we remove all σ from � satisfying σd =
0modN for some d in D. This is done by fixing the largest index � ≤ j − 1 with
D(�) �= ∅ and removing all multiples of 2j−� from �. For example, if D contains the
distance d = N/2 = 2j−1, then we have to remove all even integers from � in order
to obtain �(0). By definition, all remaining values σ ∈ �(0) ensure that the σnk are
pairwise distinct such that the corresponding Vandermonde matrix VM is invertible.
We simply observe that all odd integers σ ∈ {0, . . . , N − 1} are still in �(0).

Construction of �(1) To obtain �(1), we have to remove all σ ∈ �(0) satisfying
σd = 1modN for some d ∈ D. By construction, we only need to consider d ∈ D(0)

here, since the d’s in D(�) with � > 0 are even. Thus, we have to remove the inverse
of each d ∈ D(0) (modulo N) from �(0) to obtain �(1).

Construction of �(L) We can proceed with this idea to obtain the sets �(L), L > 1,
by increasing the lower bound of σD. For that purpose, we define the following
subsets of �(0),

T (0) = {σ ∈ �(0) : σ · d = 1modN for a d ∈ D(0)},
T (1) = {σ ∈ �(0) : 2−1σ · d = 1modN/2 for a d ∈ D(1)},

...
...

T (j−1) = {σ ∈ �(0) : 2−j+1σ · d = 1modN/2j−1 for a d ∈ D(j−1)}.
We use the convention that kT (�) := {kσ modN : σ ∈ T (�)} for k ∈ {1, . . . , N − 1}.
Then, as already described before, we obtain

�(1) = �(0) − T (0)

enforcing that the minimal distance min σD is at least 2.

Numer Algor

In order to obtain �(2), we have to remove 2T (0) and T (1) from �(1), since these
sets contain parameters σ satisfying σd = 2modN for some d ∈ D(0) resp. D(1).
Observe that the distances in D(�) with � > 1 need not to be checked since they
contain the factor 4 and can never produce a remainder 2. Thus, �(2) = �(1) −
2T (0) − T (1).

Generally, for L ∈ {1, . . . , 	N/M
} with L = 2r L̄ we get in a similar manner

�(L) = �(L−1) − L T (0) − L

2
T (1) − . . . − L

2r
T (r) (4.3)

= �(0) −
L
⋃

k=1

kT (0) −
	L/2

⋃

k=1

kT (1) − . . . −
	L/2j−1

⋃

k=1

kT (j−1),

where the sets vanish if 	L/2s
 = 0 for s ∈ {0, . . . , j − 1}.

Example 4.1 We reconsider the example of Section 2. Let x ∈ C
64 be 5-sparse with

xk = 1 for k ∈ I (6) := {1, 5, 6, 13, 59}. Assume that we have already computed
x(4) ∈ C

16 with I (4) = {1, 5, 6, 11, 13}, i.e., N = 16, M = 5 (disregarding that
M2 > N in this small example case). We find the set of distances D = D(0) ∪D(1) ∪
D(2) ∪ D(3) with

D(0) = {1, 5, 7, 9, 11, 15}, D(1) = {2, 6, 10, 14}, D(2) = {4, 12}, D(3) = {8}.
Since 8 ∈ D all even values σ have to be removed from � = {1, 2, . . . , 15} and we
obtain �(0) = {1, 3, 5, 7, 9, 11, 13, 15}. Now, we compute

T (0) = {1, 3, 7, 9, 13, 15}, T (1) = T (2) = T (3) = {1, 3, 5, 7, 9, 11, 13, 15}.
Thus, �(1) = �(0) − T (0) = {5, 11} and these are the only parameters ensuring the
distance dσ ≥ 2. Indeed, 5I (4) = {5, 7, 9, 1, 14} with d5 = 2. The corresponding
Vandermonde matrix V5(5) possesses the condition 3.02. Observe that σ = σ4 =
11 = 16 − 5 gives the same result by “reflection”.

In step j = 5, having computed x(5) ∈ C
32 with I (5) = {1, 5, 6, 13, 27}, i.e.,

N = 32, M = 5, we find

D(0) = {1, 5, 7, 11, 21, 25, 27, 31}, D(1) = {6, 10, 14, 18, 22, 26},
D(2) = {4, 12, 20, 28}, D(3) = {8, 24}, D(4) = ∅.

To obtain �(0), we have to remove thus all multiples of 4 and get

�(0) = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31}.

Further, we find

T (0) = {1, 3, 9, 13, 19, 23, 29, 31}, T (1) = {3, 5, 7, 9, 11, 13, 19, 21, 23, 25, 27, 29},
T (2) = T (3) = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}.

Numer Algor

Thus,

�(1) = �(0) − T (0) = {2, 5, 6, 7, 10, 11, 14, 15, 17, 18, 21, 22, 25, 26, 27, 30},
�(2) = �(1) − 2T (0) − T (1) = {10, 15, 17, 22},
�(3) = �(2) − 3T (0) = {10, 15, 17, 22},
�(4) = �(3) − 4T (0) − 2T (1) − T (2) = ∅.

Thus, σ5 = 10 and σ5 = 15 are the optimal parameters in this case achieving both a
distance dσ = 4 between neighboring knots, while 17 and 22 are the corresponding
“reflections”.

Application to the iterative procedure In order to apply the above ideas for con-
structing an optimal σ in the sparse FFT Algorithm 2.3, we simplify the procedure.
We distinguish the following two cases: either the number Mj of nonzero values
in x(j) is the same as in the previous step, i.e., Mj = Mj−1, or it increases, i.e.,
Mj > Mj−1. For the first case, we will show in the next theorem that, supposed that
a suitable parameter σj−1 has been found already in step j −1, then σj = 2σj−1 will
be a suitable parameter in step j and moreover, the obtained Vandermonde matrices
will coincide. In the second case, we can simplify the above procedure since in this
case D(j−1) = {2j−1} will appear.

Theorem 4.2 Let σj−1 be the parameter that has been used in the iterative
procedure in order to obtain a well-conditioned Vandermonde matrix VMj−1 =
(

ω
σ(j−1)n(j−1)

r

2j−1

)Mj−1

p,r=1
in step j − 1 of Algorithm 2.3 to compute x(j), where 0 <

n
(j−1)
1 < . . . < n

(j−1)
Mj−1

< 2j−1 denotes the support of x(j−1). Then, if Mj = Mj−1,
the parameter σj = 2σj−1 produces the same Vandermonde matrix in the iteration
step j , i.e.,

VMj
=

(

ω
2σj−1(p−1)n(j)

r

2j

)Mj

p,r=1
= VMj−1 .

Proof Since Mj = Mj−1, each support index n
(j)
r of x(j) is related to n

(j−1)
r by

n
(j)
r ∈ {n(j−1)

r , n
(j−1)
r + 2j−1}.

Thus,
2σj−1(p − 1)n(j)

r mod 2j = 2σj−1(p − 1)n(j−1)
r mod 2j

and hence,

ω
2σj−1(p−1)n(j)

r

2j = ω
2σj−1(p−1)n(j−1)

r

2j = ω
σj−1(p−1)n(j)

r

2j−1 ,

i.e., the entries of VMj
and VMj−1 coincide.

Reconsidering Example 4.1, for j = 4 and j = 5 we obtained the optimal param-
eters σ4 = 5 and σ5 = 10, respectively. In this case, we had M4 = M5 = 5. Thus, the
choice σj = 2σj−1 can be even optimal regarding the optimization problem (4.1).

Numer Algor

Let us now consider the second case Mj > Mj−1. This case can only occur if (at

least) one support index n
(j−1)
k splits into two new support indices n

(j)
k = n

(j−1)
k and

n
(j)
k+s = n

(j−1)
k +2j−1. Thus, D contains the distance 2j−1 and therefore D(j−1) �= ∅

which means that the set �(0) contains only the odd integers in the range {1, . . . , N −
1} with N = 2j . Hence, all sets of the form 2kT (r), k ∈ N, r ∈ {0, . . . j − 1} are
disjoint from �(0) and the evaluation of �(L) with L = 2r L̄ in (4.3) simplifies to

�(L) = �(L−1) − L̄T (r)

= �(0) −
	L/2

⋃

k=1

(2k − 1)T (0) −
	L/4

⋃

k=1

(2k − 1)T (1) − . . . −
	L/2j−1

⋃

k=1

(2k − 1)T (j−2).

Applying the above formula, we can iteratively determine the optimal parameter σ

by computing the sets �(0), �(1), . . . and choosing σ ∈ �(L′) such that �(L) =
∅ for all L > L′. But as this means that we have to consider all odd integers in
{1, . . . , N/2 − 1}, the computation of σ in this way is very expensive.

Therefore, we propose two different methods for a more efficient computation of
σ that we describe in the following. The first approach is based on the idea that we
can restrict our search to parameters σ which give “sufficiently good” distances. In
the second approach, we restrict the number of regarded σ ’s in advance in order to
reduce the computational effort.

First method By Theorem 3.2, we already have N

M2 ≤ d ≤ N
M
. Let us assume that

there exist odd distances in D, i.e., D(0) �= ∅. Now, we fix the largest odd integer
being smaller than N/M ,

d̃ = 2

⌊

N

2M
+ 1

2

⌋

− 1 <
N

M
,

since this would be the optimal distance “dσ̃ ” that we can hope for. We compute
all parameters σ satisfying σd = d̃ modN for at least one distance d ∈ D. Since
d̃ is odd, we can restrict our search to the elements d ∈ D(0). For each distance
d ∈ D(0) with d < N/2 we apply the following procedure: We compute σ satisfying
σd = d̃ modN , i.e., σ = d̃d−1 modN , where d−1 has been already computed in
T (0). For the obtained σ ’s, we compute σI (j), order the values of this set by size and
determine the minimal distance dσ between neighboring values. In this computation,
we can neglect the parameters σ ∈ T (0) if there is at least one parameter σ �∈ T (0),
see also Example 4.7.

Inspecting all distances dσ found in this way, we choose the parameter σ that
produces the largest minimal distance. If there is more than one σ achieving this

largest distance, we choose the σ for which the sum
∣

∣

∣

∑M
k=1 ω

σnk

N

∣

∣

∣ is minimal. We

only have to consider distances in D(0) with d < N/2, as the remaining distances
N − d give “reflected” sets (n − σ)I (j) with the same minimal distances. Thus, the
number of relevant distances in D(0) is bounded by M2/4.

Numer Algor

Let us first give an example illustrating the computation of σ as above. Afterwards,
we extend the procedure for the case when D(0) = ∅ and summarize the algorithm
for the computation of σ .

Example 4.3 Let us assume, we are given x(7) ∈ C
128 with the set of nonzero indices

I (7) = {0, 5, 6, 64}. In this case, the sparsity changes in the last iteration step, and
we have M7 = 4 > M6. We obtain the sets D = D(0) ∪ D(1) ∪ D(6) with

D(0) = {1, 5, 59, 69, 123, 127}, D(1) = {6, 58, 70, 122}, D(6) = {64}.
Further, it follows that

T (0) = {1, 77, 115, 13, 51, 127}, T (1) = {43, 107, 53, 117, 11, 75, 21, 85},
where the order of the entries in T (0) and T (1) corresponds to that in D(0) resp. D(1),

i.e., we have, e.g., 5−1 mod 128 = 77. We choose d̃ = 2
⌊

1
2

⌈

N
M

⌉

⌋

− 1 = 31 as

optimal distance value. Considering the elements in D(0), we obtain the following
cases:

a) d1 = 1: From 1σ = 31mod 128, we get σ := 31 and 31I (7) = {0, 27, 58, 64}.
Thus, this set gives only a minimal distance 6.

b) d2 = 5: From 5σ = 31mod 128, we get σ = 77 ·31mod 128 = 83mod 128 and
83I (7) = {0, 31, 114, 64}. Hence, σ = 83 leads to a minimal distance 14.

c) d3 = 59: From 59σ = 31mod 128, we get σ = 115·31mod 128 = 109mod 128
and 109I (7) = {0, 33, 14, 64}. Thus, σ = 109 leads to the distance d = 14 as
well.

Comparing σ = 83 and σ = 109, we obtain in the first case |ω0
128 + ω31

128 +
ω114
128 + ω64

128| = 0.8992 while in the second case |ω0
128 + ω33

128 + ω14
128 + ω64

128| =
1.7864. Therefore, we prefer σ = 83. The corresponding (4 × 4)-Vandermonde
matrix possesses the condition 3.2199 for σ = 83.

The optimal parameter in this small example is σ = 59 with the corresponding
index set 59I (7) = {0, 39, 98, 64}. This yields the optimal distance dσ = 25 for
which the Vandermonde matrix achieves the condition 1.4535.

If D(0) = ∅, then we consider D(1). As mentioned before, all distances d ∈ D(1)

are of the form d = 2 · d̄ for some odd d̄ ∈ {1, 3, . . . , N/2−1}. Therefore, we choose
d̃ = 4

⌊

N

4M
+ 1

2

⌋

− 2,

being the largest even integer smaller than N
M

that is divisible by 2 but not by 4. Then,
we compute for each distance d ∈ D(1) the parameter σ which achieves d̃, i.e.,

σ = d̃

2

(

d

2

)−1

mod
N

2
.

As above, from the obtained set of σ ’s we choose the σ for which the minimal
distance between neighboring values in the ordered set σI (j) is maximal and, if

there are several possibilities, the one for which the sum
∣

∣

∣

∑M
k=1 ω

σnk

N

∣

∣

∣ is minimal.

Numer Algor

Here again, we can safe computation time, since if not all found σ ’s are in T (1), we
can restrict the computation of these ordered sets σI (j) to σ �∈ T (1).

If D(0) = D(1) = ∅, but D(2) �= ∅, we proceed similarly choosing the optimal
distance

d̃ = 8

⌊

N

8M
+ 1

2

⌋

− 4

and computing the parameters σ by

σ = d̃

4

(

d

4

)−1

mod
N

4

for all d ∈ D(2), etc.
We summarize our first method to find a parameter σ where we try to achieve an

optimal distance.

Algorithm 4.4 (Computation of σ if Mj > Mj−1, choosing “optimal” d̃)

Input: N = 2j

Index set I (j) containing M indices 0 ≤ n1 < n2 < · · · < nM < N .
Output: σ = σj such that σD contains at least once the “optimal distance” d̃.

1. Compute the pairwise distances between all n1, . . . , nM and form D. Form the
subsets D(0), . . . , D(j−1) according to Eq. (4.2). Fix the smallest integer � such
that D(�) �= ∅. Compute the set T (�).

2. Compute d̃ := 2�+1
⌊

N

2�+1M
+ 1

2

⌋

− 2� as “optimal” distance value.

3. Set � := ∅.
For all elements d ∈ D(�) with d < N/2 do

• Compute

σ = d̃

2�

(

d

2�

)−1

modN/2�.

• Form � = � ∪ {σ }.
4. If � − T (�) �= ∅ then set � = � − T (�).
5. For all σ ∈ � do

• Form σI (j). Order the elements of σI (j) by size and compute the smallest
distance L′ between neighboring values in σI (j).

6. Choose the σ ∈ � that leads to the largest minimal distance L′ of neighboring
values. If there are several parameters σ achieving the same distance, choose

the σ which minimizes the sum
∣

∣

∣

∑M
k=1 ω

σnk

N

∣

∣

∣.

The computational effort to find σ using this algorithm is at most O(M2). The set
D contains at most M(M − 1) entries. Using a distance matrix, where the (�, k)th
entry is n� − nk modN , we can exploit the computations from the previous iteration
steps and only have to change (or add) single rows and corresponding columns if one

Numer Algor

entry n
(j−1)
k shifts to n

(j)
k = n

(j−1)
k + N/2 or if Mj > Mj−1 and entries n

(j−1)
k split

into n
(j)
k = n

(j−1)
k and n

(j)

k+1 = n
(j−1)
k +N/2. The computation of T (�) also iteratively

uses the values found in the previous step, where we exploit that for nk ·n′
k = 1modN

it follows that either nk · n′
k = 1mod 2N or nk · (n′

k + N) = 1mod 2N .

Second method We present a second idea for determining a suitable parameter σ .
This time we limit the set of possible parameters σ in advance. As already seen,
only odd parameters σ have to be considered when Mj > Mj−1. Additionally, our
numerical experiments indicate that prime numbers might be a good choice. Hence,
the second idea for choosing a suitable σ is to restrict the search to prime numbers.
In order to limit the computational effort, we propose here to choose σ among the M

larges primes being smaller than N/2 which has achieved good results in practice.
We summarize the second algorithm using prime numbers.

Algorithm 4.5 (Computation of σ if Mj > Mj−1, using prime numbers)

Input: N = 2j , set � of M largest prime numbers smaller than N/2,
Index set I (j) containing M indices 0 ≤ n1 < n2 < · · · < nM < N .

Output: σ = σj prime.

1. For all σ ∈ � do

(a) Compute the set σI (j).
(b) Order the elements of σI (j) by size and compute the smallest distance L′

between neighboring values.

2. Choose the σ ∈ � that leads to the largest minimal distance L′ of neighboring
values. If there are several parameters σ achieving the same distance, choose

the σ which minimizes the sum
∣

∣

∣

∑M
k=1 ω

σnk

N

∣

∣

∣.

Remark 4.6 If the largest maximal distance L′ is too small compared to the optimal
distance N/M , we recommend to extend the matrix VM,M to V2M,M by taking just
more rows. Keep in mind that taking all N rows would even lead to the optimal
condition 1. Observe that the QR decomposition of this rectangular Vandermonde
matrix has still a complexity of O(M2), see [4].

We finish the section by presenting a larger example.

Example 4.7 Let N = 214 = 16384, M = 17 and let

I = I (14) := {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
be the set of nonzero indices, such that xk = 1 for k ∈ I (14) and xk = 0 for k �∈ I (14).
Assume that x̂ ∈ C

16384 is given.
We apply Algorithm 2.3 to recover x. We summarize our findings at each level in

Table 1.

Numer Algor

Table 1 Sparsity Mj and obtained index sets at each level for Example 4.7

j 2j Mj Method Obtained new index set I (j+1)

0 1 1 FFT(1) {0, 1}
1 2 2 FFT(2) {0, 1, 2, 3}
2 4 4 FFT(4) {0, 1, 2, 3, 4, 5, 6, 7}
3 8 8 FFT(8) {0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15}
4 16 13 FFT(16) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 24, 25, 26}
5 32 16 FFT(32) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 25, 56, 57, 58}
6 64 17 FFT(64) {6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 25, 56, 57, 58}
7 128 17 FFT(128) {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 82, 83, 89}
8 256 17 FFT(256) {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 210, 211, 345}
9 512 17 σ = 88 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 210, 211, 345}
10 1024 17 σ = 176 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
11 2048 17 σ = 352 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
12 4096 17 σ = 704 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}
13 8192 17 σ = 1408 {6, 7, 8, 9, 10, 11, 12, 13, 56, 57, 58, 79, 80, 81, 345, 1234, 1235}

For j = 0, . . . , 8, the FFT is applied since 2j < M2
j . We obtain x(9) ∈ C

512

with sparsity M9 = 17. Since M2
9 = 289 < 512, we apply for j = 9 the special

reconstruction step using the Vandermonde system. Since the number of nonzero
entries has not changed since step j = 6, we may go back there to find σ . In that case,
M = 17, and N = 26 = 64, we cannot achieve a distance better than 	N/M
 = 3.
By previous observations, each odd σ already provides a distance 1. We find

D(0) = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 31, 33, 37, 39, 41, 43, 45, 47,
49, 51, 53, 55, 57, 59, 61, 63}.

Hence, D(0) contains all odd numbers up to 29 and 35. Therefore, only σ with 29σ =
1mod 64 or with 35σ = 1mod 64 need to be considered since all other odd σ ’s are
in T (0) and therefore cannot be in �(1). We obtain �(1) = {11, 53}. With σ = 11 we
find

11I (6) = {2, 4, 6, 13, 15, 17, 19, 24, 35, 37, 40, 46, 48, 51, 57, 59, 62}.

such that d = 2. The second parameter σ = 53 = 64 − 11 provides a “reflected”
set modulo 64. Algorithm 4.4 gives us σ = 53 here, and Algorithm 4.5 gives the
result σ = 11, since we have to check up to 17 primes smaller than 32 including 11.
Having found σ6 = 11, we can choose σ9 = 8σ6 = 88 by Theorem 4.2. We obtain in
this case the condition 97.37 of the corresponding Vandermonde matrix, compared
to 6.37 · 1015 for taking just σ = 1. Solving the equation system yields x(10).

Since the number M of nonzero entries is already achieved, we can just take
σ10 = 2σ9 = 176, σ11 = 2σ10 = 352, etc. The (17 × 17)-Vandermonde matrix

Numer Algor

applied to reconstruct x(j) for j ≥ 10 exactly coincides with the Vandermonde
matrix for j = 9. Therefore, we can use the QR decomposition that has already
been computed in the previous iteration step, thereby further reducing the numeri-
cal effort. Summarizing the arithmetical complexity in this case, we observe that we
need O(29 log 29) operations to compute x(9) and afterwards one QR decomposition
of the Vandermonde matrix with effort O(M2). Finding σ and solving the Vander-
monde system for the last four steps then only requires a matrix multiplication and
a back substitution with effort O(M2). Since 29 < 2M2, the complete effort is here
O(M2 log N

M2).

5 Numerical experiments

First, we present some numerical experiments showing that the two proposed Algo-
rithms 4.4 and 4.5 work well in practice. For different values of N and sparsity M ,
we consider randomly chosen sets of M indices, compute the minimal distance in the
set of distances D as well as the minimal distances in σD for σ achieved in Algo-
rithm 4.4 resp. 4.5. For each fixed pair (N, M), we have computed these distances for
100 randomly chosen index sets of size M in {0, . . . , N − 1}. The obtained average
distances are presented in Table 2.

The findings indicate that the proposed algorithms in any case strongly improve
the minimal distance and hence also the matrix condition when they are applied in
our reconstruction algorithm. Algorithm 4.4 which aims at achieving a least once an
“optimal” distance d̃ performs slightly better than Algorithm 4.5. In return, Algo-
rithm 4.5, which only considers M different primes for σ , provides a very simple and
efficient possibility to determine a suitable σ .

Finally, we consider the arithmetical complexity of our new Algorithm 2.3 in more
detail and compare the runtime of the algorithm with the FFT inMatlab. In Algorithm
2.3, we compute x(j+1) from x(j) for j = 0, . . . , J −1. As long as the found sparsity
Mj ≤ M satisfies M2

j > 2j , we employ the FFT of length 2j to compute x(j+1).
Thus, for the iteration steps j = 0, . . . , L with L = 2	log2 M
, we need at each step

Table 2 Average of largest minimal distances achieved by Algorithm 4.4 resp. 4.5 for different values of
N and M and 100 randomly chosen index sets

N M Minimal Minimal distance in σD, Minimal distance in σD,

distance in D σ from Algorithm 4.4 σ from Algorithm 4.5

27 = 128 4 8.65 16.66 16.61

210 = 1024 4 73.54 138.88 139.09

210 = 1024 20 2.96 12.09 9.16

215 = 32 768 4 2124.21 4389.99 4181.90

215 = 32 768 20 72.34 372.96 285.23

215 = 32 768 50 14.93 88.42 57.59

Numer Algor

one DFT(2j) and 2j+1 further operations. Using the Sande-Tukey algorithm with
3
2N log2 N operations for a DFT(N), we require

L
∑

j=0

(

3

2
j2j + 2j+1

)

= 3(2LL+1)+2L+2 = 2L(3L+4)+3 ≤ M2(6 log2 M+4)+3

operations, where we disregard the needed comparisons. In particular, for M2 > N ,
the arithmetical complexity of the algorithm is still comparable with the usual FFT
algorithm. For the remaining iteration steps, j = L + 1, . . . , J − 1, we have to build
the partial Fourier matrix A(j+1). We assume that the powers of ωN are predefined
as for the usual FFT. The evaluation of σ using Algorithm 4.5 requires 2M2 +O(M)

operations and M sortings of vectors of length M . We keep in mind that σ needs
not to be computed, if the sparsity does not change any longer during the iteration.
The QR factorization of Demeure [4] possesses computational costs of 8.5M2 +
O(M) such that the equation system in (2.8) can be solved using 12.5M2 + O(M)

operations, where the computation of σ is included for each second step. Summing
up, we obtain

12.5M2((log2 N) − 1 − L) + O(M) ≤ 12.5M2((log2 N) − 2(log2 M)) + O(M)

operations for the remaining iteration steps, disregarding comparisons and sorting.
Together, we have a complexity of M2(12.5 log2 N − 19 log2 M + 4) + O(M) for
M2 < N and N(3 log2 N + 4) + O(N) for M2 ≥ N disregarding comparisons and
sorting. The following Table 3 gives a comparison of these complexities for sparse
signals with M = 5, 10, 20.

A primitive Matlab implementation of all algorithms in this paper can be found at
http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software.
Our current implementation is less efficient than the arithmetical complexity suggests

Table 3 Complexity of the FFT
of length N = 2j in comparison
to Algorithm 2.3 with sparsity
M = 5, 10, 20, where sorting
and comparison is not taken into
account

J DFT(2J) M = 5 M = 10 M = 20

10 15360 2122 6588 18753

11 33792 2435 7838 23753

12 73728 2747 9088 28753

13 1590744 3060 10338 33753

14 344064 3372 11588 38753

15 737280 3685 12838 43753

16 1572864 3997 14088 48753

17 3342336 4310 15338 53753

18 7077888 4622 16588 58753

19 14942208 4935 17838 63753

20 31457280 5247 19088 68753

http://na.math.uni-goettingen.de/index.php?section=gruppe&subsection=software

Numer Algor

Fig. 1 Runtime comparison (in
seconds) of the FFT (blue line)
and our algorithm with M = 5
(red line), M = 10 (black dotted
line), M = 20 (cyan dash-dots
line) and M = 30 (green dashed
line) for length N = 2j with
j = 12, . . . , 22

12 14 16 18 20 22
10

−4

10
−3

10
−2

10
−1

10
0

but can still improve the Matlab FFT algorithm for strong sparsity. In Fig. 1, we
compare the runtime of the FFT of length 2j with our algorithm, with different
sparsities M . Here, we have used a slight modification of Algorithm 2.3, where M

is known in advance such that the first L = 2	log2 M
 steps of Algorithm 2.3 can
be replaced by one FFT of length 2L+1. The runtimes in Fig. 1 have been obtained
by computing the average runtime for 10 tests with randomly chosen sparse vectors
with sparsities M = 5, 10, 20, 30.

Let us finish this section with some final remarks. There are several issues still
open according to the considered approach that particularly regard a more efficient
implementation and a further improvement of the sparse FFT algorithm. As the
numerical experiments show, the proposed parameter selection provides sufficiently
small condition numbers of the Vandermonde matrix in most of the cases. However,
particularly for larger M , the condition number gets too large, such that the algorithm
cannot process noisy data in a suitable way. Fortunately, the Algorithms 4.4 and 4.5
for parameter selection give us an essential hint about the condition number of the
Vandermonde matrix in the next iteration step, since the largest minimal distance
L′ of neighboring knots is computed. This knowledge could be used to decide to
apply rectangular Vandermonde matrices with more rows at single levels (and more
corresponding Fourier values).

Possible improvements in runtime of the algorithm regard for example the case
when the sparsity does not change from one level to the next. Then, we can use
the same Vandermonde matrix as at the previous level and just directly take the
corresponding QR decomposition again for solving the new equation system.

Acknowledgments The authors thank the anonymous referee for valuable suggestions to improve this
manuscript. This work is supported by the Deutsche Forschungsgemeinschaft (DFG) in the project PL
170/16-1 and in the framework of the RTG 2088.

References

1. Akavia, A.: Deterministic sparse fourier approximation via approximating arithmetic progressions.
IEEE Trans. Inform. Theory 60(3), 1733–1741 (2014)

Numer Algor

2. Bittens, S.: Sparse FFT for functions with short frequency support. Dolomites Res. Notes Approx. 10,
43–55 (2017)

3. Berman, L., Feuer, A.: On perfect conditioning of Vandermonde matrices on the unit circle. Electron.
J. Linear Algebra 16, 157–161 (2007)

4. Demeure, C.J.: Fast QR factorization of Vandermonde matrices. Linear Algebra Appl. 122–124, 165–
194 (1989)

5. Giesbrecht, M., Labahn, G., Lee, W.-S.: Symbolic-numeric sparse interpolation of multivariate
polynomials. J. Symbolic Comput. 44(8), 943–959 (2009)

6. Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: Leykin, A. (ed.) Proceedings
of the 2011 International Symposium on Symbolic and Algebraic Computation ISSAC 2011, pp. 123–
130. ACM

7. Gilbert, A., Indyk, P., Iwen, M.A., Schmidt, L.: Recent developments in the sparse fourier transform.
IEEE Signal Process. Mag. 31(5), 91–100 (2014)

8. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse fourier
transform. In: Proc. 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pp.
1183–1194 (2012)

9. Hassanieh, H., Adib, F., Katabi, D., Indyk, P.: Faster GPS via the sparse fourier transform. In: Proceed-
ing Mobicom 2012, Proceedings of the 18th Annual International Conference on Mobile Computing
and networking, pp. 353–364 (2012)

10. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10, 303–338
(2010)

11. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Com-
put. Harmon. Anal. 34, 57–82 (2013)

12. Janakiraman, N.T., Vem, A., Narayanan, K.R., Chamberland, J.-F.: Sub-string/pattern matching in
sub-linear time using a sparse Fourier transform approach, preprint, arXiv:1704.07852v1

13. Moitra, A.: Super-resolution, extremal functions and the condition number of Vandermonde matri-
ces. In: STOC ’15 Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pp. 821–830 (2015)

14. Montgomery, H.L., Vaughan, R.C.: Hilbert’s inequality. J. London Math. Soc. (2) 8, 73–82 (1974)
15. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data

Anal. 5(1), 1350003 (2013)
16. Pawar, S., Ramchandran, K.: Computing a k-sparse n-length discrete Fourier transform using at most

4k samples andO(kk) complexity. IEEE Int. Symp. Inf. Theory, 464–468 (2013)
17. Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and ESPRIT with

application to sparse FFT. Frontiers Appl. Math. Stat. (2016)
18. Plonka, G., Wannenwetsch, K.: A deterministic sparse FFT algorithm for vectors with small support.

Numer. Algorithms 71(4), 889–905 (2016)
19. Plonka, G., Wannenwetsch, K.: A sparse fast Fourier algorithm for real non-negative vectors. J.

Comput. Appl. Math. 321, 532–539 (2017)
20. Segal, B., Iwen, M.A.: Improved sparse Fourier approximation results: faster implementations and

stronger guarantees. Numer. Algor. 63(2), 239–263 (2013)

http://arxiv.org/abs/1704.07852v1

	Deterministic sparse FFT for M-sparse vectors
	Abstract
	Introduction
	Multi-scale reconstruction
	Idea of the algorithm

	Adaptive approach for stable reconstruction
	Efficient parameter computation
	Construction of (0)
	Construction of (1)
	Construction of (L)
	Application to the iterative procedure
	First method
	Second method

	Numerical experiments
	Acknowledgments
	References

