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Abstract—Over the last two decades, much effort has been devoted to accurately measuring Bidirectional Reflectance Distribution

Functions (BRDFs) of real-world materials and to use efficiently the resulting data for rendering. Because of their large size, it is difficult

to use directly measured BRDFs for real-time applications, and fitting the most sophisticated analytical BRDF models is still a complex

task. In this paper, we introduce Rational BRDF, a general-purpose and efficient representation for arbitrary BRDFs, based on

Rational Functions (RFs). Using an adapted parametrization, we demonstrate how Rational BRDFs offer 1) a more compact and

efficient representation using low-degree RFs, 2) an accurate fitting of measured materials with guaranteed control of the residual

error, and 3) efficient importance sampling by applying the same fitting process to determine the inverse of the Cumulative Distribution

Function (CDF) generated from the BRDF for use in Monte-Carlo rendering.

Index Terms—BRDF, fitting, importance sampling, Monte-Carlo rendering

Ç

1 MOTIVATION AND PREVIOUS WORK

THE BRDF is the keystone of the rendering equation [1],
and thus of any lighting simulation process, since it

describes the light reflection at a surface location. Conse-
quently, building a comprehensive BRDF representation
suitable to explain, describe, and/or simulate all complex
phenomena involved in this process remains an active topic
both in physics and computer graphics. The large number
of scientific publications dealing with BRDF can mainly be
divided into two families, depending on whether they
propose an analytical formulation, or rather a numerical
process to approximate measured BDRF data.

1.1 Closed-Form versus Numerical Representations

Papers in the first family present various models intended
to represent some observed phenomena using either an
empirical or a theoretical framework. These papers usually
propose a closed-form formulation for the BRDF, parame-
trized in a manner that allows for the approximation of a
limited set of real-world reflectance behaviors. These
models range from efficient ad hoc formulations such as
Phong’s model [2], to sophisticated ones that include the

complex effects of wave optics [3], [4], [5]. The most
common group of models [6], [7], [8], [9], [10], [11] exploit
the microfacet theory [12].

Papers in the second family seek instead an efficient
approach for representing the measured data using a set of
basis functions, by means of standard linear decomposition
techniques. Of these, some focus on (hemi)spherical basis
functions, such as spherical harmonics (SHs) [13], [14],
Zernike polynomials [15], spherical wavelets [16], or
spherical radial basis functions [17]. Others apply dimen-
sion-reduction techniques such as homomorphic factoriza-
tion [18], singular value decomposition [19], [20], or
nonnegative factorization [21], [22]. Their main limitation
resides in the fact that the number of coefficients required to
get an accurate result grows quickly with the directional
frequency of the BRDF (quadratically, as shown by Mahajan
et al. in [23]), and thus becomes intractable for highly
specular BRDFs.

Measured data may also be projected onto the para-
metric space of analytical BRDF models. In fact, some
models are specifically designed for numerical fitting [7],
[24], [25]. Compared to linear decomposition, fitting can
easily handle materials with sharp specularity. However,
this typically involves nonlinear minimization techniques
(e.g., the Levenberg-Marquardt algorithm), which are quite
slow, and reaching a global minimum of the function to be
optimized is in general not guaranteed. Moreover, as
analytical models have usually been designed for a specific
class of materials, they cannot accurately fit arbitrary BRDFs
[26]. Using multiple lobes or combining different models
may improve accuracy, but due to the many local minima,
the optimization quickly becomes impractical [21], [26].

1.2 BRDF Importance Sampling (IS)

Accurate fitting of measured data only solves half of the
problem. Plugging the fitted data into a rendering engine,
while preserving accurate and efficient computation, is far
from straightforward. Over the years, Monte-Carlo-based
techniques (see [27] for a comprehensive survey) have
become the standard approach for generating realistic
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. C. Schlick is at Université Bordeaux Segalen with LaBRI (CNRS:
UMR5800), F-33400 Talence, France. E-mail: schlick@labri.fr.

. X. Granier is at INRIA Bordeaux Sud-Ouest, with LaBRI (CNRS:
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images. As their convergence speed is proportional to the
inverse square root of the number of samples and to the
initial variance, it is critical to exploit efficient variance
reduction techniques, the most common one being Impor-
tance Sampling according to the BRDF.

As detailed in Section 4.1, performing IS requires the
inverse of the BRDF’s Cumulative Distribution Function
(CDF). There are basically two approaches to compute the
inverse of the CDF. The first is to fit the measured data with
an analytical BRDF model [7], [8], [9], [10], [24], [28] that
offers a readily invertible CDF. In addition to the previously
mentioned weaknesses of nonlinear fitting, all these
approaches (except for [28]) ignore the cosine factor that
scales the BRDF according to the incident light direction,
reducing the efficiency of IS for grazing angles of light. The
second approach consists of tabulating the CDF into a
sorted data structure (e.g., binary search tree) and comput-
ing the inverse function on the fly in this structure [21], [29],
[30]. A major benefit of this approach is that the cosine
scaling factor can be trivially included, greatly improving
the efficiency of IS. Unfortunately, the storage cost is several
orders of magnitude higher than with the first approach,
and the iterative data retrieval process has a nonconstant
computation cost.

In this paper, we introduce the following contributions:

. a general framework based on Rational Functions
(RFs), which efficiently represents BRDFs and CDFs
without having to separate diffuse and specular
components.

. an associated fitting technique that scales linearly
with the desired accuracy and memory footprint. The
involved optimization is that of a strictly convex
function for which the global minimum is guaran-
teed to be reached, provided that a feasible solution
exists.

. a new Monte-Carlo estimator for importance sam-
pling rendering, which does not require storage of
the Probability Density Function (PDF) when com-
bined with our representation.

2 RATIONAL FUNCTIONS FRAMEWORK (RFF)

In approximation theory, Rational Functions are recognized
for their greater expressivity compared to polynomials.
They are preferred in several numerical approximation
problems in scientific computing [31]. A Rational Function
of a finite dimensional vector xx of real variables xi is

rn;mðxxÞ ¼
pn;mðxxÞ
qn;mðxxÞ

¼
Pn

j¼0 pj bjðxxÞPm
k¼0 qk bkðxxÞ

; ð1Þ

where the nþ 1 (resp. mþ 1) coefficients of the numerator
(resp. denominator) are represented by the real numbers
pj (resp. qk), and where bjðxxÞ and bkðxxÞ are multivariate
basis functions. We use multinomials in this paper,
because they can be evaluated efficiently. We order them
by increasing total degree, for example, in the bivariate
case: b0 ¼ 1; b1 ¼ x1; b2 ¼ x2; b3 ¼ x2

1; b4 ¼ x2
2; b5 ¼ x1 x2; b6 ¼

x3
1; . . . Therefore, for a given degree we favor adding first

smoother basis functions (e.g., x2
1) rather than more

oscillating ones (e.g., x1 x2). Furthermore, both pn;mðxxÞ=

qn;mðxxÞ and �pn;mðxxÞ=�qn;mðxxÞ take the same function
values for finite nonzero �, and the coefficients pj and qk
need only be determined up to a multiplicative constant
that can be used to normalize the representation of rn;mðxxÞ.
Therefore, rn;mðxxÞ has no more than nþmþ 1 free
coefficients.

RFs are ideal for approximating data that exhibit abrupt
changes which are characteristic for specular lobes. An
illustration of approximation of lobe-like functions using
RFs is given in Fig. 2, where it can be observed that a low
degree RF can easily represent abrupt variations followed
by regions of almost constant values, whereas a polynomial
with the same number of coefficients cannot. Such
combinations of steep changes with flat regions are quite
common in measured BRDF data and their corresponding
CDF. However, in computer graphics, RFs have seldom
been employed (except for the ad hoc BRDF model
proposed by Schlick [8]).

Algorithm 1 presents an overview of our fitting
procedure based on the work of Salazar Celis et al. [32]. A
preprocessing step is required before the fitting itself, for
data reparametrization and noise removal. Contrary to
classical nonlinear methods, our Rational Functions Frame-
work allows full control of the residual error by setting
intervals Fi around each measured value, and the involved
optimization is guaranteed to converge to a global mini-
mum (cf. Section 2.1). Besides the measurements, the
memory budget (i.e., the maximum number of coefficients),
and the interval widths, the key part of the algorithm
requires solving a quadratic programming problem P
which is detailed in the following subsections.

Algorithm 1. Overview of the fitting procedure.

pdata ¼ PREPROCESSED data

Cmax ¼ RF maximum number of coefficients

fFig ¼ intervals for measured value xxi of pdata

b0; . . . ; bCmax�1 are ordered basis functions

1: FITDATA (pdata, Cmax, fFig)

2: function FITDATA (data, Cmax, fFig)
3: FITRATFUNC (data, Cmax, fFig)
4: while no solution do

5: increase the width of all intervals fFig
6: solution ¼ FITRATFUNC (data, Cmax, fFig)
7: end while

8: return solution

9: end function

10: function FITRATFUNC (data, Cmax, fFig)
11: S ¼ ; Sbest ¼ ; ccn ¼ 1
12: for n ¼ 0; . . . ; Cmax � 1 do

13: for l ¼ n; . . . ; 0 do

14: cn ¼ CONDITIONNUMBER (Aðl; n� lÞ)
15: S ¼ SOLVE (Pðl; n� lÞ, data, fFig)
16: if S 6¼ ; and cn < ccn then

17: ccn ¼ cn
18: Sbest ¼ S
19: end if

20: end for

21: end for
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22: return Sbest
23: end function

2.1 Problem Statement for Fitting Data with RFs

Assume sþ 1 measured values fi, each of them located at a
vector xxi. Let Fi ¼ ½fi; fi� represent a real-valued interval
placed around each fi. We would like to find a Rational
Function rn;mðxxÞ that interpolates these intervals:

8i ¼ 0; . . . ; s fi � rn;mðxxiÞ � fi; ð2Þ

and this, for the smallest possible value of nþm, with nþ
m � s (usually nþm� s).

It can be shown [32] that a robust solution for rn;mðxxiÞ can
be obtained by solving the following quadratic program-
ming problem Pðn;mÞ:

arg min
cc2IRnþmþ2

jccj2

subject to

AðjÞn;m cc� �jAðjÞn;mj2 � 0; j ¼ 1; . . . ; 2sþ 2

with cc ¼ ðp0; . . . ; pn; q0; . . . ; qmÞt

where AðjÞn;m denotes the jth row of matrix

An;m ¼
b0ðxx0Þ . . . bnðxx0Þ �f0 b0ðxx0Þ . . . �f0 bmðxx0Þ

..

. ..
. ..

. ..
.

b0ðxxsÞ . . . bnðxxsÞ �fs b0ðxxsÞ . . . �fs bmðxxsÞ
�b0ðxx0Þ . . . �bnðxx0Þ f0 b0ðxx0Þ . . . f0 bmðxx0Þ

..

. ..
. ..

. ..
.

�b0ðxxsÞ . . . �bnðxxsÞ fs b0ðxxsÞ . . . fs bmðxxsÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and where j � j2 denotes the euclidean norm. How to choose
the real value � is discussed in [32]. Furthermore, if P has a
solution, it is unique and the returned function rn;m is pole-
free at each measured value, i.e., 8i ¼ 0; . . . ; s; qn;mðxxiÞ > 0.
Whether a solution exists for a specific n and m depends on
the relation between the width of the intervals Fi and the
values n, m, and s. Algorithm 1 may find multiple solutions,
but it always selects the most stable solution by choosing
the one associated with the lowest condition number of
matrix An;m. Although theoretically possible, multiple
solutions are rare for BRDF/CDF fitting. Finally, solving
P can be done with any quadratic programming solver; in
this paper, all RFs are obtained using the qpas routine of the
freely available QPC Matlab interface [33].

In the next section, we introduce linear constraints that
are easily added to P when fitting BRDFs or inverse CDFs.

2.2 Additional Constraints

2.2.1 Value Constraints

Since BRDFs are nonnegative functions, we build value
constraints on the function as a whole into the intervals
right from the start:

8i ¼ 0; . . . ; s fi � 0:

For 2D inverse CDFs (cf. Section 4), we make sure that

8i ¼ 0; . . . ; s 0 � fi � fi � �=2

and similarly for 3D inverse CDFs

8i ¼ 0; . . . ; s 0 � fi � fi � �:

Even though these types of value constraints are only valid
at discrete positions, we found that this approach works
satisfactorily.

2.2.2 Symmetry Constraints

Helmholtz reciprocity (or symmetry) is one of the main
properties of physically based BRDFs and, by construction,
inverse CDFs inherit it. Therefore, it is important to
guarantee that the fitted RFs approximating BRDFs or
inverse CDFs preserve this property. Thanks to the para-
metrization that we use for BRDFs (cf. Section 3.1), we do not
need additional constraints since the half-angle parametri-
zation already includes the symmetry property.

However, for inverse CDFs, we use the classical light-
view parametrization (cf. Section 4.1), and therefore we
enforce symmetry by grouping basis functions that should
have the same coefficients. For example, assume we would
like to fit data with a trivariate RF

rn;mðx1; x2; x3Þ ¼ c0x
3
1x

4
2x3 þ c1x

3
2x

4
1x3 ðc0; c1Þ 2 IR2

and enforce its symmetry for the variables x1 and x2, i.e.,
rn;mðx1; x2; x3Þ ¼ rn;mðx2; x1; x3Þ. Instead of adding equality
constraints between c0 and c1in P, we group the two basis
functions into one:

rn;mðx1; x2; x3Þ ¼ c0

��
x3

1x
4
2 þ x3

2x
4
1

�
x3

�
:

This reduces the size of matrix An;m and hence the size of
the quadratic programming problem.

2.2.3 Monotonicity Constraints

Since inverse CDFs are positive monotonic functions, it is
crucial to enforce the condition that the derivative of the
fitted function is nonnegative. In other words, we want to
ensure the monotonicity of the rational function rn;mðxxÞ ¼
pn;mðxxÞ= qn;mðxxÞ in each of the variables xj:

@rn;m
@xj

ðxxÞ � 0: ð3Þ

Assuming that qn;mðxxÞ > 0, Inequality (3) becomes

@pn;m
@xj

ðxxÞ � pn;mðxxÞ
qn;mðxxÞ

@qn;m
@xj

ðxxÞ:

By using (2), the previous inequality is achieved for all
sample positions xxi if

@pn;m
@xj

ðxxiÞ �
@qn;m
@xj

ðxxiÞ fi and
@pn;m
@xj

ðxxiÞ � fi
@qn;m
@xj

ðxxiÞ:

ð4Þ

This last constraint consists of two additional linear
inequalities for the coefficients p0; . . . ; pn and q0; . . . ; qm per
data point xxi. The effect of adding these constraints can be
seen in Fig. 3, where we show two fitted rational functions,
Fig. 3(left) without and Fig. 3(right) with the added discrete
monotonicity constraints.

2.3 Solving P Efficiently

The speed of the resolution of P greatly depends on the
number sþ 1 of intervals to be interpolated. Furthermore,
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the faster P is solved, the sooner the algorithm is going to
find the optimal solution and return. To quickly find the
couple ðn;mÞ, we propose an adaptive procedure that
operates on a selected small subset of the whole data. The
key observation here is that if the current tested rn;mðxxÞ RF
is not a solution for the selected subset, it cannot be for the
whole data set.

Of the given sþ 1 data intervals, a small number s0 of

intervals are uniformly selected and rð0Þn0;m0
ðxxÞ is computed

such that it satisfies (2) for these s0 data; these s0 intervals are

called the training data. Then, it is checked how many of the

original sþ 1 interval interpolation conditions are automa-

tically satisfied by rð0Þn0;m0
ðxxÞ in addition to the s0 imposed

conditions. Usually, this is quite a large number. The sþ
1� s0 intervals are called the verification data. Among the

violated interval interpolation conditions, we select s1 � s0

(s1 � s0 ¼ 1 in our implementation) additional data points to

compute rð1Þn1;m1
ðxxÞ that satisfies (2) for these s1 data points. In

other words, we update the set of training data. These s1 � s0

additional training data are selected according to where

rð0Þn0;m0
ðxxiÞ deviates most from the given intervals Fi. With

rð1Þn1;m1
ðxxÞ, we then check the new sþ 1� s1 verification data

again. The procedure is repeated until the obtained rational

model satisfies all verification data.

3 RATIONAL FUNCTIONS FOR BRDF

3.1 Parametrization

A BRDF � is a 4D nonnegative function defined on the
euclidean product of two hemispheres and depending both
on the lighting ll and viewing vv directions. The most
common way to express ll and vv is to use the standard zenith
and azimuthal angles ð�l; �lÞ and ð�v; �vÞ: �ð�l; �l; �v; �vÞ,
often denoted by �ðll; vvÞ.

Although most acquisition devices (e.g., gonioreflect-
ometers) cover the acquisition space by uniformly sampling
these coordinates, the computer graphics community
prefers to use the BRDF parametrization introduced by
Rusinkiewicz [34]: �ðll; vvÞ ¼ �ðhh; ddÞ ¼ �ð�h; �h; �d; �dÞ where
hh is the half-vector used in the microfacet theory, and
ð�d; �dÞ are the spherical coordinates of vector ll expressed in
a rotated frame where hh defines the north pole direction.
This parametrization offers several advantages:

1. in the case of isotropic materials (which are invariant
when rotating the surface around its normal vector),
one can set �h ¼ 0 without any loss of generality,

2. the reciprocity of light propagation ensures that �d
can be limited to the range ½0; ��, again without any
loss of generality,

3. as noted by Romeiro et al. [35], for a very common
class of materials called bilateral symmetric, the
domain of �d can even be reduced to the range
½0; �=2�,

4. as several phenomena involved in light reflection are
mostly decorrelated along the different parameter
axes, it is relatively safe to factor the 4D function into
a product (or a sum of products) of two 2D
functions, as done in work on factorization of BRDFs
and SVBRDFs [21], [36].

As the BRDF is intrinsically 3D/4D for isotropic/
anisotropic materials, further dimension reduction cannot
be achieved without generating some undesired folding of
the domain. This can be seen as a standard aliasing process,
where an infinite number of configurations of the 4D space
are projected onto a single configuration in the lower
dimensional space. However, some recent work has shown
that for most isotropic materials, the BRDF can be projected
onto a well-chosen 2D parametric space without severe
visual degradation [35], [37]. Romeiro et al. [35] have
observed that almost all materials of the MERL-MIT
database [20] are visually well approximated by a projection
onto ð�h; �dÞ (see Fig. 7, top and middle rows). Incidentally,
we have observed that the filtering operator involved when
projecting measured data on ð�h; �dÞ sometimes also results
in more visually pleasing rendering results (see Fig. 4).

In this paper, we propose to go a step further and show
that we can accurately approximate the whole 2D projection
of the BRDF �ð�h; �dÞ by a single RF rm;nð�h; �dÞ, defined as
in (1), that we call a Rational BRDF

�ðll; vvÞ � �ð�h; �dÞ � rn;mð�h; �dÞ: ð5Þ

As illustrated in the next sections, a single low-complex-
ity RF is able to approximate isotropic BRDF data well,
without multiple lobe fittings like those required by the
current standard techniques, even when several phenom-
ena (diffuse reflection, forward or backward glossy or
specular reflections, Fresnel effects, etc.) are simultaneously
observed on a given material.

Although isotropic BRDF measurements have been
intensively studied, much less work has been done on fitting
measured anisotropic materials, basically because much less
anisotropic data are publicly available. In Section 5, we
present our adaptation of Rational BRDF to an anisotropic
data model, and discuss the need for high quality measured
4D data sets.

3.2 Rational Approximation of BRDF

The most comprehensive and accurate database of mea-
sured isotropic BRDFs, known as the MERL-MIT BRDF
database, combines over 1 billion individual BRDF measure-
ments generated by Matusik et al. [20]. The measured BRDF
data are available with a 90	 90	 180 angular sampling in
ð�h; �d, �dÞ, which represents a storage amount of 33 MB per
material (the database was last updated in 2006). We have
tested our RF approximation technique on many different
materials from the database, but for clarity of presentation,
we focus here on four representatives of common BRDF
families: beige-fabric (almost perfect Lambertian reflec-
tion), blue-metallic-paint (glossy reflection with
strong chromatic behavior), nickel (specular reflection),
and chrome (almost perfect mirror reflection), which are
presented in Fig. 7(top row).

For each of these materials, we fit, as described in Section 2,
a bivariate rational function rn;mð�h; �dÞ that satisfies (2). Of
course, the behavior of the approximation is determined by
the choice of the intervals Fi ¼ ½fi ; fi � containing �ð�ih; �idÞ,
ði ¼ 0; . . . ; 90	 90� 1Þ, for each of the BRDF values. Ideally,
the widths of these intervals are calibrated such that they
respect the accuracy of each individual measurement. Since
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measurement error bounds are not explicitly available here,
the interval widths are taken such that the renderings are
visually satisfactory, while leaving a reasonable numbermþ
n of coefficients (cf. Fig. 6) in the approximation. As a general
guideline, we control the interval widths with the following
formula:

Fi ¼ ½fi; fi� ¼ ½�ð�ih; �idÞð1� �iÞ; �ð�ih; �idÞ ð1þ �iÞ�;

where �i specifies the desired relative error. Fig. 8 presents
the maximum relative errors obtained for BRDFs. However,
the interval widths (and therefore the �i) are usually not set
uniformly. Instead smaller interval widths near the hemi-
sphere pole and more relaxed widths are chosen near
grazing angles.

For all materials, we noted increased acquisition noise
when approaching grazing angles (�h > 60
 and/or
�d > 60
). In the case of highly specular materials, we also
noted that the acquired BRDF values around the center of
the lobe (�h ¼ 0) are particularly large and subject to noise
as illustrated in Fig. 5 on chrome and nickel BRDFs.
Small interval widths are thus chosen on data with low
noise, leading to a very accurate fit in such a configuration
(as also shown in Fig. 5). However, as confirmed by Figs. 1
and 7, even in the case of materials including very noisy
data and therefore larger interval widths, the rendering
obtained with the fitted function has a very low visual
impact when compared to the rendering based on the
original data.

Fig. 7(bottom row) presents the rendering obtained with
the Rational BRDF approximation of our four selected
materials. The environment map is approximated by using
1,024 directional light sources selected according to their
power in the surrounding environment map. As can be
observed, the visual error (measured in Lab color space) is
approximately of the same magnitude as with the 2D
projected data, but our Rational BRDFs require between 165
and 1,000 times less storage memory (in our current
implementation, each coefficient pj and qk of the RF is stored
as an 8-byte double-precision float). When compared to the
original 3D data, the compression rate ranges from 28,700:1 to
174,000:1. Note that using 4-byte standard floats is likely to be
sufficient in many cases. Finally, for configurations at grazing

angles and for rendering purposes only, we extend our RF by
clamping light and view directions that exceed 75 degrees. As
shown in Fig. 1, this does not introduce visual artifacts. For all
our figures, we used the same clamping for the data and the
RFs in order to illustrate the accuracy of the fitting.

The final approximation errors are summarized in the
table of Fig. 8: we have computed for each material (column
1) the maximum relative error of the 2D data using the
ð�h; �dÞ parametrization (column 2), our 2D RF fitting
against the 2D data (column 3) and against the original
3D data (column 4), and using a nonlinear fitting procedure
with the modified Ashikhmin-Shirley BRDF model as
described by Ngan et al. [26] (column 5). As expected, for
every material and regardless of the representations, the
fitting errors grow with the specularity of the material. As
can be observed, the overall errors of the rational approx-
imations and the Ngan fitting are quite similar. However,
the interval interpolation process has the advantage of
offering full control both on the location and the magnitude
of the errors. We chose to compare with the Ashikhmin-
Shirley model because, as stated by Ngan et al. [26]: “for
single specular lobe, Cook-Torrance, Ashikhmin-Shirley,
and the He models perform well for most of the 100
isotropic materials.” Furthermore, the effect of adding one
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Fig. 1. Monte-Carlo rendering with 2,048 samples/pixel for a scene with three measured BRDFs from the MERL-MIT database (blue-metallic on
the dragon, beige-fabric on the floor, nickel on the sphere). Our approximation of the BRDFs and the inverse CDFs, based on Rational
Functions, provides efficient importance sampling with a negligible memory footprint: with less than 1 KB of storage, our IS technique (right) offers
equivalent quality (mean Lab difference is 0.77 and max 7.03 on low-dynamic range images) compared to the reference solution (left) obtained from
tabulated data of ’30 MB. These tabulated CDF+PDF data have been generated by resampling the BRDF in ð�v; �l; �lÞ at 90	 90	 180.
Furthermore, the rendering time of our approach is 10 percent faster.

Fig. 2. Two low-degree univariate approximations with seven unknowns:
a polynomial of degree 6 (dashed line) and a rational function (full red
line) consisting of a polynomial of degree 1 and 5 in the numerator and
denominator, respectively. The data are shown as dots. The RFs clearly
follow the data much better and do not suffer from oscillations as
polynomials do. Left. The rapidly decreasing function e�x

2
, sampled at

90 equidistant points. The maximum absolute error of the polynomial is
0.0689 while it is 0.00117 for the rational function. Right. The steeply
decreasing lobe corresponding to the chrome-steel material from the
MERL-MIT database. The maximum absolute error of the polynomial is
138 while it is only 2.61 for the rational function.



lobe (hence fitting with a two-lobe BRDF model), as shown

by Ngan et al. [26] (in their Section 4.2), indeed reduces the

fitting error (by approximately 25 percent) for 26 of the 31

materials. However, according to these authors, the fitting

process quickly becomes unstable with more than three

lobes and the benefit of adding a lobe is only marginal. In

conclusion, the errors presented in the table of Fig. 8 for the

Ashikhmin-Shirley model were improved by at most 25

percent when adding a second lobe. Therefore, a model

from a two-lobe fitting would still not be competitive (in

terms of the error and the numerical stability of the

technique) against our RF fitting technique.
Finally, the rightmost column (column 6) of the table of

Fig. 8 shows the maximum relative error against the 3D

data when using least squares bivariate polynomials with

the same number of coefficients as the RFs. Except for the

low frequency beige-fabric material, the errors are

several orders of magnitude higher than the ones obtained

with RFs. Furthermore, these errors show that approximat-

ing high-frequency signals with RFs is more efficient than

using polynomials. As shown by Mahajan et al. [23], the

required number of coefficients for polynomial functions

(e.g., spherical harmonics) grows quadratically with the

directional frequency of the BRDF. Note that it is not

straightforward to fit directly spherical harmonics using the

ð�h; �dÞ because these angles do not span a spherical

domain. Other approaches such as those of Sillion et al.

[38] or Westin et al. [14] have used classical spherical

parametrization but require between 80 and 133 coefficients

for diffuse or glossy materials, and become impractical for

high-frequency BRDF.

4 RATIONAL FUNCTIONS FOR CDF

4.1 Parametrization

As mentioned in Section 1.2, efficient Importance Sampling

strategies significantly increase the rate of convergence of

Monte-Carlo rendering techniques. In this section, we

present quasioptimal IS of arbitrary BRDFs by means of

RF approximation. For the sake of brevity, we only detail

our procedure for the standard ðll; vvÞ parametrization. Note

that this parametrization has been proven to be well suited

for glossy surfaces [21].
The principle of IS rendering is to define a stochastic

estimator for the reflected radiance LðvvÞ in direction vv by

averaging the contribution from K random light directions

llk selected according to a conditional Probability Density

Function PDFðllk j vvÞ ¼ PDFvvðllkÞ:
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Fig. 3. Two low-degree bivariate rational approximations to CDF�1
vv ð	Þ

for the nickel MERL-MIT material. The approximation should be
monotonically increasing in 	. Left. Rational interval interpolant obtained
without Constraint (4), clearly not monotonically increasing in 	. Right.
Rational interval interpolant obtained with Constraint (4), now mono-
tonically increasing in 	.

Fig. 4. Lens-flare-like acquisition artifacts of the grease-covered-
steel MERL-MIT material illuminated by nine directional sources. Left.
Original 3D data. Middle. 3D data without noisy grazing angles (i.e.,
�hor �d > 80
). Right. 2D projection on ð�h; �dÞ mostly removes all
artifacts.

Fig. 5. Specular materials’ BRDF data (dots) without grazing angles (i.e.,

�h or �h > 75
.) and corresponding RF approximations (full line) per color

channel (RGB).

Fig. 6. The data for the fitted RF representation for each material 2D

BRDF are shown for the denominator and the numerator, for each

(R,G,B) color channel: (center column) number of coefficients, (right

column) maximum degree.



LðvvÞ � 1

K

XK
k¼1

nn � llk
PDFvvðllkÞ

�ðllk; vvÞLðllkÞ: ð6Þ

When there is no prior knowledge about the incident
lighting, the optimal choice for the estimator is to use a
PDFvvðllkÞ that is proportional to the BRDF scaled by nn � llk.
Each random light direction ll ¼ ð�l; �lÞ required by the
estimator can then be obtained by generating a pair of
uniform random numbers ð	; 
Þ and inverting a pair of
Cumulative Distribution Functions, obtained from the inte-
gration of the selected PDF:

�l ¼ CDF�1
vv ð	Þ and �l ¼ CDF�1

vv ð
 j�lÞ:

We propose an innovative technique intended to combine

the strengths of previous approaches. The idea is to directly

define a closed-form expression for the inverse CDF,

without preliminary analytical formulation of either the

CDF or the PDF.

Starting from a measured BRDF scaled by nn � ll, in other

words �ðll; vvÞcos �l, we first compute a tabulated version of

the inverse CDFs

. a 2D table for CDF�1ð�v; 	Þ where �v 2 ½0; �=2�
indexes the view direction and 	 2 ½0; 1� is a random
sample,

. a 3D table for CDF�1ð�v; 
 j�lÞ where �l 2 ½0; �=2� and

 2 ½0; 1� is a second random sample.

Since we are using isotropic materials, there is no

azimuthal dependency on the view direction vv ¼ ð�v; �vÞ,
i.e., �v ¼ 0. Then, we approximate these tabulated CDF data

with a bivariate and trivariate RF, respectively:

�l ¼ CDF�1ð�v; 	Þ � rn�;m�
ð�v; 	Þ

�l ¼ CDF�1ð�v; 
 j�lÞ � rn�;m�
ð�v; �l; 
Þ:

�

Note that since the CDF is the integral of its corresponding

PDF, the shapes of the inverse CDFs are always much
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Fig. 7. From top to bottom: original measured data in ð�h; �d; �dÞ, projected data in ð�h; �dÞ, rational BRDF fit in ð�h; �dÞ. All scenes are rendered using

1,024 directional light sources sampled from the surrounding environment map. Each Rational BRDF generates a similar magnitude of Lab visual

errors as the ones produced by the 2D projected data, but requires between 165 and 1,000 times less storage.



simpler than the PDFs, as shown in Fig. 9, and RFs can
easily reproduce the abrupt variations that are present in
most data sets.

The advantage of this approach is twofold. First, due to
the compact representation of RFs, generating each random
vector llk is very efficient as it only involves the evaluation of
low-degree multivariate RFs. This is actually done in
constant time, contrary to approaches based on the numer-
ical inversion of tabulated CDFs. Second, it allows for a more
effective IS strategy by using our new Monte-Carlo estimator
(the derivation is available in the dedicated companion
document, Section 2), which is directly based on the inverse
CDF instead of the PDF:

LðvvÞ � 1

K

XK
k¼1

�vvð	k; 
kÞ�ðvv; llkÞðnn � llkÞLðllkÞ

with �vvð	; 
Þ ¼
@CDF�1

vv

@	
ð	Þ @CDF�1

vv

@

ð
 j �lÞ sin �l

and �l ¼ CDF�1
vv ð	Þ:

ð7Þ

Since both inverse CDFs are RFs, their partial derivatives
can easily be evaluated on the fly.

Unlike previous approaches (e.g., [21]), which use
different parametrizations depending on the type of
material, we have decided to use the ð�l; �lÞ parametrization
for all materials. This provides a consistent choice and we
leave for future work the question of the most suitable
parametrization for importance sampling independent of
the material type. Nevertheless, as illustrated in Section 4.2,
the whole IS strategy proposed here results in a very
efficient computation, whatever the complexity of the
underlying BRDF, with extremely compact storage com-
pared to prior work.

4.2 Rational Approximation of CDFs

We proceed as follows: First, we compute two tabulated

versions of the inverse CDFs for each of the four selected

materials. The values of CDF�1
vv ð	Þ 2 ½0; �=2� are computed

on a 91	 91 grid. Similarly, the values of CDF�1
vv ð
 j�lÞ 2

½0; �� are computed on a 91	 91	 128 grid, which size is

then reduced by a factor of two using the fact that the

inverse CDF is symmetric. Second, to accelerate the

resolution of P, we use 300 measured values as training

data (cf. Section 2.2).
As explained in Section 2.2, we guarantee that the fitted

RF for the 3D inverse CDF is symmetric with respect to �v
and �l, i.e., rn�;m�

ð�v; �l; 
Þ ¼ rn�;m�
ð�l; �v; 
Þ. Moreover, we

guarantee that both RFs rn�;m�
ð�v; 	Þ and rn�;m�

ð�v; �l; 
Þ are

monotonically increasing with respect to 	 and 
 , respec-

tively. Besides the monotonicity and symmetry properties,

we also enforce boundary conditions on the CDFs:

CDF�1ð�v; 	 ¼ 0Þ ¼ 0

CDF�1ð�v; 	 ¼ 1Þ ¼ �
2

CDF�1ð�v ¼ 0; �l; 
Þ ¼ �

CDF�1ð�v; �l ¼ 0; 
Þ ¼ �


by imposing the following rational forms:

rn�;m�
ð�v; 	Þ ¼

�

2
	þ 	ð1� 	Þ pn�;m�

ð�v; 	Þ
qn�;m�

ð�v; 	Þ
ð8Þ

rn�;m�
ð�v; �l; 
Þ ¼ � 
 þ 
ð1� 
Þ �v �l

pn�;m�
ð�v; �l; 
Þ

qn�;m�
ð�v; �l; 
Þ

: ð9Þ

For each of the four selected materials, we apply the

fitting algorithm described in Section 2, complemented with

the corresponding modifications and new constraints men-

tioned in Section 2.2. The choice of the intervals Fi ¼ ½fi ; fi �,
now containing either �il or �il , for each of the inverse CDF

values, completely determines the behavior of the approx-

imations. Since these inverse CDFs guide the IS process, the

interval widths are taken such that the resulting variance is

acceptable, while leaving the numbermþ n of coefficients in

the approximation manageable. As illustrated below, this

implies a fairly accurate CDF�1
vv ð	Þ approximation, and

capturing the main trend of CDF�1
vv ð
 j�lÞ. For the 2D

CDF�1
vv ð	Þ, we define the intervals as:

fi ¼ �il � �ð1þ �ilÞ
fi ¼ �il þ �ð1þ �ilÞ

�
i ¼ 0; . . . ; 91	 91� 1
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Fig. 8. Maximum relative error of the approximation, per (R,G,B) color channel. In the usual order: 2D projected data compared to 3D original data;

rational BRDF compared to the 2D projected data, and compared to the 3D original data; nonlinear fitting of the Ashikhmin-Shirley analytic model

compared to the original data, and least squares bivariate polynomials compared to the original 3D data. All data at grazing angles ð>80
Þ have been

discarded.

Fig. 9. Comparisons of the PDFvv and the inverse CDF�1
vv for nickel

material. The measured inverse CDF curves traced in red for �v ¼ 0
, in

green for �v ¼ 45
, and in blue for �v ¼ 85
, are always simpler than the

ones for the PDF.



with � ¼ 0:015 for beige-fabric, � ¼ 0:035 for blue-

metallic, � ¼ 0:05 for nickel, and � ¼ 0:1 for the highly
specular chrome. In a similar way, we define the intervals
for 3D CDF�1

vv ð
 j�lÞ according to �l with � ¼ 0:015 for
beige-fabric and blue-metallic, � ¼ 0:72 for nick-
el, and � ¼ 0:8 for chrome. For the 3D CDF�1

vv ð
 j�lÞ, we
relax the intervals near �v ¼ �l and near grazing angles
�v; �l > 80
. In order to keep the number of coefficients
manageable in rn�;m�

ð�v; �l; 
Þ, we restrict the partial degree
in 
 to at most 2, which is sufficient for capturing the steep
increase in 
 .

Fig. 11 shows the 2D approximations of CDF�1
vv ð	Þ

whereas Fig. 12 shows the 3D approximations of
CDF�1

vv ð
 j�lÞ. The relative errors shown are

jCDF�1 � rn;mj
1þ jCDF�1j

;

where rn;m is the corresponding rational approximation.
Note from these figures that the number of coefficients
needed is always very moderate. This indicates that the
proposed forms in (8) and (9) are adequate and capture most
of the information. The table of Fig. 14 presents the fitting
time for each of the 2D CDF�1

vv ð	Þ. These timings are directly
proportional to the number of coefficients tested.

Fig. 13 further compares, for each material, the rendering
quality obtained with tabulated CDFs and PDFs (first row)
against approximated CDFs (second row). We also compute
the variance of the sphere pixels in each image to compare
the performance of the IS strategy based on our RF CDF with
that of the tabulated data. To provide a fair comparison of the
sampling efficiency, our renderer uses the BRDF combined
either with the tabulated CDF or its RF approximation. For
the blue-metallic, beige-fabric, and nickel mate-
rials, the resulting variance is as low as the reference solution
obtained with tabulated data. For the chrome material, the
variance is ten times larger than the reference solution, but
the Lab difference between the images shows that our RF
approximation still provides a visually satisfactory result.
Chrome remains the most challenging material. However, to
our knowledge, previous approaches could not even
represent the chrome data.

Note that our technique guarantees the existence of a
representable inverse CDF without introducing a bias in the
sampling process because the RFs preserve monotonicity.
However, the speed of convergence of the IS is directly
dependent on the overall quality of the fitted function.

Regarding the size of our functions, Fig. 10 shows that
with RF approximations, we achieve high compression
rates. For example, the nickel material in our approach is
7;600	 (resp. 3;100	) more compact than the one proposed
by Lawrence et al. [21] (resp. [30]). The numbers from the
first row of the table have been directly reported from the
original paper whereas for the other rows, we have reported
the lowest available sizes, which are coming from Montes’
PhD thesis [39]. Notice that previous approaches do not
provide any results for specular chrome whereas our
technique may still be used to approximate an importance
function. This high compression ratio directly results from
the properties of RFs, which can efficiently represent steep
changes with low-degree approximations, as well as from
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Fig. 10. Comparison of the CDF and PDF data size in KB for different

techniques: Factored representation [21], Cascade PDF [29], A. Disc

[30], and Rational Functions. Our Rational Function approach consumes

always less memory than the previous approaches.

Fig. 11. Rational Function approximation of the bivariate CDF�1
vv ð	Þ for our four selected MERL-MIT materials. For each material, the colormap

represents the fitting relative error and ranges from the minimum relative error (black) to the maximum relative error (yellow). The number of

coefficients is expressed as a pair (numerator, denominator).

Fig. 12. Slices (�v ¼ 45
) of the Rational Function approximation of the trivariate CDF�1
vv ð
 j�lÞ for our four selected MERL-MIT materials. For each

material, the colormap represents the fitting relative error and ranges from the minimum relative error (black) to the maximum relative error (yellow).

The mean and max relative errors are given for the whole 3D data. The number of coefficients is expressed as a pair (numerator, denominator).



the fact that we do not store any PDFs. As explained earlier,
the PDF is computed on the fly from the inverse CDF
during the rendering step and thus does not require any
supplemental storage.

Finally, the efficiency of the IS process can be observed in

Fig. 1 which presents a global illumination rendering of a

more complex scene. Compared to the reference solution,

resulting in a small Lab difference, our solution achieves the

same overall rendering quality but with a drastically lower

memory footprint (90 MBþ 30 MB versus 1:67 KBþ 0:6 KB)

when using the 3D measured data, and (570 KBþ 30 MB

versus 1:67 KBþ 0:6 KB) when using the 2D projected data.

5 ANISOTROPIC BRDF MODEL USING RFs

Ward [7] observed that for many anisotropic materials, the

variation of the reflected intensity when rotating the surface

around its normal vector often consists of a simple scaling

factor applied to an average isotropic lobe. Based on that

observation, we propose the following model for aniso-

tropic BRDFs as a product of two rational functions:

�ðll; vvÞ � ram0;n0 ð�hÞrim;nð�h; �dÞ;

where rim;nð�h; �dÞ represents a standard isotropic Rational
BRDF and ram0;n0 ð�hÞ is a scaling factor defining the
anisotropic variation. This scaling factor agrees with
classical brushed-metal behavior [7] and with several other
anisotropic models [8], [10], [28].

To validate this model, we have chosen to generate
“hybrid” anisotropic BRDFs by postprocessing measured
isotropic materials. We may view the scaling function as an
approximation of the directional variation generated by
weaving mesostructures of textiles, or regular geometric
structures of crystals. Actually, the whole process can be
seen as a combination of the hybridization technique, based
on a linear combination of materials, proposed by Matusik
et al. [20], and the mesostructure simulation technique used
by Westin et al. [14] to predict reflectance from complex
materials. Fig. 15 presents results obtained with different
anisotropic transformations of the blue-metallic-

paint material.
In theory, there is nothing preventing our RF method

from approximating a measured full 4D BRDF. The results
obtained so far suggest that the 3D subset ð�h; �d; �hÞ of
Rusinkiewicz’s parametrization is sufficient for some
anisotropic BRDFs, similar to the use of ð�h; �dÞ for isotropic
BRDFs [35]. Reducing the dimension to 3D leads to fewer
constraints for the interval interpolation technique [32], and
results in a large speedup of the fitting process. Unfortu-
nately, far less data are publicly available. We experimented
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Fig. 13. Comparison of Importance Sampling with the Rational Function approximation of inverse CDFs and the original tabulated data. Four

hundred samples per pixel were used. The numbers under each image indicate the mean variance per color channel. Compared to the original

tabulated data where the different CDFs and PDFs require 10 MB for each material, our RF approach requires only between 0.117 and 0.230 KB.

Fig. 14. Fitting timings in seconds computed with our Matlab program on

a Intel Xeon L5420@2.5 GHz for the 2D inverse CDF. These timings

include all iterations of the fitting algorithm detailed in Section 2.



with another MIT BRDF database [26] containing four
measured anisotropic materials. However, as noted in
previous work [10], the embedded data contain significant
acquisition noise, and present large areas in its parametric
domain where the measured BRDF values are quite sparse.
These two issues lead to artifacts in the fitted data.
Smoothing and good quality data completion [11] should
improve our results, but this remains one of our future
research directions.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced Rational BRDFs, a generic
and compact representation of arbitrary BRDFs, based on
Rational Functions. By employing a subset of the BRDF
parametrization introduced by Rusinkiewicz [34], isotropic
BRDFs can be represented as bivariate RFs. Very compact
approximations of measured BRDFs are obtained with a
memory footprint that is usually less than one kilobyte for
arbitrary isotropic materials. Moreover, the same approx-
imation process applies to the inverse CDF generated from
the corresponding BRDF multiplied by the cosine factor.
Combined with our new Monte-Carlo estimator which
exploits the RF formulation, our approach offers a qua-
sioptimal IS scheme, with compact storage compared to
prior work. We have shown that the Rational BRDF is
suitable to reproduce some anisotropic effects on a 3D
subspace of Rusinkiewicz’s parametrization [34] by the
introduction of a univariate rational function that scales an
isotropic Rational BRDF according to its orientation.

All of our results are the foundations for future
research. First, we have started investigating acquisition
techniques to obtain dense BRDF measurements of materi-
als, focusing on families of BRDFs that are currently
lacking in public databases such as materials exhibiting
retroreflective behavior, and various types of anisotropic
reflections. Based on this data set, we may extend the
previous studies on parametrization [35], [37] to more
generic materials. In investigating extensions to the work
of Lawrence et al. [21], we also hope to find a set of best
suited parametrizations for IS.

Second, as shown by the anisotropic transformation of
blue-metallic-paint presented above, generating hy-
brid materials by combining analytical and measured
BRDFs appears to be a promising direction of research.
We are currently formalizing this process to define a flexible
framework for intuitive BRDF editing.

Finally, for applications where lighting is exclusively
defined by environment maps, we intend to generalize our
IS scheme to directly process the product of the BRDF with
the environment map, following ideas presented by Jarosz
et al. [40].
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