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We solve the linear Ginzburg–Landau �GL� equation in the presence of a uniform
magnetic field with cylindrical symmetry and we find analytic expressions for the
eigenfunctions in terms of the confluent hypergeometric functions. The discrete
spectrum results from an implicit equation associated to the boundary conditions
and it is resolved in analytic form using the continued fractions formalism. We
study the dependence of the spectrum and the eigenfunctions on the sample size
and the surface conditions for solid and hollow cylindrical superconductors. Fi-
nally, the solutions of the nonlinear GL formalism are constructed as expansions in
the linear GL eigenfunction basis and selected by minimization of the free energy.
We present examples of vortex states and their energies for different samples in
enhancing/suppressing superconductivity surroundings. © 2010 American Institute
of Physics. �doi:10.1063/1.3470767�

I. INTRODUCTION

The Ginzburg–Landau �GL� equation is a time-independent nonlinear magnetic Schrödinger
equation that occurs in a variety of descriptions of macroscopical physical systems including deep
water waves, nonlinear optics, pattern formation and filamentation, as well as in quantum confined
systems such as superfluidity, Bose–Einstein condensation, and especially superconductivity.1

Modern lithography techniques enable the creation of very small superconducting structures
of varied geometries.2 The behavior of such mesoscopic structures in an external magnetic field is
strongly influenced by the boundary conditions which in turn leads to new superconducting
states.3–5 In radially symmetric systems in the presence of axial magnetic field the superconducting
state is characterized by a definite angular momentum which represents the number of flux quanta
trapped by the sample. In systems of size comparable to the coherence length �, penetrating flux
quanta are compressed into a single singularity of the wave function, called the “giant” vortex. In
larger samples, the mutual vortex-vortex repulsion leads to a splitting of the giant vortex into a set
of individual ones, called a multivortex state.6,7 Experimentally, the distinction between the two
allotropies of the state with the same vorticity can be made from the symmetry of the circulating
Meissner currents, which is broken in the multivortex case.8

Besides quantum confinement, the presence of the boundary allows for another important
physical phenomenon. When the sample is embedded in, e.g., a superconductor of higher critical
temperature, one observes enhancement of superconductivity. This was shown in Refs. 9 and 10
for the disk and cylinder geometry. On the contrary, for a superconductor in a metallic medium,
the leakage of Cooper-pairs leads to suppressed superconductivity at the boundary. Consequently,
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in addition to the geometry dependence, we investigate in this paper the dependence of the vortex
states �eigenvalues, linear basis, stability versus magnetic field� on the nature of the surrounding
material.

As a necessary prerequisite for the full nonlinear approach, the construction of analytic solu-
tions for the linear GL �LGL� equation is important because it expedites the understanding of
various physical situations and limitations �like numerically unhandleable infinite or semi-infinite
systems� and enables numerical calculations in the linear basis. Moreover, all nonlinear patterns
and vortex structures can actually be obtained through linear combinations of the linear basis wave
functions, while the full nonlinear approach basically just selects which of the solutions are
�meta-�stable through minimization procedures.11

In this paper we investigate the GL equation in the order parameter � of the Cooper-pair
condensate placed in an axially symmetric magnetic field for fully three dimensional mesoscopic
samples with cylindrical symmetry. Since recently, such superconducting samples �cylindrical
wires and tubes� were experimentally realized.12 We study the vortex states by expanding the
solution of the nonlinear problem in the basis of analytically obtained eigenfunctions of the linear
GL equation. Previous numerical investigations6,7,13–15 of the full nonlinear GL problem were
performed for thin disks and rings, where phase transitions between different superconducting
states and between superconducting-normal state were studied using a self-consistent approach
and the finite difference technique for solving two coupled GL equations.

The present paper is organized as follows. In Sec. II we investigate the dependence of the
linear spectrum on the size of the cylinders and of the cavities. In Sec. III we analyze the LGL
equation in terms of a Sturm–Liouville eigenfunction problem in cylindrical coordinates, and we
find the fundamental set of linear solutions. Section IV gives the explicit analytic solution for solid
cylindrical samples. In Sec. V we study the associated eigenvalue problem in terms of expansions
in continued fractions. Finally, in Sec. VI, some interesting vortex states are constructed, and our
findings are summarized in Sec. VII.

II. THEORETICAL FORMALISM

In what follows, we focus our attention in obtaining exact analytical solutions for the linear
Ginzburg–Landau �LGL� treatment of a cylindrical mesoscopic superconducting sample in an
axial uniform external magnetic field. We consider the superconducting order parameter to be a
C2�R3� complex function ��r�� defined inside the sample, as it describes the Cooper-pair density,
also called order parameter �or simply wave function�. As will be shown, an exact analytic
solution of the LGL equation is a challenging task even in the case when uniform external field is
present. In this paper, we solve the linear problem analytically and investigate the properties of its
eigenfunctions and its spectrum.

We use the GL formalism in the limit of samples with size comparable or smaller than the
magnetic field penetration depth �, defined as the distance along which the magnetic field decays
inside the superconductors �this characteristic length can be estimated16 from the values of the
phenomenological constants occurring in the free energy equation of the Ginzburg–Landau model
of superconductivity, see below�. Consequently, we may neglect the contribution to the Gibbs free
energy due to the deformation of the magnetic field around the sample �following from the
expulsion of magnetic flux3,4�. In that case, the GL equation following from the minimization of
energy with respect to � is

1

2m
P� 2� + ��T�� + ����2� = 0, �1�

where the electromagnetic momentum operator P� is given by
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P� = − i��� −
q

c
A� . �2�

Here q ,m are the charge and mass of the Cooper-pair, c is the speed of light in vacuum, and A�

denotes the vector potential of the applied magnetic field. The temperature dependent parameters

� = �0�1 −
T

Tc0
�, ��T� =

�

	− 2m��T�
, �0 = ��0�

and the field penetration depth �2=−mc2� / �16�q2�� �which is not explicitly used in this study�
are given by the quantum statistical theory of superconducting phase transitions,4,5,14 Tc0 is the
critical temperature in the absence of magnetic field. Usually, ��T� is the coherence length �the
characteristic length for the variation of the order parameter �� and � is a constant in the
neighborhood of interest for T around Tc0. The LGL equation is obtained from Eq. �1� by neglect-
ing the nonlinear term with coefficient �, and it can be written as

1

2m
�− i��� −

q

c
A��2

� = − ��T�� . �3�

The above equation for � is fully applicable close to the superconducting/normal phase transition,
where � is small and the nonlinear term becomes indeed negligible. In order to write Eq. �3� in a
compact form, we use the London electromagnetic gauge, � ·A� =0, and we renormalize the vari-
ables as

r� → r�
	− 2m��T�

�
, A� → A�

q

�c	− 2m��T��
, � → �	−

�

��T�
.

The LGL problem can now be written in dimensionless form as an eigenvalue problem for the
operator

Ô� = − 	� + 2iA� · �� + �A� �2� − � = 0. �4�

If the magnetic field has axial symmetry we can use cylindrical coordinates r�→ �r ,z ,
�. In this

case the azimuthal angle 
 dependence in Eq. �4� can be separated, and Ô has exp�iL
� as
eigenvalues labeled by the angular momentum L. This completely decomposes the space of solu-
tions ��r�� into orthogonal subspaces labeled by L �orthogonality is defined by the L2�0,2��
norm�,

L2�R3� = �
L�N

VL, VL = 
�/��r�� = ��r,z�eiL
� , �5�

with ��r ,z��L2�R2� being a square integrable function. Decomposition of Eq. �5� reduces the

problem to a two-dimensional one. On each of these subspaces the operator Ô has a particular
form depending on L, and for each such restricted operator we can attach an eigenvalue problem

Ô�VL
��,� = ���,�, �6�

where � is a provisional degeneracy label, i.e., a quantum number. Of course, �=��L� and ��,�

carry the L dependence. In what follows, we show that the range for � is determined by mapping
the linear Ginzburg–Landau equation �1� into a Sturm–Liouville problem, and its values are in fact
determined by the boundary conditions. In principle, we use this eigenvalue just as a parameter to
label the linear eigenfunctions, together with L and �. However, since −� qualitatively substitutes
the nonlinear term ����2 from Eq. �1�, we expect for � to take physical reasonable values only in
the range �
1,0�.
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As a general rule for bounded mesoscopic superconductors in the presence of an uniform field,
by expansion in Taylor series around r�0, z�0, we find that close to the center of the sample
the linear solutions approach a confluent hypergeometric behavior. Close to the boundaries
�r�R , z� �h /2�, the solutions tend to acquire more singularities, and the LGL has a higher
order of irregularity approaching a Heun function behavior.17–19

The operator in Eq. �4�, called the Landau operator or the magnetic Schrödinger operator, is
bound from below on the space of analytic functions on R3 independent of the nature of the
magnetic vector potential A� �r��. This guarantees the existence of an energy spectrum bound from
below.20,21 In order to ensure the existence of a spectrum of real energies, some constraints should
be applied on the vector potential. Namely, if the function �A� �4 is integrable on R3, and �� ·A� �2 is
also integrable �constraints which are automatically fulfilled by the London gauge�, the Landau
operator in Eq. �3� is self-adjoint �the Leinfelder–Simader theorem, based on Kato’s inequality, see
Ref. 20�. Consequently, this operator always has a discrete component of its spectrum, bound from
below, with eigenvalues �n approaching +� when n→+�. The best example is given by Landau
levels in a uniform magnetic field. Also, if the magnetic field H� =��A� decays to zero when �r��
→+�, the spectrum is always positive, provided there are no limitations �boundary conditions� in
the whole R3 space. This property is preserved even in the presence of an additional electric field,
if the Coulombian potential fulfills certain constraints. Of course, the nature of the spectrum is
always altered by the existence of boundary conditions. Note that depending on the asymptotic
behavior of the magnetic field at infinity different types of spectrum can occur.20,22–24

In cylindrical coordinates the magnetic potential has the form

A� =
�H

2
e�
, H = const,

and Eq. �6� becomes separable in �� ,z�. Its solutions can be written in the form

���,z� = Q����C1 cos�	�z� + C2 sin�	�z�� , �7�

where the radial part Q��� satisfies a Whittaker type of differential equation,18,19

−
d2Q

d�2 −
1

�

dQ

d�
+ �L2

�2 +
H2�2

4
− �HL + � − � + 1��Q = 0. �8�

Here � �the degeneracy label from Eq. �6�� is the separation constant between the differential
equations in � and z, and C1,2 are arbitrary complex parameters to be determined from the
boundary conditions.25 This solution is the result of the standard procedure, as applied before in
Refs. 4, 6, and 16. The fundamental set of solutions for Eq. �8� can be expressed in terms of linear
combinations of Kummer �M� and Tricomi �U� confluent hypergeometric functions26,27 as

QL,�,���� = Q0�Le−H�2/4��1

2
−

� − � + 1

2H
,L + 1;

H�2

2
� , �9�

where ��c1 ,c2 ,��=M�c1 ,c2 ,��+CU�c1 ,c2 ;��, C is an arbitrary constant, and Q0 is a normal-
ization constant.28 Similar solutions have been found for disks6 and long cylinders29 in a uniform
field. Since the superconducting state develops when the mean value of the Landau operator
becomes negative, we request the eigenvalue � to be nonpositive. The separation parameter � that
plays the role of a quantum number will become discrete after the application of boundary con-
ditions. The three parameters L ,� ,� form a complete set of quantum numbers for the LGL
problem.

We associate the so-called modified Neumann boundary conditions to Eq. �6�. This boundary
condition �BC� requests for the superconducting current
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j� = q/�2m����P� � + �P� �����

to have a prescribed value at the surface of the sample, and the order parameter to have a smooth
behavior at the origin �if inside the sample�. In the case of samples in vacuum, we have the
conventional Neumann BC for current, and regularity conditions for �, i.e.,

�n� · P� ���� = 0, ����r��=0,� � + � . �10�

Here � is the closed surface of the sample, and n� is the normal to this surface �pointing out of the
superconductor�. In our formalism, we generalize the boundary condition to a mixed Dirichlet–
Neumann condition, and we focus on surfaces of revolution for the samples, such that the surface
� has cylindrical symmetry �as shown in Fig. 1�. If the cylinder is solid, in order to satisfy the
second condition in Eq. �10�, we choose C=0 in Eq. �9�, since the Tricomi function is singular at
the origin. This is not the case, however, for cylindrical shells where we have to take into account
both confluent hypergeometric functions.

In order to take into account the influence of a surrounding medium, we generalize the
cylindrical boundary condition on � to a mixed Dirichlet–Neumann condition by assuming that in
a narrow �of thickness b called the extrapolation length� external neighborhood of the surface �
the order parameter has a simple exponential decay.5,30 In uniform field, the normal component of
the magnetic momentum operator reduces to the derivative with respect to the normal to the
surface �A� n ��=0�. Therefore, we can write the boundary conditions in the form

�c1
d�

dn�
+ c2��

�

= 0, �11�

with c1,2 as arbitrary constants. Actually, we can restrict the boundary coefficient constants �with-
out loss of generality� to c2 /c1=1 /b, b�R. Parameter b takes the special physical value b
→ �� if the superconducting sample is placed in vacuum. If embedded in a superconducting
material with higher critical temperature, which produces surface enhancement of superconduc-
tivity, we have −��b�0. Placed in a normal metallic material it will correspond to a surface
suppression of superconductivity, 0�b��, while in a ferromagnetic material we have b=0. Note
that if the field and the boundary have the same symmetry, and the surface is smooth, the boundary
conditions can be expressed just by keeping one of the coordinates constant, and let the other
coordinates cover all of their ranges. If the surface is only piecewise smooth, the boundary
conditions can still be expressed as above, but the other coordinates only cover disjoint intervals.
If the boundary and the field have different symmetries, the boundary conditions cannot be written
in a compact algebraic form, and various technical difficulties can occur related to the incompat-
ibility of the boundary conditions and the functions in which the differential equation separates
and can be integrated analytically.

h

R R1�R2 R1R2

FIG. 1. �Color online� Considered superconducting geometries, �a� solid cylinders, �b� thin hollow cylinders R�R1�R2,
and �c� cylinders with a central hole R2�R1. Inner radius �if any� is denoted by R2 and outer one by R1.
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III. MESOSCOPIC SUPERCONDUCTING SOLID CYLINDER

In this section, we study the case of a vertical solid cylinder of radius R and height h �pillars�,
in axial magnetic field, and surrounded by different materials described by different parameters b.
The order parameter has the form given by Eqs. �7� and �9�,

�L,�,���,z� = �Le−H�2/4M�1

2
−

� − � + 1

2H
,L + 1;

H�2

2
��C1 sin�	�z� + C2 cos�	�z�� . �12�

The boundary conditions �Eq. �10�� take the form


 ��

��



�=R

= −
1

blat
��R,z�, z � �−

h

2
,
h

2
� , �13�


 ��

�z



z=�h/2
= �

1

b�

���, �
h

2
�, � � �0,R� . �14�

Here we consider different surroundings for the lateral surface blat, for the upper b+, and bottom
lids b−. The formalism can be equally used for blind cylindrical holes �cups� in materials, or
cylindrical cavities, cases in which we simply change the sign in both right-hand sides of Eqs. �13�
and �14�, correspondingly. By applying the boundary condition on the top/bottom of the cylinder
in Eqs. �13� and �14� we obtain a 2�2 system of homogeneous linear equations in C1,2 whose
solutions are nontrivial if the determinant is zero,

�	� cos
h	�

2
+

1

b+
sin

h	�

2
��	� sin

h	�

2
−

1

b−
cos

h	�

2
�

+ �	� cos
h	�

2
+

1

b−
sin

h	�

2
��	� sin

h	�

2
−

1

b+
cos

h	�

2
� = 0. �15�

For all possible combinations of b coefficients we obtain from Eq. �15� a countable spectrum for
the axial quantum number k, �→�k, �C1,k ,C2,k�, where k=0,1 ,2. . ., and the degenerate solution
�0=0 , C2=1 when we have no z dependence of the order parameter �corresponding to flat disk or
infinite long cylinder�. An example of the axial excitation spectrum is presented in Fig. 2, where
we plot �k versus b+ curves, for several values of b− , h. In the vacuum limit the eigenvalues have
the asymptotic values from Eq. �17�. The top/bottom surface enhancing/suppressing conditions
can be compensated by height changes. Consequently, we have z-eigenvalue crossings for certain
values of the parameters. Such level crossings induce degeneracy of the ground state, and hence
transitions between different vortex configurations which otherwise are not favored energetically
�no more adiabatic decoupling of such phases�. For example, for h=2� cylinder we have �1�b−

=2���2�b−=−5� when b+ changes from 
10 to 10.
In particular case when both top and bottom surfaces have similar conditions �b+=b−=b� the

coefficients fall in one of the two classes: z-asymmetric solutions with C1=1 , C2=0 or
z-symmetric solutions with C1=0 , C2=1, with �k given by

tan
h	�

2
+ �	�b��1 = 0, �16�

with � for asymmetric/symmetric cases, respectively. In the simplest case when both ends are in
vacuum �b=�� we have the limiting z-quantization spectrum
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�k,vac =
k2�2

h2 , k = 0,1, . . . . �17�

The limiting values from Eq. �17� for �k are not only the vacuum limits, but they act as center lines
for the eigenvalue bands whose spreading and position are controlled by the surface superconduc-
tivity conditions. In order to complete the fundamental solution in Eq. �12�, we also have to solve
Eq. �13� with respect to �. For solid cylinders we have

�L −
HR2

2
−

R

blat
�M�1

2
−

� − �k + 1

2H
,L + 1,

HR2

2
�

+
HR2

L + 1
�1

2
−

� − �k + 1

2H
�M�3

2
−

� − �k + 1

2H
,L + 2,

HR2

2
� = 0, �18�

with �k given by Eq. �15�. This equation provides the eigenvalues of LGL problem for a super-
conducting cylinder in uniform magnetic field for a given set of parameters L, k, R, h, and H.
Because of the oscillating behavior of the confluent hypergeometric series in Eq. �18�, the solu-

b��

k�1

k�1

k�2

k�3

k�2

k�3 k�4

k�3
2
5

�5
�2

�

�15 �10 �5 0 5 10 15

0

2

4

6

8

10

12

Enhance b� Suppressed

Λk

FIG. 2. �Color online� The axial excitation eigenvalues �k plotted vs the top surface superconductivity condition b+ for
solid cylinders of two different heights: h=2� �solid lines� and h=3.3� �dashed lines�. Each set of five curves in a compact
package represents different values for the surface conductivity at the bottom lid: b−=−5,−2,2 ,5 �the four exterior curves
of each package� and b−=� �vacuum: the middle curve of each package�. For both surfaces in vacuum �b�=�� the central
curves of each package have asymptotic values �k→k2�2 /h2. The z-quantum number k is written next to each package of
eigenvalues for the two heights, respectively.
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tions for � form a countable set �n, n=0,1 , . . . bound from below �as predicted by the general
spectral theory for the magnetic Schrödinger operator mentioned after Eq. �6� in Sec. II�. A new
quantum number n must be added to the parameters and it is related to the radial excitations of the
order parameter eigenfunction. We denote the final eigenvalues with �L,k,n�R ,h ,H�
=�L,0,n�R ,h ,H�+�k, and we mention the additive contribution of the z-quantum number k to the
� eigenvalues. Consequently, all axially excited states have larger values for � than the corre-
sponding ground states. These states become less favored energetically as we show in Sec. V.

Going back to the “physical” meaning of the LGL spectrum, we note that the linear term
��−��� �see Eq. �8�� accounts for ���2�. Since the order parameter has the property ����1, we
consider for the nonlinear problem only those eigenvalues that fulfill �L,k,n�R ,h ,H���k, which
brings a restriction to the upper bound of this spectrum.

The qualitative properties of the �L,k,n spectrum obtained in Eq. �18� for a solid cylinder of
radius R can be understood if we map the differential equation, Eq. �8�, together with the BC given
in Eq. �10�, into the self-adjoint form

L�Q� = �q���Q , �19�

with

L�Q� = −
d

d�̃
�p��̃�

dQ

d�̃
� + �L2

�̃3 +
H2�̃

4
−

HL + 1

�̃
� , �20a�

r��̃� = R2�̃, q��̃� =
1

�̃
. �20b�

In this form we have �̃=� /R� �0,1� with p��̃��0 and q��̃��0. The system equation �19� shows
that the radial differential equation in Eq. �8� and its BC in Eq. �10� form a regular Sturm–
Liouville problem.31 From the general theory of the Sturm–Liouville two-point boundary value
problem we know that all eigenvalues � are real and form a semi-infinite sequence bounded from
below �L,0,0��L,k,n� ¯ ��L,k�,n� if 0�n�n� , 0�k�k�. According to the physical restriction
��� established earlier, the spectrum of physical interest is discrete and bounded. None of the
eigenvalues �L,k,n are degenerate, and to each two distinct eigenvalues correspond two linear
independent eigenfunctions, orthogonal with respect to the weighed scalar product. As a result, for
given L, and a given solid cylinder of radius R, if k1�k2, and/or n1�n2, we have

�QL,k1,n1
,QL,k2,n2

� =
R2

2
�

0

R

�2QL,k1,n1
QL,k2,n2

� d� = 0. �21�

Normalized with respect to the weight r���, the eigenfunctions form a complete orthonormal basis
of piecewise continuous functions, with piecewise square integrable continuous derivative in �
� �0,R�.

As a general check, we write Eq. �18� in the limit R→�. By using the asymptotic expansion

Q��� � L!RLe−HR2/4� �HR2

2
��/2H

��L + 1 +
�

2H
� +

eHR2/2�HR2

2
�−��/2H�−L−1

��−
�

2H
� � , �22�

we reobtain the Landau levels

�L,k,n → H�2L + 2n + 3� − 2, �23�

as expected for an infinite space.
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IV. ENERGY SPECTRUM IN TERMS OF CONTINUED FRACTIONS

In order to have an efficient handling of the BC equation �18� through an analytical approxi-
mation for �, we use continued fractions32 as the best available approximation of the confluent
hypergeometric functions occurring in the order parameter expressions. We rewrite Eq. �18� as

� = C · K��� + H + �k − 1, �24�

where the constant C is given by

C =
�L + 1�

R2 �L −
HR2

2
−

R

blat
� �25�

and

K��� =

M�1

2
−

� − �k + 1

2H
,L + 1,

HR2

2
�

M�3

2
−

� − �k + 1

2H
,L + 2,

HR2

2
� .

Writing �=HR2 /2−R /blat we use formula �16.1.13a� from Ref. 32 to obtain a continued fraction
expansion for the function K���,

K��� = 1 +
a1�

1 +
a2�

1 +
a3�

1 + �

, �26�

where the coefficients an are given by

a2n+1 =

− �L + 1 +
3

2
−

� − �k + 1

2H
+ n�

�L + 1 + 2n��L + 2 + 2n�
,

a2n =

1

2
−

� − �k + 1

2H
+ n

�L + 2n��L + 1 + 2n�
. �27�

Taking an even contraction32 of this fraction gives

K��� = 1 + Km=1
� cm

dm
,

where c1=a1z, d1=a2z+1, cm=−a2m−2a2m−1z2, and dm=a2mz+1+a2m−1z. If we denote the kth
approximant by Ak��� /Bk���, then Eq. �24� becomes

pk��� = CAk��� − �Bk��� = 0,

where pk is a polynomial of degree k+1, which satisfies the recurrence relation32

pk = dkpk−1 + ckpk−2 = �1 + a2kz + a2k−1z�pk−1 − a2k−2za2k−1zpk−2

for k�2. The formulas for k=1 and k=0 are somewhat different but we omit the details here.
Defining
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Pk =
1

L + 2k + 2
·

pk

�− a2k+1z��− a2k−1z� ¯ �− a3z��− a1z�

gives the recurrence relation written as a product of matrices

� k − 1

L + 2k − 1

L + 2k

z
+

k

L + 2k + 1
−

L + k

L + 2k − 1
−

L + k + 1

L + 2k + 1
��Pk−2���

Pk−1���
Pk���

�
=

�

2H
� 1

L + 2k − 1

1

L + 2k + 1
+

1

L + 2k − 1

1

L + 2k + 1
��Pk−2���

Pk−1���
Pk���

� .

Note that Pk��� is a rational function of � that has the same zeros as the polynomial pk���.
Writing down this recurrence relation for k=0, . . . ,n−1, collecting in matrices, and filling in a
zero of pn−1 for �, leads to the generalized eigenvalue problem

AnP� n = �BnP� n,

where the matrices An and Bn are given by the general form

An = �
L
z − 1

− L
z

L+2
z + 1

L+3
1

L+3 − L+3
L+5

� �

L+2n−4
z + n−2

L+2n−3 − L+n−2
L+2n−5 − L+n−1

L+2n−3
n−2

L+2n−3
L+2n−2

z + n−1
L+2n−1 − L+n−1

L+2n−3

� , �28�

Bn =
1

2H�
2HL
zC

1
L+1

0 1
L+3

1
L+3

1
L+3

1
L+3 + 1

L+5
1

L+5

� � �

1
L+2n−5

1
L+2n−5 + 1

L+2n−3
1

L+2n−3
1

L+2n−3
1

L+2n−3 + 1
L+2n−1

� .

The first two lines in these matrices correspond to cases k=0 and k=1, for which the recurrence
formulas are a little different from the general case, as mentioned above. The n eigenvalues
correspond exactly to the n zeros of pn−1. If n→� then the eigenvalues converge to the solutions
of Eq. �24�. This equation has infinitely many solutions, but the solutions near zero will be found
first.

To study the occurrence of negative solutions in Eq. �24�, we reason as follows. Using the
Kummer transformation27

M�a,b,z� = ezM�b − a,b,− z�

and the asymptotic formula27

M�a,b,z� � ��b�ez/2�1

2
bz − az�1/4−b/2

�−1/2 cos�	2bz − 4az −
1

2
b� +

�

4
�

for a→−� and z real, computations yield
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K��� �
R

2�L + 1��	− � −
HR

2
�, � → − � ,

where we used some basic trigonometric identities and the fact that cos�a+ib�=cos�a�cosh�b�
−isin�a�sinh�b� and similarly for the sine. Furthermore, it follows immediately from the definition
of M as a power series that K����0 for ��0 �because in that case all terms in the series are
positive�. So if C�0 then Eq. �24� can never have a negative solution. On the other hand, if C
�0 we have

C · K��� � �, � = 0,

C · K��� � �, � → − � ,

and Eq. �24� must have at least one negative solution. Equation �27� provides an excellent ap-
proximation of the linear spectrum for a superconducting cylinder.

We present in Fig. 3 a generic aspect of the linear spectrum for a solid cylinder R=4� , h
=3�, obtained with Eq. �24�, for the ground state �n=k=0� and one radially excited state �n=1�.
For different L values the eigenvalue minima align toward an asymptotic direction given by the
corresponding Landau levels. In Figs. 4 and 5 we show a comparison between the eigenvalues
obtained for different excited states n�0 and/or k�0.

By construction, the z-excitations k�0 just add a constant �H-independent� term to the k=0
ground states. The boundary conditions can be rewritten for the special cases of thin disks or very
long cylinders. This can be explained by the fact that for R�h the confluent hypergeometric series
approaches27

M�a,b,z� → ��b�� ezza−b

��a�
+

z−a

��b − a�� ,

and Eq. �18� reduces to

R�4Ξ, h�3Ξ k�0

L�0

n�1

L�0 and n�0
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	0.4

	0.2

0.0

Hc2




FIG. 3. �Color online� Lowest-energy spectra �L,k=0,n=0�H ,L� dependence on the reduced magnetic field H /Hc2 for a
cylinder of radius R=4� and height h=3�, L�8. For different Ls the eigenvalue minima line up. One radially excited level
�L=0, n=1, k=0� occurs in this range for � �left top corner�.
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�L,k,n → − 2HL − 2H�n + 1� − �k − 1,

showing an increase in the density of eigenvalues. In the h /R→0 limit, the spectrum shows a
linear degeneration on top of Landau levels. On the contrary, when the ratio h /R increases the
spectrum becomes sparser and the eigenvalues approach larger numbers. In Fig. 6 we present the
dependence of the linear spectrum for fixed L and H as a function of the h /R ratio. For larger
values of the radius the spectrum can be approximated by the expression

�L,k,0 → H�2L + 1� − 1 +
k2�2

h2 . �29�

We show the dependence on R of the eigenvalues for different radial quantum numbers n in Fig.
7. We found that the energy exhibits minimum at a finite R, and that minimum shifts toward larger
radii for larger n. In addition, for R�3��h the spectrum virtually does not change with R and
converges to our derived expression of Eq. �29�.

With the analytical expressions for the eigenvalues �L,k,n�H ,R ,h ,b�, we can calculate the
radial-dependent part of the wave function Q���. For example, in the L=0 state the absolute value
of the wave function is minimum at the cylinder’s edges where the applied magnetic field begins
to diffuse into the sample �Fig. 8�. For L�0 the wave function has a zero on the axis, followed by

R�6Ξ

h�6Ξ

n�0

L�0

k�0

k�1

L�1

L�2

L�3

L�4

L�5

L�6

L�7

L�8

k�2

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

Hc2

�

FIG. 4. Axial excited states and ground state ��H� for a solid cylinder of height h=6� and radius R=6� for different values
for the z-quantum number: k=0 �solid line�, k=1 �dashed line�, and k=2 �dotted line� for same n=0 radial quantum number
and L=0, . . . ,8
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FIG. 5. �Color online� Radial excited states and ground state for same cylinder in Fig. 4. Radial quantum number n=0 �the
nine bottom curves� and n=1 �the three upper curves� for k=0, L=0, . . . ,8. For comparison, in the small window we
present several L=0 states for a R=8� cylinder for some values for n ,k.

L�0

k�0 n�0

k�0 n�1

k�0 n�2

k�0

n�3

k�0
n�4

k�2 n�4

k�2,n�3

k�2 n�2

k�2 n�1k�2
n�0

k�1 n�4

k�1 n�3

k�1 n�2

k�1 n�1
k�1 n�0

0.5 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5

	1.0

	0.8

	0.6

	0.4

	0.2

0.0

h�R




H�Hc2�0.3 R�5Ξ

L�3

k�0 n�0

k�0 n�1

k�0

n�2

k�2 n�2

k�2 n�1

k�2 n�0

k�1 n�2

k�1 n�1
k�1 n�0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
	1.0

	0.9

	0.8

	0.7

	0.6

	0.5

	0.4

	0.3

h�R




H�Hc2
�0.35 R�5Ξ

FIG. 6. �Color online� Dependence of the cylinder eigenvalues � vs the ratios h /R for n=0, . . . ,4, k=0, k=1, and k=2.
Left frame: L=0, H /Hc2

=0.2. Right frame: L=3, H /Hc2
=0.3. Evidently, ground states do not depend on h. All excited

states �nonhorizontal lines� approach asymptotically the corresponding ground state in the limit of long cylinder and
disappear in the limit of flat disks.
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a local minimum toward the cylinder’s edge �analogous to L=0 case�. Increasing magnetic field
suppresses further the wave function at the edge. More examples for the dependence of the order
parameter ��� ,z=0� versus the radial coordinate are presented in Fig. 9.

We note a direct consequence on the linear spectrum, occurring from the generic linear
eigenvalue problem, and the associated boundary conditions. If we write Eq. �8� in the elliptic
normal form

�

��
��

��

��
� +

�

�z
��

��

�z
� + ����� = 0, �30�

and use the Rayleigh quotient theorem,21 Eq. �30� provides stable eigenstates ��� ,z� for satisfied
inequality
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�

FIG. 7. �Color online� Dependence of � for the ground state �k=0, n=0� and three excited radial states �n=1,2 ,3 and
k=0� vs the radius of the cylinder in the range R=�÷4�. We plot eigenvalues for three different surrounding materials:
b=� �vacuum, center lines of each triplet�, b=5 �surface suppressing superconductivity, upper lines of each triplet�, and
b=−5 �surface enhancing superconductivity, lowest lines of each triplet�. The dotted line represents the approximation
from Eq. �29�.
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���� = ��−
L2

�2 −
H2�2

4
+ HL + � − �k + 1� � 0, �31�

which is obtained from one of the Rayleigh quotient conditions of stability �the rest of stability
conditions are fulfilled by the chosen boundary conditions�. This condition provides strict limita-
tions concerning the region where the superconducting state can exist. Namely, the superconduct-
ing state �nonzero ��� ,z�� survives only within the range of � enclosed between the two real roots
of Eq. �31�. From Fig. 10 we notice that the cylindrical superconducting domain narrows down
with increasing magnetic field and increasing vorticity because the superconducting state is im-
ploded by the increasing external magnetic field. For L=0 the superconducting zone is confined at
the cylinder axis, but for L�0 the superconducting state is stable in a cylindrical layer between
the central vortex and the external surface.

In the following we present the z-dependence of the superconducting order parameter. In Figs.
11 and 12 we present the wave function plotted in the �� ,z� plane, for the L=0 and L=1 states, for
the combinations of �n ,k� quantum numbers providing the lowest energy states �the ground state
and first two excited states�. In the Meissner phase and n=k=0, superconductivity is more sup-
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FIG. 8. �Color online� The radial part of the order parameter for a superconducting cylinder for different values of
magnetic field �H=0.5,1.5,2.5� and angular momentum �L=0,1 ,3�.
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FIG. 9. �Color online� The superconducting order parameter ��� ,z=0� for a cylinder of height h=4� and radii �a� R
=1.5� and �b� R=4� for the ground-state �k=n=0� and angular momenta L=0–3.
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pressed at the edges of the bases of the cylinder than in the equatorial plane. In the first excited
state �n=0, k=1�, the zero-order-parameter plane is formed in the sample at z=0. With further
increasing quantum number k, more �=0 planes nucleate in the sample �for k=1, two more
planes appear at z= �h /4�. In an analogous fashion, increased radial quantum number n induces
zero-order-parameter concentric rings. Combinatorial �n ,k� values sample the cylinder into 2k�n
+1� ring-like superconducting segments.

V. CONSTRUCTION OF VORTEX STATES FOR A SOLID CYLINDER

The eigenvalues � and corresponding eigenfunctions found for given angular momentum in
Sec. IV directly determine the free energy F of the giant vortex states, where now the previously
omitted nonlinear GL term can be included. After minimization of the energy with respect to the
normalization constant, one obtains for the superconducting order parameter of the vortex state for
chosen quantum numbers �n ,k� �see Ref. 9�

���,z� = �− �L,k,n
I2

I1
�1/2

�L,�L,k,n,k��,z�eiL
, �32�

and the minimized energy of that vortex state is

F = − �L,k,n
2 I2

2

I1
, �33�

where
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FIG. 10. �Color online� The region between the two curves corresponds to the radial range for the existence of the
superconducting state which is shown for different angular momentum. For a cylinder of radius R=4�, height h=8� and
ground states n=k=0.
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I1 = �
−h/2

h/2 �
0

R

��L,�L,k,n,k
4 ��,z�d�dz, I2 = �

−h/2

h/2 �
0

R

��L,�L,k,n,k
2 ��,z�d�dz .

In Fig. 13 the Gibbs free energy is plotted against magnetic field intensity for a solid cylinder
�R=3� , h=2�� in vacuum �b=1000�, for eigenstates �L,�L,k,n,k�� ,z�exp�iL
�=�L,k,n exp�iL
� of
different vorticities L=0,1 , . . . ,6 for the ground and first excited states, calculated with Eq. �33�.
We stress here that the dependence of the free energy-magnetic field-vorticity profiles on the axial
excitations has a very simple additive expression. Moreover, the dependence of these curves on
the nature of the surrounding material �the dependence on the b parameter� is very simple and
almost linear.

The GV states �giant vortex� are constructed solely with one such eigenstate, except that
the domain of definition for the field is restricted by the stability criterion for the normalized
�� �−1,0�. In Fig. 14 we study the influence of the radius of the solid cylinder on the magnetic
field and vorticity dependence of the free energy for two different surface conditions. We notice
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FIG. 11. �Color online� The order parameter for a cylinder of radius R=3� and height h=2� for H=0.5Hc2 and L=0.
Contour plots of the ground state and excited states. The vertical axis corresponds to the direction of the applied magnetic
field.
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that the aspect of the family of free energy versus magnetic field can be influenced by the radius
very much for suppressed superconducting surface, especially at lower fields. In Fig. 15 we show
the behavior of the free energy as a function of the magnetic field, for different vorticity of the
vortex state, and for modified boundary conditions at the sample surface, and that for cylinders
with two different radii. The boundary condition corresponding to a surrounding normal metal
�b�0�, and the proximity effect, i.e., leakage of the Cooper-pairs, suppresses superconductivity.
Vice versa, superconductivity is enhanced by b�0, and that is visible through the large critical
field of the superconducting state for the corresponding curves in Fig. 15, and the number of
vortices fitting the sample at that field. We also note that the influence of the surface on the
stability of GV structures is stronger in thinner cylinders. For same values of b taken for the larger
cylinder as for the smaller one, the maximal vorticity and critical field of the states are virtually
unaffected, contrary to the situation in the thin sample.

In order to construct the states that break the cylindrical symmetry �so-called multivortex
states�, we linearly expand the nonlinear order parameter in the basis of LGL eigenfunctions as

���,
,z� = �
Lj

Cj�Lj,k,n��,z�exp�iLj
� , �34�

and minimize the energy with respect to the complex coefficients Cj.
When we limit ourselves to only two LGL eigenfunctions, the free energy can be expressed as
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FIG. 12. �Color online� The order parameter for a cylinder of radius R=3� and height h=2�, for H=1.5Hc2 and L=1,
plotted in the �� ,z� plane for the ground state and the excited states.
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F = C1
4A1 + C2

4A2 + 4C1
2C2

2A1,2 + 2�1C1
2B1 + 2�2C2

2B2, �35�

where

Aj = I1�Lj�,A1,2 = �
−h/2

h/2 �
0

R

��L1,k1,n1

2 ��,z��L2,k2,n2

2 ��,z����d�dz, Bj = I2�Lj� .

The coefficients and the energy of the multivortex state can be obtained analytically as

C1 = � �− �1A2B1 + 2�2A1,2B2

A1A2 − 4A1,2
2 �1/2

,

C2 = � �− �2A1B2 + 2�1A1,2B1

A1A2 − 4A1,2
2 �1/2

, �36�

and inserting these expressions into Eq. �35� leads to the energy of the multivortex state

F =
− �1

2A2B1
2 − �2

2A1B2
2 + 4�1�2A1,2B1B2

A1A2 − 4A1,2
2 . �37�

The stability of the vortex states is determined by the usual criterion for a multivariable function:
the Hessian matrix consisting of the second derivatives �2F /�C1�C2 must be positive definite.

In Fig. 16 we present the obtained energy levels of the stable multivortex �MV� states �dashed
or dotted curves� obtained through the minimization of the free energy function as a function of
the magnetic field and the vorticities of the involved eigenfunctions, for a solid cylinder with
radius R=4�, and height h=2�, placed in vacuum. All �L1 ,L2� MV states approach asymptotically
the corresponding L1 and L2 GV states �plotted with solid black curves� because in the limits of
their stability the superposition factor A1,2 from Eq. �35� approaches zero by the orthogonality of
the wave functions �L,k,n against different Ls. In Fig. 17 we present the energy spectrum of the
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FIG. 13. �Color online� The Gibbs free energy vs the applied magnetic field plot for a solid cylinder �R=3� , h=2�� in
vacuum �b=�� for eigenstates �L,n,k�� ,z�exp�iL
� of different vorticities. Solid lines represent ground energy states �n
=0, k=0�. For fixed L value the dotted curves represent excited states �n=1, k=0�, and dashed curves represent excited
states �n=0, k=1�.
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R=6� �dashed lines�, and R=8� �dotted lines�. In the inset we show the same type of dependence, but for a suppressed
superconductivity at the surface �b=2�. The zero-field energy of different sets of curves scales with sample volume.
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FIG. 15. �Color online� The effect of the surface boundary condition on the dependence F�H /Hc2
,L� for giant-vortex states

of a R=3�, h=2� solid cylinder. The solid lines represent a sample surrounded by vacuum �L=0, . . . ,5, b=��, normal
metal �L=0, . . . ,3, b=2�, and higher-Tc superconductor �L=0, . . . ,6, b=−2�. In the inset the dashed lines represent same
type of free energy curves, same vorticities, but for a thicker cylinder of radius R=6�. The influence of the boundary
condition at the sample surface on the stability of GV structures �magnetic field ranges� is more intense for thinner
cylinders, while for the thicker cylinder practically all GV states collapse close to H=0.9Hc2

.
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vortex states for a wider cylinder with a boundary condition corresponding to suppressing super-
conductivity �sample surrounded by a normal metal�. As a key difference, we note that the mul-
tivortex states have the lowest energy in a larger cylinder, whereas this was not generally the case
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FIG. 16. �Color online� Free energy �for lowest-lying eigenstates n=k=0� vs the magnetic field for a superconducting
cylinder �R=4� , h=2�� in vacuum �b=��. The solid curves represent giant vortex �L=0–6� states, while dotted curves
represent multivortex �L1 :L2� states. We assign different line types for different multivortex states, i.e., dotted for �0:L�
and dashed for �1:L� states.
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FIG. 17. �Color online� Same analysis as in Fig. 16 but for a wider cylinder �R=6� , h=2�� surrounded by superconduc-
tivity suppressing material �b=2�. The solid curves represent GV �L=0–6� states, while dotted curves represent �0:L� MV
states and dashed curves �1:L� MV states.
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FIG. 18. �Color online� The absolute value of the order parameter ���� ,
 ,z=0�� �top panel� and its phase �bottom panel�
for a cylinder with radius R=4� and height h=2� in vacuum �b=��. From left to right, we have the following MV states:
�0:2� at H=0.3Hc2, �0:5� at H=0.55Hc2, �0:6� at H=0.7Hc2, �1:5� at H=0.7Hc2, and �1:6� at H=0.8Hc2. We normalized ���
to 1, and its phase to 2�.
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in the smaller sample �Fig. 16�. Obviously, the increased size of the sample relaxes the vortex
confinement, and the splitting of the giant vortex into individual vortices becomes energetically
favorable.

To illustrate the multivortex states, we plot in Figs. 18 and 19 the Cooper-pair density, i.e., the
absolute value of the MV order parameter function ��� ,
� in a cross section at z=0, and in the
lowest-lying state �k=0, n=0�, next to the phase of the same order parameter function in the
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FIG. 19. �Color online� The absolute value of the order parameter ���� ,
 ,z=0�� �top panel� and its phase �bottom panel�
for a wider cylinder �R=6� , h=2�� placed in a superconductivity suppressing medium b=2. From left to right, we show
the following MV states: �0:2� at H=0.3Hc2, �0:4� at H=0.3Hc2, again �0:4� at higher field H=0.5Hc2, and �1:6� at H
=0.6Hc2.

082903-23 Vortex states in cylindrical superconductors J. Math. Phys. 51, 082903 �2010�



same plane. In Fig. 18 we present the selected �0:L� and �1:L� multivortex states of a R=4� solid
cylinder in vacuum for several values of L and H. In Fig. 19 we present the MV states �L1 :L2� in
a cylinder with larger radius where we used a superconductivity suppressing boundary condition.
Regarding the vortex positions, we notice that the increased magnetic field compresses the mul-
tivortex states to a merger into a giant vortex, as illustrated for the �0:4� state in Fig. 19. The
boundary condition in the same figure causes suppression of the order parameter on the sample
edges, and shifts the maximum of the encircling Meissner currents toward the interior. This results
in a more compact appearance of the MV states compared to Fig. 18. At this point, we also make
few general remarks. Namely, our approach leads to the fact that for any stable combination
�L1 ,L2� we have a central GV of vorticity min
L1 ,L2�, and the remaining number of vortices
�L2−L1� symmetrically placed around the cylinder axis. Note, however, that the Cooper-pair den-
sity plots are not always conclusive with respect to the number and location of vortices in cases
when the order parameter is strongly suppressed. This is where the plots of the phase of the order
parameter are particularly useful, since the whirling phase change of 2� unambiguously reveals
the location of each vortex, and the number of 2� jumps on the contour close to the sample
boundary gives the total vorticity in the sample.

VI. MESOSCOPIC SUPERCONDUCTING PERFORATED CYLINDER

Using the same formalism, we study the eigenproblem for hollow cylinders of height h,
external radius R1, and inner radius R2. In order to use the same type of boundary condition as in
the case of a solid cylinder, we need to use both Kummer and Tricomi confluent hypergeometric
solutions

�L,k,n��� = M�1

2
−

�L,k,n − �k + 1

2H
,L + 1,

H�2

2
� + CU�1

2
−

�L,k,n − �k + 1

2H
,L + 1,

H�2

2
� �38�

for R2���R1. This radial eigenfunction does not introduce singularities because the origin of the
coordinate system is part of the sample. The BC introduces now two equations for �=R1 and �
=R2. On the outer surface �blat=b1� we have the usual boundary condition, Eq. �13�,


 ��

��



�=R1

= −
��R1�

b1
, �39�

from where we obtain the coefficient C,

C = − ��L + 1��2b1L + 2R1 − b1HR1
2�M�1

2
−

�L,k,n − �k + 1

2H
,L + 1,

HR1
2

2
�

+ b1R1
2�H − �L,k,n + �k − 1�M�3

2
−

�L,k,n − �k + 1

2H
,L + 2,

HR1
2

2
��

� ��L + 1���2b1L + 2R1 − b1HR1
2�U�1

2
−

�L,k,n − �k + 1

2H
,L + 1,

HR1
2

2
�

− b1R1
2�H − �L,k,n + �k − 1�U�3

2
−

�L,k,n − �k + 1

2H
,L + 2,

HR1
2

2
��−1� . �40�

We introduce this value for C in Eq. �38� and by using the inner surface �R2 ,b2� boundary
condition �same type of Eq. �13��,


 ��

��



�=R2

=
��R2�

b2
, �41�

we solve it for �=��R1,2 ,b1,2 ,L ,H ,k�. We use again the continued fractions formalism from Sec.
IV for the confluent hypergeometric functions, and we obtain an analytical approximation for the
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solutions, which we will not present here because the expression is too large.
The structure of the eigenvalues � for the hollow cylinder is similar to the one for a solid

cylinder with some extra peculiarities. In addition to the solid cylinder eigenvalues �L ,k ,n�H�
which are shifted and somehow deformed, we note the existence of some nontraditional eigenval-
ues � identical with the magnetic Landau energies for the same corresponding vorticities. More-
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FIG. 20. Eigenvalues � for a hollow cylinder R1=6� , R2=2� , h=4� vs magnetic field for several L values. One can note
the level crossing between the traditional ground state levels seeded by a solid cylinder R=6� and the linear Landau levels.
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FIG. 21. �Color online� The deformation of the lowest eigenvalues for a cylinder with square vertical cross-section �h
=2R� for varied radius of the central hole R2. For R2=0 the spectrum is identical with the spectrum of a solid cylinder,
while for larger hole size the spectrum becomes sparser, and splitting of levels is observed.
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over, the excited states n�1 are more negative values than in case of the solid cylinder case.
Consequently, we have level crossing effects for some values of the magnetic field, see Fig. 20,
which in principle may induce degeneracy of the ground states. However, when we plot the free
energy versus magnetic field and vorticity we do not observe any additional transitions between
vortex configurations other than the one predicted by the traditional eigenvalues, because the states
associated with these “Landau” levels have much higher free energy.

In order to observe the effect of the size of the hole, we plot in Fig. 21 the eigenvalues for the
cylinder with varied radius of the central hole. For small hole radius �punctured cylinder, see Fig.
1�c�� the confluent hypergeometric solutions approach Bessel functions and the spectrum tends to
be equidistant—similar to the case of a solid disk �in the limit R1→0�. For larger hole �Fig. 1�b��
the levels initially decrease with increasing R1 and are degenerate for n=0,1. When further
approaching the limit of a cylindrical shell, the eigenvalues for n=0,1 split, the lower eigenvalues
become unstable while the higher ones increase further.

In Fig. 22 we present the dependence of the spectrum on the height of a cylinder of radius
R=4� with a hole of radius R1=2�. For h /R�0, the spectrum approaches the thin disk case, while
for larger height lowest eigenvalues become unstable. Splitting of the degenerate levels with
increasing h is observed for L=1.

General conclusions can be obtained from this approach relative to the relation between the �
spectrum and the topology of the boundary. If we integrate the boundary condition in Eq. �11�
along � we find that the mean value of the order parameter along this boundary is 2� times the
Euler–Poincaré characteristic of the domain bounded by �. This implies that the multiplicity of the
spectrum of a sample with open cavities compared to the spectrum of the whole sample is just
given by the number of open cavities performed in the sample. This observation can also be
understood by noticing that the cavities introduce actually extra boundary conditions which pro-
vide additional zeros of the expression inside the determinant equation �28�.

Finally, we construct the actual vortex states of a perforated cylinder, the full solutions to the
nonlinear Ginzburg–Landau equation, assuming that the solution for the order parameter can be
obtained by an expansion in the basis of just two eigenfunctions of the linear operator. As we did
in the Sec. V for the solid cylinder, we first plot the energy levels for different giant and multi-
vortex states in Fig. 23. Here we consider the stability ranges of different states in a hollow
cylinder placed in vacuum: the solid-dotted curves of different colors �representing different
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FIG. 22. �Color online� Dependence of the spectrum of a hollow superconducting cylinder as a function of its height.
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vorticity combinations� are the stable ranges for MV states, while the dotted curves represent the
unstable analytical continuations toward their asymptotical GV limits. One distinct feature of a
hollow cylinder is the fact that all minima of the free energy in the ground state remain approxi-
mately the same, even for different magnetic field and different vorticities. This is a consequence
of vortices being trapped by the hole, and therefore weakly affecting the superconducting part of
the sample. For the same reason, the stability ranges of the different GV states are very much
enhanced compared to the solid cylinder case.

Concerning the multivortex states, the ones with nonzero L1 are also greatly enhanced com-
pared to the solid cylinder. Generally speaking, a combination of a giant vortex surrounded by
individual vortices is not favorable in solid cylinders and disks; instead a full giant or a full
multivortex state is realized. Quite the contrary, it is energetically favorable to have this type of
states in a perforated cylinder, where a number of vortices are trapped by the hole, and the
remaining vortices stay in the superconductor around the perforation. In Fig. 24 we present some
examples of these vortex states, as density plots of the absolute value and phase of the order
parameter, for a thick cylinder with a narrow cavity R1=6� , R2=2�.

VII. CONCLUSIONS

In this paper we solved the linear Ginzburg–Landau equation for a superconducting sample
with cylindrical shape in a uniform axial magnetic field. We obtained exact analytic expression for
the eigenfunctions for boundaries consisting of multiple cylindrical surfaces in terms of a finite
sum of confluent hypergeometric functions. As a novelty, the associated eigenvalues are calculated
through the expansion of an infinite functional determinant in terms of continued fractions for
confluent hypergeometric functions. We analyze the structure of the spectrum in a variety of cases
depending on the relative size of the cylindrical surfaces and cylindrical cavities, and on the
surface boundary conditions. Among many possible sample geometries �e.g., semispace with finite
cylindrical cavity or step, etc.� we demonstrate the method on the solid cylinder case �pillars of
different radii� placed in different media. Also, by using the Rayleigh quotient condition of sta-
bility for the eigenvalues, we stress the limitations concerning the region in which the supercon-
ducting state can exist. Besides being applicable to a variety of superconducting geometries, our
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FIG. 23. �Color online� Free energy �for used lowest-lying eigenstates n=k=0� for GV and MV states as a function of the
magnetic field for a perforated cylinder �R1=6� , R2=4�h=2�� in vacuum �b=��.
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findings facilitate the studies of vortex states deep in the superconducting phase, by solving the
full nonlinear Ginzburg–Landau equation using the linear expansion method, as we demonstrated
by calculating the energy spectrum and vortex configurations for a solid and perforated cylinder.
The method presented in this article allows for more general cylindrical symmetry configurations
to be analyzed with high accuracy and time efficiency, like, for example, concentric multilayers of
different types of superconducting materials, with open or “blind” axial ends, etc. Moreover, the
analytic expressions obtained for the eigenvalues allow to obtain simple expressions for the po-
sitions of the centers of the vortices in the given cross section.

1 C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation �Springer-Verlag, Heidelberg, 1999�; M. Shifman and
A. Yung, Rev. Mod. Phys. 79, 1139 �2007�.

2 H. Küpfer, G. Linker, G. Ravikumar, Th. Wolf, A. Will, A. A. Zhukov, R. Meier-Hirmer, B. Obst, and H. Wühl, Phys.
Rev. B 67, 064507 �2003�; E. T. Filby, A. A. Zhukov, P. A. J. de Groot, M. A. Ghanem, P. N. Bartlett, and V. V.
Metlushko, Appl. Phys. Lett. 89, 092503 �2006�.

3 Ben Xu, M. V. Milošević, and F. M. Peeters, Phys. Rev. B 77, 144509 �2008�.
4 B. J. Baelus, D. Sun, and F. M. Peeters, Phys. Rev. B 75, 174523 �2007�.
5 G.-Q. Zha, S.-P. Zhou, B.-H. Zhu, Y.-M. Shi, and H.-W. Zhao, Phys. Rev. B 74, 024527 �2006�; 73, 104508 �2006�.
6 V. A. Schweigert and F. M. Peeters, Phys. Rev. B 57, 13817 �1998�.
7 V. A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett. 81, 2783 �1998�.
8 A. Kanda, B. J. Baelus, F. M. Peeters, K. Kadowaki, and Y. Ootuka, Phys. Rev. Lett. 93, 257002 �2004�.
9 S. V. Yampolskii and F. M. Peeters, Phys. Rev. B 62, 9663 �2000�.

10 B. J. Baelus, S. V. Yampolskii, F. M. Peeters, E. Montevecchi, and J. O. Indekeu, Phys. Rev. B 65, 024510 �2001�.
11 V. A. Schweigert and F. M. Peeters, Phys. Rev. Lett. 83, 2409 �1999�.
12 S. Michotte, S. Mátéfi-Tempfli, L. Piraux, D. Y. Vodolazov, and F. M. Peeters, Phys. Rev. B 69, 094512 �2004�; S. Adam,

F. de Menten de Horne, L. Piraux, and S. Michotte, Appl. Phys. Lett. 92, 012516 �2008�.
13 J. J. Palacios, Phys. Rev. Lett. 84, 1796 �2000�; Phys. Rev. B 58, R5948 �1998�.
14 A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, Nature �London�

390, 259 �1997�.
15 B. J. Baelus, F. M. Peeters, and V. A. Schweigert, Phys. Rev. B 61, 9734 �2000�.
16 Y. Chen, M. M. Doria, and F. M. Peeters, Phys. Rev. B 77, 054511 �2008�.
17 A. Ronveaux, Heun’s Differential Equations �Oxford University Press, Oxford, 1995�.

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6

x

y
�6 �4 �2 0 2 4 6

�6

�4

�2

0

2

4

6

x

y
�6 �4 �2 0 2 4 6

�6

�4

�2

0

2

4

6

x

y

�6 �4 �2 0 2 4 6
�6

�4

�2

0

2

4

6

x

y

FIG. 24. �Color online� Typical examples of GV and MV states. The density plots for the absolute value of the order
parameter are given in the first and third frames, and the phase of the order parameter is shown in the second and fourth
frames, for a hollow cylinder R1=6� , R2=2� , h=2�, placed in vacuum. The left pair shows a �2:4� state at H
=0.75Hc2 having a double GV inside the hole, with two extra vortices around the perforation. The right pair shows a �3:6�
state at H=0.25Hc2 having a triple GV inside the hole, with three extra vortices around the perforation.

082903-28 Ludu et al. J. Math. Phys. 51, 082903 �2010�

http://dx.doi.org/10.1103/RevModPhys.79.1139
http://dx.doi.org/10.1103/PhysRevB.67.064507
http://dx.doi.org/10.1103/PhysRevB.67.064507
http://dx.doi.org/10.1063/1.2339047
http://dx.doi.org/10.1103/PhysRevB.77.144509
http://dx.doi.org/10.1103/PhysRevB.75.174523
http://dx.doi.org/10.1103/PhysRevB.74.024527
http://dx.doi.org/10.1103/PhysRevB.57.13817
http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1103/PhysRevLett.93.257002
http://dx.doi.org/10.1103/PhysRevB.62.9663
http://dx.doi.org/10.1103/PhysRevB.65.024510
http://dx.doi.org/10.1103/PhysRevLett.83.2409
http://dx.doi.org/10.1103/PhysRevB.69.094512
http://dx.doi.org/10.1063/1.2831657
http://dx.doi.org/10.1103/PhysRevLett.84.1796
http://dx.doi.org/10.1103/PhysRevB.58.R5948
http://dx.doi.org/10.1038/36797
http://dx.doi.org/10.1103/PhysRevB.61.9734
http://dx.doi.org/10.1103/PhysRevB.77.054511


18 D. Zwillinger, Handbook of Differential Equations �Academic, San Diego, 1998�.
19 G. M. Murphy, Ordinary Differential Equations and Their Solutions �Van Nostrand, Princeton, NJ, 1960�.
20 H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators �Springer-Verlag, Berlin, 1987�.
21 R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems �McGraw-Hill, New York,

1968�.
22 A. M. Hansson, Int. J. Math. Math. Sci. 2005, 3751 �2005�.
23 L. Erdős, Ann. Inst. Fourier 52, 1833 �2002�.
24 R. L. Frank, A. Laptev, and S. Molchanov, Proc. Amer. Math. Soc. 136, 4245 �2008�; e-print arXiv:0705.3969 �cond-

mat�.
25 L. U. Ancarani and G. Gasaneo, J. Math. Phys. 49, 063508 �2008�.
26 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products �Academic, San Diego, 1994�.
27 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions �National Bureau of Standards, Washington,

DC, 1964�.
28 E. Fisher, Proc. Natl. Acad. Sci. U.S.A. 21, 529 �1935�.
29 G. F. Zharkov, V. G. Zharkov, and A. Yu. Zvetkov, Phys. Rev. B 61, 12293 �2000�.
30 P. G. de Gennes and J. Matricon, Rev. Mod. Phys. 36, 45 �1964�.
31 K. Miller and B. Simon, Phys. Rev. Lett. 44, 1706 �1980�.
32 A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones, Handbook of Continued Fractions for Special

Functions �Springer, New York, 2008�.

082903-29 Vortex states in cylindrical superconductors J. Math. Phys. 51, 082903 �2010�

http://dx.doi.org/10.1155/IJMMS.2005.3751
http://dx.doi.org/10.1090/S0002-9939-08-09523-3
http://dx.doi.org/10.1063/1.2939395
http://dx.doi.org/10.1073/pnas.21.9.529
http://dx.doi.org/10.1103/PhysRevB.61.12293
http://dx.doi.org/10.1103/RevModPhys.36.45
http://dx.doi.org/10.1103/PhysRevLett.44.1706

