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a b s t r a c t

Statistical multiplexers have been integral components of packet switches and routers on
data networks. They are modeled as queueing systems with a finite buffer space, served by
one or more transmission links of fixed or varying capacity. The service structure typically
admits packets ofmultiple sources on a first-come first-serve (FCFS) basis. In this paper, we
adhere to D-BMAP/PH/1/N queues with discrete phase-type group service channel which
allows the packets to get service in the service channel for a randomnumber of time slots by
staying in different phases of the service channel before they leave the switch. The aim is to
determine the packet loss probability (PLP) as a function of the capacity of the buffer. Due to
the curse of dimensionality of the mathematical model, the numerical computation of the
performance measures using the analytical formulas is time and memory consuming. Due
to rare events, getting the performancemeasures by simulation is again time consuming. To
overcome this problem, we use the Newton–Padé-type rational approximation technique
to compute the PLP more efficiently. Since this technique needs the asymptotic behavior
of the PLP, we show a way to regroup the elements of the TPM to obtain the asymptotic
behavior of the PLP.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Internet is primarily TCP/IP with variable length packets instead of fixed length packets. Variable bit rate (VBR)
communications with real time constraints in general, and video communication services (video phone, video conferencing,
television distribution) in particular, are expected to be a major class of services provided by the future Quality of Service
(QoS) enabled Internet. The introduction of statistical multiplexing techniques offers the capability to efficiently support
VBR connections by taking advantage of the variability of the bandwidth requirements of individual connections.
Statistical multiplexers have been integral components in packet switches and routers on data networks. They have

gained increased prominence since 1990 with the availability of broadband transmission speeds exceeding 155 Mbps and
ranging up to 10 Gbps in the core of the network. The characterization of network traffic with parametric models is a basic
requirement to engineer communication networks. Statistical multiplexers in particular are modeled as queueing systems
with finite buffer space, served by one ormore transmission links of fixed or varying capacity. The service structure typically
admits packets of multiple sources on a first-come first-serve (FCFS) basis. The statistical multiplexing gain is an important
performance metric that quantifies the multiplexing efficiency.
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Next generation Internet services such as on demand high-quality video streaming service will heavily consume the
bandwidth of the Internet backbone with their broadcast and multicast traffic. Thus, packet switches, being the core of the
Internet, need to efficiently support ever increasing multicast traffic [1].
Two call splitting policies, namely call splitting and no call splitting, are possible for switching multicast packets. No call

splitting, or one-shot policy, is the forwarding of amulticast cell to its all destinations at a single time slot. Since transmission
will not be allowed until all associated output ports become available, no call splitting can add significant delay to packets
with high degree of multicasting. Call splitting, on the other hand, allows forwarding of multicast cells to a set of available
output ports in one time slot, and the remaining multicast cells will be forwarded to the rest of the output ports whenever
the switch resource associated to them becomes available.
The proposed phase-type service can be used to describe the behavior of a packet switch that supports multicast packets

via call splitting. Each packet arriving at an input port of packet switch can have one (in case of a unicast packet) to at most
Ms output destinations depending on the degree of multicasting. In our model, each packet is first assigned to a phase iwith
some probability whereMs − i+ 1 represents a remaining number of multicasting output ports. Every time a full or partial
forwarding of the multicast packet from the input port to output port is completed, the assignment is shifted toward phase
Ms with a certain transition probability from phase j to phase k for k ≥ jwith probability sjk. The process continues until the
packet leaves the system at that time the multicast packet is removed from the head-of-line queue.
In order to access the multiplexing gain, a variety of techniques have been developed in recent years, based on exact

analysis, approximate analysis and simulation.
In exact analysis, the traffic is described by Markov-modulated arrival processes (MMAP), leading to a Markov model of

M/G/1-type [2–6]. These processes find many applications in computer and communication systems. For example, special
cases of this model are used tomodel voice, data and video traffic sources [7–10]. Unfortunately, the curse of dimensionality
weighs heavily on many branches of applied probability, and queueing theory is no exception. The complexity of the
algorithms used to find the stationary probabilities of M/G/1-type queues is O(c(M + 1)3M3SN

2), where c is the maximum
number of packets the server can serve, M is the number of information sources from which packets are arriving to the
system, MS is the number of phases in the service channel, and N is the buffer size of the queue. This order of complexity
does not allow one to compute the PLP for large buffers in real time. Hence, even for special cases of this arrival process,
computing the PLP is intensive and impractical, especially when the state space of the aggregate arrival process is large
[11]. Another Markov-modulated source that has extensively been used to model various types of traffic is the Markov-
modulated fluid (MMF) source [12,11]. In the MMF, information is generated and processed as a continuous (fluid) flow at a
rate which depends on the state of the background Markov process. The advantage of this model over traditional queueing
models is that the numerical complexity is independent of the buffer size. However, unlike the case of MMAP, where the
discrete nature of the packet is preserved, the fluid is unable to capture the effect of cell variability.
Monte Carlo simulation is also used to compute the PLP. If the desired PLP is in the range of 10−6 to 10−12, depending on

the kind of service, it is however computationally impossible to use the conventional Monte Carlo simulation. A simulation
technique called Importance Sampling (IS) can speed up simulations involving rare events such as PLP [13,14]. However,
because of the complicated nature of multiplexer queueing models, applying the IS technique is not straightforward.
In this paper, we adhere to the discrete phase-type service channel which allows the packets to get service in the service

channel for a random number of time slots by staying in different phases of the service channel before they leave the
switch unlike the queueing model proposed in [6] where a deterministic service distribution is used to serve the packets. In
Section 2,we give the closed form expression for the TPMof the underlyingMarkov chain. The aim is to determine the packet
loss probability PL(N) as a function of the capacity of the buffer N . In Section 2.3, we find a way to regroup the elements of
the TPM to obtain the asymptotic behavior of PL(N). By suitably modifying the technique proposed in [4], we compute the
PL(N) of the TPM of the queueing model under investigation.
The technique proposed in [6] is a kind of ‘‘divide and conquer’’ technique, in the sense that

- for small values of the buffer capacity N the exact value PL(N) is computed,
- the function log PL(N) is approximated by a suitable rational function rn(N),
- and the approximate model is validated by simulation for one larger value of the buffer length.

The motivation to compute the PLP using rational approximation comes from the works of Gong and Yang [15] and Yang
[16]. They have computed these probabilities for large buffer sizes, from sampled values of log PL(N) for small buffer sizes
and the decay rate of the loss probability. The technique was applied to multiplexer models with little or no correlation
between the cells.
In [6], an automatic procedure to select the sample points (also called support points) is proposed and used for the

efficient computation of models rn(N) in case there is more correlation between the cells. The procedure selects the support
points in a region which we determine from the system parameters, until the model rn(N) is sufficiently accurate, meaning
that |rn(N) − rn+1(N)|/|rn+1(N)| does not exceed a prescribed error threshold. But when encountering positive real poles
in the model rn(N), the procedure has to add more support points and increase n to achieve the desired accuracy.
Here this technique is perfected: besides making use of the slope of the function log PL(N) for N → ∞, as explained in

Section 2.3, we show in Section 3.2 how one can make very good use of the knowledge of PL(N) for extremely small values
of N . The present approach allows us to construct a model rn(N)which is free from positive real poles, and is very efficient.
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In our model we maximize the information that can be extracted from the data, while minimizing the number of data
samples to be collected.

2. D-BMAP/PH/1/N queue with batch service

2.1. Model description

In the multiplexer environment, the arrival of packets to the switch happens in discrete time, and because the service
time is discrete, the discrete time Markov chain is a natural modeling choice. We assume that the arrival of packets, which
are transmitted byM independent and non-identical information sources to the multiplexer, can be modeled as a discrete
time batch Markovian arrival process (D-BMAP), the discrete time version of BMAP. Each information source is controlled
by a 2-state (ON and OFF) Markov chain, called the background Markov chain. Each of these background Markov chains has
the following TPM

Q =
(
1− p p
q 1− q

)
, (1)

where p (q) is the probability that the chain is changing from OFF to ON state (ON to OFF state).
As an example for an ON–OFF information source, we consider the following practical situation: Consider a population

of voice messages serviced by a single T1 channel (whose bandwidth is 1.536 Mbps). We discretize time into 16 ms slots.

The mean ON period = 352 ms =
352
16
time slots = 22 time slots =

1
q
.

Therefore q =
1
22
time slots ≈ 0.04546 time slots.

The mean OFF period = 650 ms =
650
16
time slots =

1
p
.

Therefore p =
16
650

time slots ≈ 0.02461 time slots.

Hence each voice source can be modeled as a homogeneous ON–OFF source with a background Markov chain whose
transition matrix is given by [16]:(

0.975 0.025
0.045 0.955

)
(2)

where p and q values are substituted in (1) to get the above matrix.
The basic queueing systemwhich models the multiplexer is a D-BMAP/PH/1/N queue with one discrete time server who

offers service to groups of varying size and the service times are assumed to be of phase type. When the buffer contains
more than c packets, a maximum number of c packets join the service channel.
The service time of the packets has a common phase-type distribution function [17] with a matrix representation

(Ms,α, S), where Ms is a positive integer denoting the number of phases in the service channel, α is a 1 × Ms nonnegative
stochastic vector and S = (sij) is anMs×Ms sub-stochastic matrix. The ith component of the vector α is the probability that
the packets which join the service channel start being serviced in phase i. With probability sij these packets change from
phase i to phase j in the next time slot. The jth element of the vector (I − S)e is the probability that these packets leave the
service channel at the jth phase. Here I is anMs ×Ms identity matrix and e is anMs × 1 vector with all entries equal to one.
The mean service rate is given by

µ =
c

α(I − S)e
. (3)

When the server is busy servicing the packets (at most c packets), other arriving packets wait in the buffer of capacity N ,
including the number of packets in the service channel even if the server holds less than c packets. We define mtot :=
(M + 1)Ms.

2.2. PLP PL(N)

The D-BMAP/PH/1/N queueing model with group service is basically a Markov chain (MC) with a finite number of states
labeled 0, 1, . . . , (M + 1) + Nmtot . The set of states {0, 1, . . . ,M} is referred to as level zero of the MC, whereas the set of
states {(M + 1)+ (i− 1)mtot , . . . , (M + 1)+ imtot − 1} is referred to as level i of the MC for 1 ≤ i ≤ N . The states of level
i, with 1 ≤ i ≤ N , are labeled (s, j), where 1 ≤ s ≤ Ms and 0 ≤ j ≤ M . The state (s, j) of level i corresponds to the situation
in which there are packets (at most c packets) in phase s of the service channel and the D-BMAP arrival process is in state j.
State j of level zero corresponds to the situation in which the queue and the server are empty while the current state of the
D-BMAP arrival process is j. We are interested in computing the stationary probabilities of the MC.
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This MC can easily be extended to a model with heterogeneous sources. But in the heterogeneous case the computation
of the stationary probability becomes very expensive as there are totally 2M + 2MNMs states (see for example [6]). So we
restrict our analysis to models with M homogeneous sources. Let D be the TPM of the D-BMAP arrival process and let
Di (i = 0, 1, . . . ,M) denote the matrix corresponding to i arrivals during a time slot. These matrices are of dimension
(M + 1)× (M + 1) and can be calculated from the following system parameters [6, section 2.2]:
1. the number of sourcesM ,
2. the transition probabilities p and q of the background Markov chains, and
3. the packet generation probability d.

The average arrival rate of packets at the multiplexer is given by

λ = η

(
M∑
i=0

iDi

)
e, (4)

where e is a column vector of ones and the vector η is such that ηD = ηwith ηe = 1.
Under the condition of ergodicity of the MC, i.e. the load ρ = λ/(cµ) < 1, the stochastic stationary distribution vector

Π satisfies
ΠP = Π, (5)

where the (i, j)th element P ij of the transition probabilitymatrix (TPM) P of theMC is given by (6), (7) and (8). The stationary
distributionΠ is given by

Π = (π0, . . . ,πN ) ,

where
π0 = (π00, . . . , π0M) ∈ RM+1

with
π0j = P {buffer is empty and the arrival process is in state j}

and

πi =

(
π1

i , . . . ,π
Ms
i

)
∈ Rmtot , 1 ≤ i ≤ N,

where
πs

i =
(
π si0, . . . , π

s
iM

)
∈ RM+1

with
π sij = P {buffer has i packets while the arrival process is in state j and the packets are being served in phase s} ,

for 1 ≤ i ≤ N; 0 ≤ j ≤ M; 1 ≤ s ≤ Ms.
The transition probabilities are given by

P0j =

{
D0, j = 0
Dj

⊗
α, j = 1, . . . ,N − 1, (6)

P ij =



D0
⊗

(I − S)e, j = 0
Dj

⊗
(I − S)eα, j = 1, 2, . . . , i− 1

Dj−i

⊗
S + Dj

⊗
(I − S)eα, j = i, i+ 1, . . . ,N − 1

M∑
k=j−i

Dk

⊗
S +

M∑
k=j

Dk

⊗
(I − S)eα, j = N,

(7)

for i = 1, 2, . . . , c , and

P ij =



0, j = 0, 1, . . . , i− c − 1
Dj−i+c

⊗
(I − S)eα, j = i− c, . . . , i− 1

Dj−i

⊗
S + Dj−i+c

⊗
(I − S)eα, j = i, i+ 1, . . . ,N − 1

M∑
k=j−i

Dk

⊗
S +

M∑
k=j−i+c

Dk

⊗
(I − S)eα, j = N,

(8)

for i = c + 1, c + 2, . . . ,N . We use the convention that the summations (
∑
) in (7) and (8) will be zero if the lower limit of

the running index is greater than the upper limit.
Eqs. (6)–(8) are self-explanatory. For example, the transition from level 0 to level 0 implies that the system is empty in the

previous time slot and it remains empty in the current time slot. This can happen when there is no arrival. Hence P00 = D0.
The transition from level 1 to level N happens in case of any of the following events:
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1. One packet was being serviced in the previous time slot and it continues to be in service in the current time slot, but in
a different phase with probability matrix S . Several situations can occur:
– We have N − 1 arrivals in the current time slot, an event of probability DN−1

⊗
S .

– We have N arrivals in the current time slot, an event of probability DN
⊗

S .
...

– We haveM arrivals in the current time slot, an event of probability DM
⊗

S .
2. One packet was being serviced in the previous time slot and it leaves the service in the current time slot with probability
vector (I − S)e. Again different situations can occur:
– In the current time slot N arrivals occur of which c join the service channel with probability vector α. The probability
of this event is DN

⊗
(I − S)eα.

– In the current time slotN+1 arrivals occur ofwhich c join the service channelwith probability vectorα. The probability
of this event is DN+1

⊗
(I − S)eα.

...
– In the current time slotM arrivals occur of which c join the service channel with probability vector α. The probability
of this event is DM

⊗
(I − S)eα.

Hence the (1,N)th element of P is given by

P1N =

M∑
k=N−1

Dk

⊗
S +

M∑
k=N

Dk

⊗
(I − S)eα,

which is what we get if we substitute i = 1 and j = N in (7). We note that the above discussion is valid only when N < M .
When N > M , the jumping of the underlying process from state 1 to state N is not possible and hence P1N = 0. This is taken
care by the summation convention used in (7) and (8).
The matrix P is a square matrix of order (M + 1) + Nmtot . The PLP function PL(N), as a function of the buffer size N , is

then given by

PL(N) =
1
λ

[
π0

M∑
m=0

[m− N]+Dke+
N∑
n=1

(
Ms∑
s=1

πs
n

)(
M∑
m=0

[m+ n− N]+Dke

)]
, (9)

where [x]+ := max(0, x).

2.3. Asymptotic behavior of log PL(N)

In the literature, the loss probability PL(N) in a queueing system with finite buffer size N is often approximated by
P{Q ≥ N}, the tail of the queue length distribution in the corresponding infinite buffer queueing system [10]. For infinite
buffer queueing systems, it has been shown that P{Q ≥ N} is asymptotically exponential [18], that is,

P{Q ≥ N} ∼ AeξN , N →∞.

Here ξ is a negative constant called the asymptotic decay rate and A is a positive constant called the asymptotic constant.
The classical effective bandwidth approximation assumes that the constant A is 1 [19]. Hence

log PL(N) ∼ ξN, N →∞, (10)

where the decay rate ξ is the Perron–Frobenius eigenvalue of the matrix

A(z) :=
K∑
n=0

Anzn, 0 < z < RA (11)

satisfying the condition ξ = z. Here RA is the radius of convergence of A(z), K = dM+cc e and

Ak := (P ij)
i=c+1,...,2c
j=kc+1,...,(k+1)c, k = 0, 1, . . . , K .

With the regrouping using thematrices Ai, the structure of the TPM P is the same as that of the TPM of anM/G/1-type queue
and hence we are justified to use the asymptotic exponential decay behavior [18].
It is well known that for Markov-modulated arrival processes there are typically two main regions in which increasing

the buffer size reduces the cell loss — the ‘‘cell region’’ and the ‘‘burst region’’ as depicted in Fig. 1. In the cell region, themain
component contributing to the loss rate is the cell variability (correlation) within the modulated process. As the buffer size
is increased, this variability gets absorbed and the loss rapidly decreases. In the burst region, the loss due to cell variability
is negligible and the loss is mainly due to the fact that the rate in one or more of the states (overloaded states) is greater
than the link capacity µ. The asymptotic slope of the burst region is the same as the decay rate ξ .
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Fig. 1. Cell and burst regions. The PL(N) plotted on the y-axis is on a log scale and the buffer size plotted on the x-axis is on a linear scale.

It has been observed in [6] that if there is less correlation betweenpackets’ interarrival times and the traffic in the network
is heavy (ρ is close to 1), the decay rate ξ becomes very large and hence the function PL(N) decreases quickly as N increases.
This means that already for small buffer sizes, say N = 20, the loss is very little. Such networks are not of much interest
because of their limited practical use. More correlation between the cells is introduced when the transition probabilities p
and q (or p and q) are less than 10−3. This case is of major importance when the input consists of more video sources [3].
Also, inmost real-world network environments, the network load ρ need not be always close to 1. In such cases, the function
log PL(N) decreases quickly (cell region) as N increases until a particular buffer size Ñ . Beyond Ñ , it decreases slowly (burst
region) as ξN asymptotically. In Section 3.2 we shall indicate how an approximation for Ñ can be computed and put to good
use.

3. Rational approximation

3.1. Free poles

Because of the fact that the function log PL(N) asymptotically decays as ξN for large N , polynomial approximation
techniques for log PL(N) are not suitable. Every polynomial model of degree larger than one, would blow up too quickly for
large N . However, a rational function rn(N) of numerator degree n+ 1 and denominator degree n, has a similar asymptotic
behavior as that of log PL(N). It remains to compute the coefficients in numerator and denominator of the rational function

rn(N) =
pn(N)
qn(N)

=

n+1∑
i=0
aiN i

n∑
i=0
biN i

,

mostly from computed values of log PL(Nj) for small buffer sizes Nj, to fit the behavior of log PL(N).
The rational model is fully specified when we know its numerator and denominator coefficients b1, . . . , bn and

a0, . . . , an+1, a total of 2n + 2 coefficients (the constant term b0 in the denominator is only a normalization constant for
the rational function [20] and is therefore assigned the value 1, whenever possible). These coefficients are determined from
sampling log PL(N) at chosen Nj for j = 0, . . . , 2nwhile an+1 is determined from the asymptotic behavior

lim
N→∞

log PL(N) ≈ ξN =
an+1
bn
N. (12)

More details and an illustration of this technique can be found in [6]. Functions with poles or at most a countable number of
isolated essential singularities, in particular, allow nice convergence properties when approximated by rational functions. In
that case, the singularities of the function under consideration, attract the poles of the rational approximant to their position.
Although the behavior of the function log PL(N) is not such that a rational approximant rn(N) naturally attracts real positive
poles, once in a while it may happen that rn(N) has one or more poles in the region of interest for N . For instance, with the
system parameters given by

M = 10, Ms = 5, p = 5× 10−5, q = 6× 10−5,
d = 0.02, c = 1, α = [1, 0, 0, 0, 0],
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Fig. 2. Rational approximant for log PL(N)with a pole around N = 80.

S =


0.45 0.55 0 0 0
0 0.45 0.55 0 0
0 0 0.45 0.55 0
0 0 0 0.45 0.55
0 0 0 0 0.45

 ,
the approximant r2, which can be seen in Fig. 2, exhibits a pole around N = 400. This is of course undesirable. Since a
suitable value for the denominator degree n is determined from comparing ‖rn+1 − rn‖/‖rn+1‖ on the positive real axis to
a threshold value ε,

sup
0<N<∞

|rn+1(N)− rn(N)| ≤ ε sup
0<N<∞

|rn+1(N)|, (13)

the occurrence of an undesirable pole slows themethod down. Fortunately, it does notmake themethod unsuitable. Indeed,
when log PL(N) itself does not have any singularities on the positive real axis, while rn(N) has a pole at N = N? > 0, then
there is no mathematical argument for the next approximant rn+1(N) to have a pole in the neighborhood of N = N? as well.
So

sup
0<N<∞

|rn(N)− rn−1(N)| = sup
0<N<∞

|rn+1(N)− rn(N)| = ∞

and (13) is not satisfied, but (13) may be satisfied for a larger value of n. Let us now explain how the occurrence of these
undesirable poles can be avoided.

3.2. Curvature maximum of log PL(N)

Besides the typical asymptotic behavior of log PL(N), we also want to capture the neighborhood of N for which the graph
turns from a steep descent (cell region) toward its linear asymptotic look (burst region). The curvature of a function f (x) is
given by

κ(x) =
f ′′(x)(√

1+ (f ′(x))2
)3 .

Here ′ and ′′ denote the first and second derivatives, respectively. A discretized version of κ(x), which can also be used for
f (N) = log PL(N), is given by

κj =
(fj+1 − 2fj + fj−1)(√
1+ (fj+1 − fj)2

)3 , j ≥ 1. (14)

where fj = log PL(j+c).We are interested in the point ofmaximal curvature of the function log PL(N), which can be estimated
by monitoring κj for successive values of j. Let us denote by Ñ the value of j+ 1 for which κj attains its maximum. Then the
computation of Ñ can be put to good use, becomes clear from the following observations.
A rational function of the form 1/(N2 + R2) with R > 0 resembles log PL(N) on the positive real axis. It has its maximal

curvature for positive N in the immediate neighborhood of the point N = R, namely in the interval [R, 1.002R] if R ≥ 2.
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Fig. 3. Curvature of log PL(N) and of 1/(N2 + R2).

A typical evolution of the curvature of log PL(N) and that of 1/(N2+ R2) can be seen in Fig. 3. A rational function of the form

r2(N) =
ξN3 + a2N2 + a1N + a0

N2 + R2

exhibits a limiting behavior of the required type, namely limN→∞ r2(N) ≈ ξN . It also achieves maximal curvature in the
neighborhood of N = R.
It has been observed in all numerical examples that the maximum of the curvature of log PL(N), occurs for N < M where

M is the number of sources. The computation of Ñ is detailed in Section 4.1.

3.3. Optimally placed poles

So, when detecting an approximation Nj of the point of maximal curvature of log PL(N), through the computation of (14),
we can choose R = Nj in r2(N) and introduce two complex conjugate poles, thereby preventing the occurrence of real poles
in r2(N). It remains to point out which strategy can be followed for larger denominator degrees n.
A rational function rn(N)with denominator polynomial of the form

qn(N) =


(N2 + R2)

k−1∏
j=1

(
N + Reıθj

) (
N + Re−ıθj

)
, n = 2k

(N + R)(N2 + R2)
k−1∏
j=1

(
N + Reıθj

) (
N + Re−ıθj

)
, n = 2k+ 1

(15)

has its point of maximal curvature in the neighborhood of N = R only if θj ≈ π/2. So, when increasing the denominator
degree of rn(N), more complex conjugate poles of modulus R can be prescribed, by choosing different θj ≈ π/2. Complex
conjugate poles further away from the imaginary axis pull the point of maximal curvature away from N = R.
So far we have explained how to use the curvature of log PL(N) to fix the coefficients b0, . . . , bn in the rational model,

and the slope ξ for the coefficient an+1 determined by (12). Note that the normalization b0 = 1 has been replaced by bn = 1
in (15), an equally simple choice. The remaining coefficients, being the numerator coefficients a0, . . . , an, can be computed
from the polynomial data fitting conditions

(qn log PL)(Nj) = pn(Nj) j = 0, . . . , n (16)

which, under the condition that qn(Nj) 6= 0, are equivalent to

rn(Nj) = log PL(Nj) j = 0, . . . , n.

The values to be chosen for Nj are further detailed in Section 4.2. This technique is called Newton–Padé-type or multipoint
Padé-type approximation [21]. It differs from the standard multipoint Padé approximation because the denominator qn(N)
is not determined by the interpolation conditions but is prechosen.
The convergence results obtained in [21] underline that:

1. the rational approximants rn(N) need to be uniformly bounded on bounded subsets of the region of interest (here the
natural numbers);

2. the interpolationpointsNj cannot be scattered aroundbutmust be centered in one location (aswedescribe in Section 4.2).
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4. Numerical illustration

4.1. Computation of R for the denominator polynomial

In all numerical experiments we observed that the maximum of the curvature of log PL(N) is attained in the interval
[c,M + c− 1], whereM is the number of sources and c is the maximum number of packets served by the server as a group.
That is, either the curvature increases from N = c on until it reaches its global maximum and then decreases, or, for some
networks, the curvature function is a decreasing function in the interval [c,M + c − 1] and then we return N = 2 as the
argument of the maximum. SinceM is relatively speaking rather small, the computation of R = Ñ is almost negligible. The
detailed algorithm for the estimation of R as explained in the Sections 3.2 and 3.3, goes as follows:
1. compute log PL(i) for i = c, c, c + 1, c + 2, c + 3,
2. compute κj for j = 1, 2,
3. set i = c + 4 and j = 3,
4. while ((κj − κj−1 > 0) or (i < M + c − 1))
(a) compute log PL(i) and κj,
(b) set j = j+ 1 and i = i+ 1,

5. if (i < M + c − 1) then R = i− c + 1,
6. else R = 2.

4.2. Choosing the support points for the numerator polynomial

We start from the approximants r1 and r2 whose support points are chosen as follows. We use supp as an abbreviation
for the set of support points:
if (p < 10−3) and (q < 10−3) then

supp = {c, 200, 400} for r1 and
supp = {c, 40, 200, 400} for r2,

else
supp = {c, c + 1, c + 2} for r1 and
supp = {c, c + 1, c + 2, c + 3} for r2.

Each subsequent support point is chosen from the set {c, . . . ,M + c − 1} by placing it where
|rn+1(N)− rn(N)|
|rn(N)|

, N = c, . . . ,M + c − 1

attains its maximum value. This process of constructing subsequent approximants continues until
‖rn+1 − rn‖
‖rn+1‖

≤ ε.

4.3. Output and figures

To compare the model rn(N) to log PL(N), the latter is computed using the algorithm from [4]. All the numerical exper-
iments have also been verified at one point using standard Monte Carlo simulation (20 simultaneous runs). The stopping
criterion for the simulation guaranteed a maximum relative error of 5%. The relative error in the simulation was computed
from the associated confidence interval, which was obtained through the usual normal distribution approximation.
Computations are carried out in the CalcUA supercomputer at the University of Antwerp, Belgium [22]. In all figures,

the values of log PL(N) at support points are circled, the exact function log PL(N) is graphed using a full line, and the
approximation rn(N) is graphed using a dotted line. An additional simulation point, used for validation, is denoted by a
?. When only the full line is visible, this means that, on the displayed figure, the approximation and the function log PL(N)
are graphically indistinguishable. We consider the following six examples for the numerical illustrations. In all examples,
the values of θj in (15) are given by

θ2i−1 =
π

2
+ (i+ 1)T , θ2i =

π

2
− (i+ 1)T , i ≥ 1,

where the constant T ≤ π/12.
For the rational approximant, the computation time includes the computation time for the support points.
We have chosen the following six examples in order to capture different curvatures of the log PL(N) graphs between cell

and burst regions (see Fig. 1). As discussed in Section 3.2, capturing approximately the curvature of the graph of log PL(N)
using the proposed algorithm in Section 4.1 is the crucial step in order to place the poles optimally for the Newton–Páde-
type approximation. Through these exampleswe show the efficiency of the algorithm to find the curvature and the proposed
rational approximation technique. In addition, Examples 5 and 6 are chosen to show that even for moderate values of
M,Ms, c and N , the computational time (in seconds) of the PLP using (9) is in the order of 104 (see Figs. 8(b) and 9(b)).
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a b

Fig. 4. Packet loss probabilities of the model from Example 1.

Example 1. We consider 10 sources and a service channel with 5 phases where the server is capable of handling at most
1 packet and each arriving packet joins the first phase of the service channel, upon the availability of the server, and goes
through all the phases before it leaves the system. The parameter values of this model are:

M = 10, Ms = 5, p = 5× 10−5, q = 6× 10−5, d = 0.02, c = 1, α = [1, 0, 0, 0, 0],

S =


0.45 0.55 0 0 0
0 0.45 0.55 0 0
0 0 0.45 0.55 0
0 0 0 0.45 0.55
0 0 0 0 0.45

 .
The mean arrival and service rates are λ = 0.0909 andµ = 0.11, the load ρ = 0.8264, the decay rate ξ = −9.1415× 10−4
and R = 2. In Fig. 4(a), we have used r8(N) to approximate log PL(N). The time taken to compute the PLP using r8 for
1 ≤ N ≤ 3000 is just 43.64 s as shown in Fig. 4(b).

Example 2. We consider 15 sources and a service channel with 15 phases where the server is capable of handling at most 1
packet. Whenever the service channel is available each arriving packet joins any one of the 15 phases randomly according to
the stochastic random vector α and continues to stay in the service channel according to the sub-stochastic randommatrix
S . The parameter values of this model are:

M = 15, Ms = 15, p = 2.19× 10−5, q = 7× 10−5, d = 0.07, c = 1.

The mean arrival rate is λ = 0.2502. The α and S are chosen randomly with the condition that the service rate µ = 0.4864
and the load ρ = 0.5144. The decay rate ξ = −5.1477× 10−4 and R = 2. In Fig. 5(a), we have used r10(N) to approximate
log PL(N). The time taken to compute the PLP using r10 for 1 ≤ N ≤ 3000 is 1900.22 s as shown in Fig. 5(b).

Example 3. We consider 10 sources and a service channel with 5 phases where the server is capable of handling at most
5 packets in group. Arriving packets join the first phase of the service channel, upon the availability of the server, and go
through all the phases before they leave the system. The parameter values of this model are:

M = 10, Ms = 5, p = 9× 10−3, q = 6× 10−3, d = 0.162, c = 5, α = [1, 0, 0, 0, 0],

S =


0.0005 0.9995 0 0 0
0 0.0005 0.9995 0 0
0 0 0.0005 0.9995 0
0 0 0 0.0005 0.9995
0 0 0 0 0.9995

 .
The mean arrival and service rates are λ = 0.9720 and µ = 0.9995, the load ρ = 0.9725, the decay rate ξ = −0.0026
and R = 2. In Fig. 6(a), we have used r3(N) to approximate log PL(N). The time taken to compute the PLP using r3 for
1 ≤ N ≤ 3000 is just 3.47 s as shown in Fig. 6(b).

Example 4. We consider 15 sources and a service channel with 5 phases where the server is capable of handling at most 10
packets. Whenever the service channel is available arriving packets join any one of the 15 phases randomly according
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Fig. 5. Packet loss probabilities of the model from Example 2.

a b

Fig. 6. Packet loss probabilities of the model from Example 3.

to the stochastic random vector α and continue to stay in the service channel according to the sub-stochastic random
matrix S . The parameter values of this model are:

M = 15, Ms = 5, p = 3.4× 10−5, q = 5× 10−5, d = 0.6, c = 10.

The mean arrival rate is λ = 3.6429. The α and S are chosen randomly with the condition that the service rate µ = 5.7240
and the load ρ = 0.6364. The decay rate ξ = −6.0758× 10−5 and R = 6. In Fig. 7(a), we have used r3(N) to approximate
log PL(N). The time taken to compute the PLP using r3 for c ≤ N ≤ 3000 is 2192.33 s as shown in Fig. 7(b).

Example 5. We consider 25 sources and a service channel with 5 phases where the server is capable of handling at most
10 packets in group. Arriving packets join any one of the 5 phases randomly according to the stochastic random vector α
and continue to stay in the service channel according to the sub-stochastic random matrix S . The parameter values of this
model are:

M = 25, Ms = 5, p = 5× 10−6, q = 6× 10−6, d = 0.2, c = 5.

The mean arrival rate is λ = 2.2727. The α and S are chosen randomly with the condition that the service rate µ = 4.1895
and the load ρ = 0.5425. The decay rate ξ = −6.6714× 10−5 and R = 3. In Fig. 8(a), we have used r7(N) to approximate
log PL(N). The time taken to compute the PLP using r7 for c ≤ N ≤ 3000 is 9019.4 s as shown in Fig. 8(b).

Example 6. We consider 15 sources and a service channel with 10 phases where the server is capable of handling at most
10 packets. Whenever the service channel is available arriving packets join any one of the 10 phases randomly according to
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Fig. 7. Packet loss probabilities of the model from Example 4.
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Fig. 8. Packet loss probabilities of the model from Example 5.

the stochastic random vector α and continue to stay in the service channel according to the sub-stochastic random matrix
S . The parameter values of this model are:

M = 15, Ms = 10, p = 3.4× 10−5, q = 5× 10−5, d = 0.6, c = 10.

The mean arrival rate is λ = 3.6429. The α and S are chosen randomly with the condition that the service rate µ = 6.0140
and the load ρ = 0.6057. The decay rate ξ = −7.2007× 10−5 and R = 6. In Fig. 9(a), we have used r3(N) to approximate
log PL(N). The time taken to compute the PLP using r3 for c ≤ N ≤ 3000 is 15250.96 s as shown in Fig. 9(b).
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Fig. 9. Packet loss probabilities of the model from Example 6.

References

[1] K. Yoshigoe, Trends in highly scalable crossbar-based packet switch architecture, Elsevier Computer Communications 32 (4) (2009) 740–749.
[2] M. Neuts, Structured Stochastic Matrices of M/G/1 Type and their Applications, Marcel Dekker, 1989.
[3] C. Blondia, O. Casals, Performance analysis of statistical multiplexing of VBR sources: Amatrix-analytical approach, Performance Evaluation 16 (1992)
5–20.

[4] A. Kamal, Efficient solution ofmultiple server queueswith application to themodeling of ATM concentrators, in: Proc. IEEE Infocom ’96, San Francisco,
CA, 1996, pp. 248–254.

[5] K. Wuyts, R. Boel, Efficient matrix geometric methods for B-ISDN by using the spectral decomposition of the rate matrices, in: S. Chakravarthy, A. Alfa
(Eds.), Proceedings of the 2nd Conference on Matrix-Analytic Methods in Stochastic Models, Notable Publications, 1998, pp. 341–359.

[6] A. Cuyt, R. Lenin, G. Willems, C. Blondia, P. Rousseeuw, Computing packet loss probabilities in multiplexer models using rational approximation, IEEE
Transactions on Computers 52 (5) (2003) 633–644.

[7] N. Akar, E. Arikan, Markov modulated periodic arrival process offered to an multiplexer, in: IEEE GLOBECOM’93, Houston, TX, 1993, pp. 783–787.
[8] A. Elwalid, D. Mitra, Analysis, approximations and admission control of a multi-service multiplexing system with priorities, in: Proc. INFOCOM’95,
1995, pp. 463–472.

[9] K. Sohraby, On the asymptotic analysis of statistical multiplexers with hyper-bursty arrivals, Tech. rep., IBM Watson Res. Center, Yorktown Heights,
NY, 1993.

[10] N.B. Shroff, M. Schwartz, Improved loss calculations at an ATMmultiplexer, IEEE/ACM Transactions on Networking 6 (4) (1998) 411–421.
[11] A. Elwalid,Markovmodulated rate processes formodelling, analysis and control of communication networks, Ph.D. thesis, Grad. Sch. Arts Sci. Columbia

Univ., New York, 1991.
[12] D. Anick, D. Mitra, M. Sondhi, Stochastic theory of a data-handling system with multiple sources, Bell Syst. Tech. J. 61 (1982) 1871–1984.
[13] C. Chang, P. Heidelberger, S. Juneja, P. Shahabuddin, Effective bandwidth and fast simulation of ATM intree networks, in: Proceedings of the 16th

IFIP Working Group 7.3 International Symposium on Computer Performance Modeling Measurement and Evaluation, Elsevier Science Publishers B.
V, Amsterdam, The Netherlands, Rome, Italy, 1994, pp. 45–65.

[14] P. Heidelberger, R. Simha, Fast simulation of a voice-data multiplexer, in: IEEE INFOCOM’95, Boston, 1995, pp. 361–368.
[15] W. Gong, H. Yang, H. Hu, On the convergence of global rational approximants for stochastic discrete event systems, Discrete Event Dynamic Systems

- Theory and Applications 7 (1) (1997) 93–116.
[16] H. Yang, Global rational approximation for computer systems and communication networks, Ph.D. thesis, University of Massachusetts, Amherst, MA

01003 (1996).
[17] M. Neuts, Matrix-Geometric Solutions in Stochastic Models, An Algorithm Approach, John Hopkins University Press, 1981.
[18] E. Falkenberg, On the asymptotic behavior of the stationary distribution of Markov chains of M/G/1-type, Commun. Statist. Stochastic Models 10

(1994) 75–97.
[19] P. Glynn, W. Whitt, Logarithmic asymptotics for steady-state tail probabilities in a single-server queue, Adv. Appl. Prob. 26 (1994) 131–156.
[20] D. Warner, Hermite interpolation with rational functions, Ph.D. thesis, University of California, 1974.
[21] J. Van Iseghem, Multipoint Padé-type approximants: Convergence, continuity, in: C. Brezinski, U. Kulisch (Eds.), Computational and Applied

Mathematics. I. Algorithms and Theory (Dublin, 1991), North-Holland, Amsterdam, 1992, pp. 237–242.
[22] CalcUA, Calcua supercomputer. http://www.calcua.ua.ac.be/, 2008.

R.B. Lenin received the Ph.D. degree inMathematics from the Indian Institute of Technology,Madras, India, in 1998. He is currently
working as an assistant professor in the department of mathematics at the University of Central Arkansas (UCA), USA. Prior to
joining UCA, he was working as a post-doctoral fellow at the University of Arkansas at Little Rock (UALR), USA. Earlier, he had
also worked as a post-doctoral fellow at the University of Twente, The Netherlands, and at the University of Antwerp, Belgium for
about 5 years. His research interests are in mathematical modeling and simulation of discrete-event systems, stochastic models,
optimization techniques, performance analysis of computer and communication networks, rational approximation, information
retrieval and network analysis. He has 27 papers published in international journals including Journal of Applied Probability,
Queueing Systems, IEEE Transactions on Computers and IEEE Transactions on Microwave Theory and Techniques.

http://www.calcua.ua.ac.be/


R.B. Lenin et al. / Performance Evaluation 67 (2010) 160–173 173

A. Cuyt is full professor at the Department of Mathematics and Computer Science of the University of Antwerp. She received her
Doctor Scientiae degree in 1982 from the same university, summa cum laude and with the felicitations of the jury. Subsequently
she was a Research fellow with the Alexander von Humboldt Foundation (Bonn, Germany) and she was honoured with a Masuda
ResearchGrant (Kobe, Japan). She is the author ofmore than 150publications in international journals and conference proceedings,
the author or editor of several books and the organizer of a number of international events. Her current interests are in rational
approximation theory and its applications in scientific computing. In view of these interests she is an editorial board member
of the journal ‘‘Reliable Computing’’, the ‘‘International Journal of Computing Science and Mathematics’’ and the ‘‘International
journal of Numerical analysis, Industrial and Applied mathematics’’. From 1997 to 2006 she also served as a board member on the
computer science committee of the Flemish Science Foundation.

K. Yoshigoe (kxyoshigoe@ualr.edu) received a Ph.D. in Computer Science and Engineering from the University of South Florida in
2004. He is currently an assistant professor in the Department of Computer Science at UALR. His research focuses on design and
evaluation of systems ranging from high-speed packet switches to wireless sensor networks. He is a member of IEEE and ACM.

S. Ramaswamy is currently Professor and Chairperson of the Computer Science Department at the University of Arkansas at
Little Rock. His research interests on behavior modeling, analysis and simulation, software stability and scalability – particularly
in the design and development of better software systems, and intelligent and flexible control systems. At UALR, he is currently
associatedwith several research initiatives, which include: the statewide programmanager for wireless nanosensors and systems
center and the principle investigator at UALR for a high performance computing initiative. He is also the research coordinator for
collaboration on ‘‘Engineering Innovative Software Systems for Marine Transportation Logistics’’ with the National Institute of
Applied Sciences (INSA) in Rouen, France, where he was a visiting research professor in 2006 and 2007. During the summers of
2003, 2004 and2007, hewas a visiting research professor of Computer Science in the Institute of Software Integrated Systems (ISIS)
at Vanderbilt University as part of an NSF ITR project – Foundations of Hybrid and Embedded Software Systems. In 1994–1995,
and subsequently during the summer months of 1996 and 1998, he was a post-doctoral research fellow/visiting scientist in the
Laboratory for Intelligent Processes and Systems (LIPS) at the University of Texas at Austin where he helped with research efforts

on Sensible Agents. Dr. Ramaswamy earned his Ph.D. degree in Computer Science in 1994 from the Center for Advanced Computer Studies (CACS) at the
University of Louisiana at Lafayette. He serves as an Associate Editor for the IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews. He is a senior member of the ACM, a member of Society for Computer Simulation International, Computing Professionals for Social Responsibility
and a senior member of the IEEE.

mailto:kxyoshigoe@ualr.edu

	Computing packet loss probabilities of D-BMAP/PH/1/N queues with group services
	Introduction
	D-BMAP/PH/1/N queue with batch service
	Model description
	PLP  PL (N) 
	Asymptotic behavior of  logPL (N) 

	Rational approximation
	Free poles
	Curvature maximum of  logPL (N) 
	Optimally placed poles

	Numerical illustration
	Computation of  R  for the denominator polynomial
	Choosing the support points for the numerator polynomial
	Output and figures

	Acknowledgements
	References


