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Regular Sparse Array Direction of Arrival
Estimation in One Dimension
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Abstract— Traditionally, regularly spaced antenna arrays
follow the spatial Nyquist criterion to guarantee an unambiguous
analysis. We present a novel technique that makes use of two
sparse non-Nyquist regularly spaced antenna arrays, where
one of the arrays is just a shifted version of the other. The
method offers several advantages over the use of traditional
dense Nyquist-spaced arrays, while maintaining a comparable
algorithmic complexity for the analysis. Among the advantages
we mention: an improved resolution for the same number
of receivers and reduced mutual coupling effects between the
receivers, both due to the increased separation between the anten-
nas. Because of a shared structured linear system of equations
between the two arrays, as a consequence of the shift between
the two, the analysis of both is automatically paired, thereby
avoiding a computationally expensive matching step as is required
in the use of so-called co-prime arrays. In addition, an easy
validation step allows to automatically detect the precise number
of incoming signals, which is usually considered a difficult issue.
At the same time, the validation step improves the accuracy
of the retrieved results and eliminates unreliable results in the
case of noisy data. The performance of the proposed method is
illustrated with respect to the influence of noise as well as to the
effect of mutual coupling.

Index Terms— Array antennas, direction of arrival (DOA)
estimation, sparse arrays.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation, using array
antenna systems, is a topic of increasing interest in

a variety of applications including radar, remote sensing,
radio frequency interference mitigation, and smart wire-
less networks [1]–[3]. One of the most well-known limita-
tions in regularly spaced antenna array systems is, arguably,
the requirement that the elements should have spacing closer
than a half-wavelength (the spatial Nyquist criterion) in order
to avoid aliasing resulting in ambiguous arrival angle esti-
mates. Unique results can be obtained for larger spacings
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if a limited range of near-broadside receiving angles are
considered, or if the antenna element patterns exhibit zeros
in the endfire directions, but in general, this still limits the
allowable spacing to distances close to the Nyquist limit.

A wealth of research is available in the antenna array
and signal processing literature on algorithms which reliably
estimate the DOA of incoming signals in real world noisy
environments. The most popular ones are the MUltiple SIgnal
Classification (MUSIC) [4], the EStimation Parameter via
Rotational Invariance Technique (ESPRIT) [5], and the matrix
pencil method [6]. The requirement of close antenna element
spacing limits the achievable resolution of an array system
with a fixed number of receivers (or sensors) according to the
well-known diffraction (or Rayleigh) limit

�φ ≈ λ

D
(1)

where �φ is the resolution in radians, λ is the operating
wavelength, and D is the length of the array (in the linear
array case). A system with M elements spaced at λ/2 will
thus have a resolution limited to �φ ≈ 2/(M − 1), explicitly
stating the inverse relationship between resolution and the
number of elements. Several sparse array configurations, with
elements spaced at distances larger than the Nyquist limit,
have been proposed including minimum redundancy arrays
(MRAs) [7], nested arrays [8], and co-prime arrays [9]. All
these configurations have the advantage of increased resolu-
tion, for a given number of sensors, over that of a uniform
linear array (ULA). The main disadvantage, however, is the
increased computational burden associated with estimating the
correct angles of arrival in noisy systems, which follows from
a combinatorial matching problem that arises when resolving
the introduced aliasing.

A disadvantage of densely spaced antenna elements is the
effect of mutual coupling, which causes uncertainty in the
so-called array manifold, that is the collection of received
steering vectors from all possible directions. This in turn leads
to errors in the estimated arrival angles, which is normally
reduced through extensive calibration of the system. Since
accurate estimation of the installed mutual coupling matrix is
difficult, in addition to often being time variant, many popular
calibration techniques exist [10]–[13]. Typically, the computa-
tional cost of the mutual coupling estimation can be high,
especially for iterative techniques. To overcome this, some
methods that use auxiliary sensors have been proposed, but
these come at a cost of reduced effective aperture [14], [15].
A comparison of the performance of several sparse-array
methods in the presence of mutual coupling is given in [16].

0018-926X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 28,2020 at 12:53:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1273-5365


3998 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020

In this article, we present a DOA estimation method that
exploits some recent progress in exponential analysis and
completely removes the dense Nyquist spacing requirement
in ULAs [17]. Removing the Nyquist requirement allows for
larger spacing between individual antenna elements, leading
naturally to improved angular resolution as well as gener-
ally reduced mutual coupling. The larger antenna element
spacing implies an increase in the size of the antenna
array, which depending on the application, may not pose a
problem [9], [18], [19]. The method makes use of two inter-
leaved sparse ULAs, where one of them is just a shifted ver-
sion of the other. The set of angles and their aliases obtained
from the first sparse ULA via exponential analysis, is subse-
quently intersected with information received from the second
ULA via the solution of a structured linear system, to retrieve
the correct directions. Due to introducing a second ULA that
is a shifted version of the first one, a combinatorial search
step that other co-prime array methods require, is avoided.
Instead, the results of the two ULAs are directly linked
by their computation. In addition to handling the aliasing
problem of sparse arrays in an efficient manner, the proposed
technique can automatically determine the number of received
signals with no prior user input, and allows detection of fully
correlated signals from different directions without any special
treatment.

Note that any 1-D exponential analysis solver could be used
on the first ULA. Examples are MUSIC [4], ESPRIT [5],
the matrix pencil method [6], simultaneous QR factoriza-
tion [20], a generalized overdetermined eigenvalue solver [21],
and the approximate Prony method [22]–[24].

This article is structured as follows. First, in Section II,
the notation is introduced and the problem statement of
DOA estimation is described. Subsequently, in Section III,
standard Nyquist-based exponential analysis is discussed and
we introduce an approach to determine the number of received
signals, called the sparsity in exponential analysis, via density
based cluster analysis. Section IV considers sparse ULAs,
for which a sub-Nyquist sampling technique is formulated.
Finally, we conclude with some examples in Section V.

II. PROBLEM FORMULATION

Consider an ULA with M antenna elements receiving n
(2n ≤ M) narrowband signals at frequency ω, as illustrated
for the i th signal in Fig. 1. The antenna elements are omni-
directional and arranged equidistantly along the x-axis with
a spacing d < λ/2 to prevent aliasing. The objective is to
determine the directions of the received narrowband signals,
in other words the angles φi , as seen in Fig. 1. The narrowband
signal Si (t) at time t can be expressed as

Si (t) = si (t) exp( jωt), si (t) = ai (t) exp( j pi(t))

where ai (t) and pi(t) denote the slowly varying amplitude and
phase, respectively. Assuming a plane wave incidence of Si (t)
on the ULA, the time delay between consecutive antennas is
given by τi = d cos(φi )/c, where c is the propagation velocity
of the signal (speed of light in this case). We denote the output
of the ULA at the mth antenna element at time t by fm(t),

Fig. 1. ULA set-up for one incoming signal.

where

fm(t) =
n�

i=1

Si (t − mτi ), τi = d cos(φi )

c
(2)

because of the time delay with respect to the reference
antenna f0(t). The element f0 receives the sum of the sig-
nals Si (t) at time t . The narrowband assumption (the signal
response does not change appreciably during the transit of the
array) allows us to write

si (t − mτi ) ≈ si (t)

or equivalently

Si (t − mτi ) = si (t − mτi ) exp( jω(t − mτi ))

≈ Si (t) exp(− jωmτi) (3)

hence, the output fm(t) of the ULA, given by (2), can be
rewritten as

fm(t) =
n�

i=1

Si (t − mτi ) ≈
n�

i=1

Si (t) exp(− jωmτi). (4)

Consequently, for every signal the time delay is expressed
as a phase shift, depending on the direction φi . From these
time delays, which are identified by exponential analysis, it is
possible to infer the directions φi of the received signals.

III. STANDARD EXPONENTIAL ANALYSIS

At a fixed time t , the output of the ULA is called a snapshot.
This snapshot consists of the samples

fm(t) =
n�

i=1

Si (t) exp
�
− jωmd cosφi

c

�
(5)

for m = 0, . . . ,M − 1, M ≥ 2n, and is used to formulate a
1-D exponential analysis problem. We introduce the notations

fm = fm(t), αi = Si (t)

ψi = − jω cosφi

c
, 	i = exp(ψi d). (6)

We refer to the fm as the samples, the αi as the coefficients,
the ψi as the exponents, and the 	i as the base terms of the
exponential analysis problem. Note that none of the notations
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depend on t since, for the moment, we consider a single
snapshot (hence t is fixed). Now it is possible to rewrite (5) as

fm =
n�

i=1

αi	
m
i , m = 0, . . . ,M − 1 (7)

which can be solved for the αi and ψi under the assumption
that the 	i are mutually distinct. It was shown in 1795
already by de Prony, that it is possible to solve the exponential
analysis problem (7) from 2n samples if the sparsity n is
given [25]. In its modern version, the method first recovers the
values of the 	i as generalized eigenvalues, and subsequently
solves a Vandermonde structured linear system to retrieve the
coefficients αi , as recalled in Section III-A. The ψi are then
unambiguously computed as log(	i )/d , since the distance d
between the antennas is smaller than half the wavelength of
the signal, or equivalently |I(ψi d)| < π , where I(·) and
|·| denote respectively the imaginary part and the absolute
value of a complex number. Finally, the direction φi is found
from the computed ψi as φi = arccos(− jψi c/ω). In general,
the sparsity n, being the number of received signals, is also
an unknown. The retrieval of n is based on the singular value
decomposition of some Hankel matrices, or density based
cluster analysis, as discussed in Section III-B.

A. Generalized Eigenvalue Approach

With the samples fm , we fill the Hankel matrices

H (r)
n :=

�
����

fr fr+1 . . . fr+n−1
fr+1 fr+2 . . . fr+n
...

... . .
. ...

fr+n−1 fr+n . . . fr+2n−2

�
���	 (8)

where r is an integer in the interval [0,M − 2n + 1]. From
the definition of these Hankel matrices and the samples fm ,
we immediately find the factorization [6]

H (r)
n = Vn DαDr

	V T
n (9)

where Vn = (	k−1
� )nk,�=1 is the Vandermonde matrix built

with the distinct values 	i , i = 1, . . . , n, and both matrices
Dα = diag(α1, . . . , αn), D	 = diag(	1, . . . , 	n) are diago-
nal. Using the factorization (9), we find

H (1)
n − λH (0)

n = Vn Dα(D	 − λIn)V
T
n .

Hence, the 	i are the generalized eigenvalues of the general-
ized eigenvalue problem

H (1)
n vi = λi H (0)

n vi . (10)

The coefficients αi = Si (t) are subsequently computed from
the Vandermonde structured linear system�

����
1 . . . 1
	1 . . . 	n
...

...

	M−1
1 . . . 	M−1

n

�
���	
�
����
α1
α2
...
αn

�
���	 =

�
����

f0
f1
...

fM−1

�
���	 . (11)

Note that in the noise-free case, only n of these M equations
are linearly independent. In the presence of noise, the linear
system (11) is solved in the least squares sense for the αi .

We can also solve the generalized eigenvalue problem (10)
in a least squares sense [21], where the Hankel matrices
defined by (8) are enlarged to dimension (M − n) × n to
utilize all the available samples f0, . . . , fM−1. In the sequel,
we denote these rectangular Hankel matrices by H (r)

n,M . Note

that the Hankel matrices H (r)
n,2n are equal to the square Hankel

matrices H (r)
n .

B. Determining the Sparsity n

Until now, we have assumed that the sparsity, or equiva-
lently the number of received signals, n is known. However,
in practice this is not always the case. One possibility is
to compute the numerical rank of Hankel matrices with
increasing dimensions, since it is known that [26], [27, p. 603]
1) det H (0)

N = 0 only accidentally for N < n; 2) det H (0)
n �= 0;

and 3) det H (0)
N = 0 for N > n.

However, this method is not always reliable. In particular in
the presence of noise, the method requires large values for N ,
meaning a large number of samples or antenna elements to
estimate the sparsity n correctly [28].

Another more reliable approach is based on the connection
with Padé approximation theory [29]–[31]. Let us use the
samples fm to construct a formal power series

R(z) =
∞�

m=0

fmzm . (12)

Using the definition of the samples fm , we find

R(z) =
∞�

m=0



n�

i=1

αi	
m
i

�
zm

=
n�

i=1

αi


 ∞�
m=0

	m
i zm

�
=

n�
i=1

αi

1 −	i z
.

Hence, the formal power series R(z) is that of a rational
function of degree n − 1 in the numerator and degree n in the
denominator. The consistency property of Padé approximation
theory guarantees that in the noise-free case, this rational func-
tion is recovered exactly by its [n − 1, n]R Padé approximant
of degree n − 1 in the numerator and n in the denominator
for the formal power series R(z) given by (12). But how to
proceed in the noisy case?

Since R(z) represents a rational function, the theorem of
Nuttall-Pommerenke [32], [33] and the theory of Froissart
doublets [34]–[38] may help us to determine the sparsity
n [28]. When adding a white Gaussian noise term �m to the
output fm of the ULA, the power series R(z) becomes

R(z)+ �(z) =
∞�

m=0

( fm + �m)zm . (13)

The theorem of Nuttall-Pommerenke states that if the noisy
power series R(z) + �(z) is analytic throughout the com-
plex plane except for a countable number of poles [32] and
essential singularities [33], then the paradiagonal sequence of
Padé approximants {[N − 1, N]R+� : N ∈ N} converges to
R(z)+ �(z) in measure on compact sets. This means that
the measure of the set in the complex plane where the
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Padé approximants [N − 1, N]R+� do not converge, goes to
zero as N tends to infinity. Note that this theorem does not
say anything about pointwise or uniform convergence of the
sequence, since the pointwise convergence is disrupted by
N − n unwanted pole-zero combinations of the Padé approxi-
mant [N − 1, N]R+� : for every additional pole introduced by
increasing N beyond the sparsity n, there is a corresponding
zero introduced in the numerator, almost canceling the pole
locally. These pole-zero combinations are called Froissart
doublets. Thanks to [37] and [38], we know that the n true
poles are identified as the stable ones in successive Padé
approximants [N − 1, N]R+� , while the N − n spurious poles
are randomly scattered for different Padé approximants or dif-
ferent realizations of the noise, hence they are distinguished
by their instability [34], [35]. This means that these Froissart
doublets offer a way to separate the received signals from the
noise.

We therefore consider multiple snapshots to solve the prob-
lem. Combining the results from multiple snapshots, the true
poles (corresponding to the directions φi ) are identified as the
stable poles, while the noise is represented by the randomly
scattered ones. Hence, cluster analysis can be used to identify
the stable poles as clusters and discard the remaining poles as
noise. A density-based method such as DBSCAN is a possible
choice to correctly find the clusters [39]. DBSCAN requires
two parameters μ and δ. The first one is the minimal number
of points μ required in the neighborhood of a point to be a
core point and form a cluster. The second one is a distance
parameter δ which defines the size of a neighborhood. The
noise level influences the optimal choice for the parameters μ
and δ. Small values for the distance parameter δ allow us
to detect dense clusters and thus very stable estimates for
the correct 	i , which is useful for low noise levels. In the
case of high noise levels, a larger distance parameter δ is
recommended, since this allows to detect wider clusters. When
we choose μ equal to the number of snapshots, every pole has
to be confirmed by all snapshots, resulting in an increased
certainty that no incorrect angles φi are detected. On the
other hand, when μ is smaller than the number of snapshots,
it allows to discard erroneous results or noisy outliers. Also,
in case of a low SNR, the number of snapshots can be
increased while the value of μ can be relaxed. We even found
that weak signals buried in noise, so with very low SNR
compared with the other terms, can be detected [31] because
of their structured character as opposed to the unstructured
noise. In such a situation, multiple runs with different μ,
δ combinations can be considered.

So, to retrieve n and the 	i , i = 1, . . . , n we solve the
generalized eigenvalue problems

H (1)
N,Mvi = λi H (0)

N,Mvi

where N is an integer in the interval [n,M/2], for every
snapshot. Note that we have overestimated the sparsity n.
Subsequently, cluster analysis is used to retrieve the stable
generalized eigenvalues and discard the remaining generalized
eigenvalues since they represent the noise. Finally, the 	i are
computed as the centers of mass of the retrieved clusters.
It is recommended to take N , and in addition the number

of antenna elements M , as large as possible. The new method
is compared with standard ESPRIT on multiple snapshots in
Section V.

In Section IV, we indicate how to break the Nyquist
restriction d < λ/2.

IV. SPATIAL SUB-NYQUIST SAMPLING

Let us now consider sparse antenna arrays where the dis-
tance d between the antenna elements does not satisfy the
spatial Nyquist condition d < λ/2, where λ is the wavelength
of the received signal. Using a sparse array in contrast to a
dense array does offer some advantages. Most importantly,
for sparse arrays, not only the mutual coupling effect is
reduced, but also the angular resolution increases for the same
number of antenna elements. Similar to the theory of co-prime
arrays, we combine the results of two ULAs separately to
retrieve the true angles from the aliased ones. However, our
proposed method avoids the search step of matching and
pairing the results obtained by the two separate sparse ULAs.
Instead, they are automatically linked by the new algorithm.
Additionally, the proposed method also allows to validate the
results and automatically retrieve the sparsity n, or the number
of received signals [40]. This is similar to the clustering
approach discussed in Section III-B.

A. Sub-Sampled Exponential Analysis

When the spatial Nyquist bound is no longer satisfied,
aliasing is introduced, which means that it is no longer possible
to uniquely retrieve the ψi from the 	i , defined in Section III
by (6), since it is no longer guaranteed that |I(ψi d)| < π .
This aliasing problem is solved by using the output generated
by a second ULA [17], as explained below.

We view both sparse ULAs as a sub-ULA of a virtual
dense ULA, which does satisfy the spatial Nyquist bound.
Note that we do not require the full dense ULA, only the
antenna elements of the two sparse ULAs. A first ULA uses
the output of the antennas fmσ , where the spacing between
the antenna elements is σd . A second similar ULA uses the
antenna elements shifted over a distance of ρd resulting in
the output of the antenna elements fmσ+ρ . The scale and shift
parameters σ ∈ N0 and ρ ∈ Z0 are required to be co-prime,
meaning gcd(σ, ρ) = 1, in order to fix the aliasing. In the
following, we denote the number of antennas in the first array
by Mσ and the number of antennas in the second array by Mρ .
Similar to the standard exponential analysis case, discussed in
Section III, the number of antennas Mσ and Mρ are restricted
by the sparsity n. We require that Mσ ≥ 2n and Mρ ≥ n.
Note that the second sparse ULA need only consist of half
the number of elements of the first sparse ULA. However,
additional antenna elements can be used to solve the problem
in a least squares sense. The set-up is illustrated in Fig. 2.

From the samples f0, fσ , . . . , f(Mσ−1)σ , we first compute
the generalized eigenvalues of the model

fmσ =
n�

i=1

αi	
mσ
i =

n�
i=1

αi (	
σ
i )

m , m =0, . . . ,Mσ − 1 (14)
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Fig. 2. Original dense array versus two sparse arrays.

Fig. 3. Intersection of the sets (15) and (17) for σ = 7, ρ = 5, ω = 1.5 GHz,
d = 0.48λ, and the angle φi of the incoming signal being 105°. No noise
was added.

as described in Section III. Note that any 1-D implementation
can be used, each with its own advantages and disadvantages,
to retrieve the base terms 	σi associated with the samples
taken at 0, σd, . . . , (Mσ − 1)σd . From only the generalized
eigenvalues 	σi it is not possible to retrieve the 	i , since
several possibilities exist, namely all the values in the set�

exp
�
ψi d + 2π j

σ
�

�
: � = 0, . . . , σ − 1


. (15)

The second ULA is required to pinpoint the one correct value
from this set. The samples collected by the second ULA satisfy

fmσ+ρ =
n�

i=1

αi	
mσ+ρ
i =

n�
i=1

(αi	
ρ
i )(	

σ
i )

m,

m = 0, . . . ,Mρ − 1. (16)

We find the same generalized eigenvalues 	σi but different
coefficients compared with the model of the sparse ULA 1.
Hence, both times a Vandermonde structured linear system
with the same generators, but a different number of rows,
is solved for the left-hand sides in (14) and (16), to obtain
both the values for the coefficients αi in (14) and αi	

ρ
i in (16).

Dividing the latter by the coefficients αi results in the values
for 	ρi . Given the 	ρi , again a set of possible values remains
for each 	i , namely�

exp
�
ψi d + 2π j

ρ
�

�
: � = 0, . . . , ρ − 1


. (17)

Since we choose σ and ρ co-prime, the intersection of
the sets (15) and (17) only contains the desired 	i [17].
This is illustrated in Fig. 3. Hence, the aliasing problem is
solved. Note that we already know which sets (15) and (17)
correspond to each other due to the shared Vandermonde

system, on the contrary to the theory of co-prime arrays, where
a search step is required to match the results of both ULAs.
When noise is present, both sets do not intersect exactly. In this
case, we search for the two closest points in both sets. Note
that while in theory σ and ρ may be chosen arbitrarily large,
this is not the case in practice since noise can make it hard to
point at the one correct value when a large number of points
lie closer together in (15) and (17). Practically one would
always design a system with as many sensors as possible.
Both ρ and σ should be selected to be as small as possible
for the desired angular resolution (since the resolution is
ultimately proportional to σ ), while the practical constraint
on the total length must also be considered. Considering the
noise effects, numerical experiments indicate that a smaller
ρ is more important than a smaller σ . Also, the 	i values
from (10) are usually less affected by noise than the 	ρi which
are obtained as solution of a Vandermonde structured linear
system.

The fact that the method solves (14) and (16) per snapshot
and passes the individual results to a cluster detection algo-
rithm, makes it computationally more efficient than traditional
methods performing the analysis on much larger matrices
containing the measurements of all snapshots simultaneously.
In addition, the independence of all the smaller systems
involved allows to parallelize the computation.

B. Determining the Sparsity n

In the sub-sampled case, we also use the connection with
Padé approximation theory to determine the sparsity n. We first
solve the generalized eigenvalue problem

H (1)
N,Mσ

vi = λi H (0)
N,Mσ

vi , n ≤ N ≤ �Mσ /2	
where the Hankel matrices are filled with the output of the first
sparse (not shifted) ULA, so the samples fmσ . This yields N
generalized eigenvalues 	σi , of which n values correspond to
the true angles and N − n values correspond to the noise.
Subsequently, an Mσ × N and an Mρ × N Vandermonde
structured linear system is solved to retrieve N estimates for
the 	ρi . Once again, n of these values correspond to the true
angles, while the remaining N − n model the noise. This
process is repeated for all the snapshots. We collect all the
results for multiple snapshots in two large sets: the set Aσ for
the first ULA and the set Aρ for the shifted ULA. Now cluster
analysis identifies the n true 	σi and 	ρi in the two sets Aσ
and Aρ , as discussed in Section III-B.

Because of the shared Vandermonde structured linear sys-
tem in both (14) and (16), the 	σi and 	

ρ
i are matched

automatically. Hence, every element in the set Aσ is directly
connected with an element in the set Aρ . By combining the
DBSCAN results for Aσ and Aρ , ultimately three scenarios
may occur [40] as follows.

1) A cluster Cσ is detected in the set Aσ and its center of
mass is used to estimate the generalized eigenvalue 	σi .
The points in the set Aρ connected to the elements in the
cluster Cσ also form a cluster Cρ in Aρ and their center
of mass is used as estimate for the corresponding 	ρi .
From both centers of mass we recover the value for 	i ,
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TABLE I

TABLE OF THE TEN RECEIVED SIGNALS USED TO GENERATE THE
RESULTS IN FIG. 4

as discussed in Section IV-A, and subsequently retrieve
the angle φi . This scenario is the standard one.

2) A cluster Cσ is detected in the set Aσ . However,
the points in the set Aρ connected to the cluster Cσ
do not form a cluster, hence the cluster Cσ is discarded
and not used in the computation for the values 	i . Note
that this affects the estimate for the sparsity n since a
cluster is removed.

3) A cluster Cσ is detected in the set Aσ and its center of
mass is used to estimate the generalized eigenvalue 	σi .
The points in the set Aρ connected to the cluster Cσ
not all belong to a cluster Cρ , since some of them are
outliers. In this case, the center of mass of only the
clustered points is used as estimate for the correspond-
ing 	ρi . From both centers of mass we recover the value
for 	i , as discussed in Section IV-A, and subsequently
retrieve the angle φi .

Usually multiple DBSCAN runs are performed, starting
with a high validation rate and relaxing it gradually (by
decreasing μ and increasing δ), until the clusters detected in
Aσ are not validated anymore by a cluster in Aρ .

The computational effort required is thus the solution of K
(number of snapshots) Hankel matrices of size (Mσ−N) × N ,
and 2K Vandermonde structured linear systems of size
Mρ × N . This process can be easily parallelized since all
snapshots are uncoupled. In a last step, DBSCAN is performed
on K N different points to retrieve n ≤ N distinct clusters.

V. EXAMPLES

We illustrate the performance of our proposed method
under the influence of noise and mutual coupling. In the first
examples we only look at the effect of noise, hence no mutual
coupling effects are considered. Subsequently, we consider
some simulation examples which include full coupling under
low noise levels, to isolate the effects of coupling only.

A. Effects of Noise

First, we demonstrate the behavior under influence of noise,
mainly to illustrate the effect of the validation step. Therefore,
we consider n = 10 received signals, as given in Table I.
We use both standard ESPRIT and the new method with
ESPRIT underlying to retrieve the ten corresponding angles
for increasing levels of noise. The additive noise is expressed

Fig. 4. Solution of the DOA problem given by Table I for increasing noise
levels of both standard ESPRIT (top) and the new method (bottom).

in terms of SNR, which is defined by 20 log10(|| f ||2/||�||2),
where || f ||2 and ||�||2 denote the 2-norm of respectively the
sample and additive noise vector.

For the standard ESPRIT approach, a ULA of 60 antennas
with a distance of 0.48λ between the elements is consid-
ered. We also tell ESPRIT the correct number of signals,
i.e., n = 10. We solve the DOA problem using ESPRIT on
256 snapshots. In Fig. 4 at the top, the results of all 256 snap-
shots are shown together. We observe that ESPRIT works well
for a high SNR, however, for higher noise levels (approaching
10 dB), the standard ESPRIT approach delivers unreliable
results.

At the same time, our new approach (with ESPRIT as
underlying method) also uses 60 antennas in total: a first
sparse ULA of 30 antennas and a shifted ULA of 30 antennas,
with a scale and shift parameter of, respectively, σ = 25
and ρ = 14. The distance between the virtual dense array
elements is also chosen as 0.48λ resulting in a total array
size of more than 350λ. This might be an unrealistically
large system for many applications, but the example serves
to illustrate the efficacy of the proposed method even under
such demanding conditions where both σ and ρ are large.
As stated before, increasing σ results in a more difficult root
intersection (validation) problem. Since the method detects the
number of signals n automatically, n need not be passed to
the algorithm. For the clusters Cσ , we choose the DBSCAN
parameters μ = 0.8 × 256 = 205 with increasing equidistant
δ values, namely δ = 0.01, 0.0825, 0.155, 0.2275, 0.3. For the
Cρ clusters, we take μ = 0.6 × 256 = 154 with δ = 0.5
because they are usually less accurate, as already pointed out.
At the bottom of Fig. 4, we find the results from 256 snapshots.
For the lower noise levels, we clearly see that our method
performs comparably. When the signals are perturbed with
a lot of noise, we observe that the new method does not
return all the angles, however, it also does not return unreliable
results such as the stand-alone ESPRIT method. It detects
that the signal is heavily perturbed, since the results are not
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TABLE II

TABLE OF THE SIX RECEIVED SIGNALS USED TO GENERATE THE RESULTS
IN FIG. 5

validated by the cluster analysis and hence not all angles are
recovered.

In a second experiment, we compare our method to the
co-prime array method discussed in [41]. Although the array
geometry for both methods is not the same, they are compa-
rable in the sense that they consider two interleaved sparse
arrays. In our case, we have one array sub-sampled by a
factor σ and then shifted over ρ, while their method just com-
bines the results of two sparse arrays, which are respectively
sub-sampled by factors σ1 and σ2. Then, a matching step is
performed to be able to link the results of both sparse arrays.
This matching is based on a projection of a 2-D point on a
1-D line segment that corresponds to the entire angular domain
due to the co-primeness of σ1 and σ2.

Similar to the first experiment, we use both methods to
retrieve the n = 6 angles given in Table II, for increasing noise
levels. For this experiment, we only consider six instead of
ten signals, since the matching in [41] becomes considerably
worse for larger n-values.

For both methods, 256 snapshots are collected by two sparse
ULAs of 20 elements each, where the distance between the
elements of the virtual dense array is 0.48λ, σ = σ1 = 10,
and ρ = σ2 = 3. We also pass the number of signals n = 6 to
the co-prime array method, while our method is able to detect
this number of impending signals automatically. For the cluster
analysis, we use DBSCAN on ULA1 with μ = 218 for 85%
validation and δ = 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, while for
ULA2, we require 70% validation with μ = 179 and δ = 0.6.
The results are shown in Fig. 5, where for every noise level
we plot the joint output of 100 different noise realizations to
observe the effect of noise on both methods.

We see that for low noise levels, both methods perform
comparably, however, for higher noise levels, the difference
becomes clear. The co-prime arrays have trouble matching
the results of both ULAs, hence, especially for high noise
levels, we observe that mismatches are not uncommon and
thus result in erroneously retrieved angles. On the other hand,
our method may not validate all six angles in case of high
noise levels, however, it also does not yield any erroneous
results. Note that it is possible to obtain all six angles for
a low SNR with the proposed method when we are less
strict on the validation part. However, this can lead to angles
which are slightly less accurate than the ones returned in this
experiment.

Both ESPRIT and the sparse array method in [41] require
solutions of matrices of the order M × K n, which can be
significantly slower than the series of smaller systems required
for the new method.

Fig. 5. Solution of the DOA problem given by Table II for increasing noise
levels of both co-prime arrays (top) and the new proposed method (bottom).

B. Effects of Mutual Coupling

To illustrate the improved resolution of the algorithm over
standard dense ULAs, as well as the effects of mutual coupling
on the performance thereof, a 12 element dipole array is
considered. The antennas have length λ/2 and radius of
λ/1000 (thin wires), are oriented along the z-axis of a standard
Cartesian coordinate system, and are arranged linearly along
the x-axis. Spacing is defined as in Fig. 2, with σ = 11, ρ = 5,
and Mσ = Mρ = 6, with the central feed points as reference
positions. All elements are loaded with 50 � sources, and full-
wave method of moment (MoM) simulations using FEKO [42]
are used to characterize the array system. For this experiment,
we fix SNR = 30 dB, use 256 snapshots and investigate a
range of values for d ∈ [0.09λ, 0.48λ]. Smaller values of d
correspond to denser arrays, while larger values result in sparse
arrays with finer resolution and less mutual coupling.

The resolution of the system is evaluated by exciting the
array with two monochromatic plane waves. The incoming
directions of the z-polarized sources are both fixed at θ = 90◦,
while the first is also fixed at φ1 = 90◦ and the second varied
in φ2 ∈ [75◦, 90◦]. Standard spherical coordinate system
azimuth and polar angles are used for φ and θ .

Three different spacing cases are investigated with d =
0.09λ, 0.3λ, 0.48λ. For all cases, 100 Monte-Carlo trial runs
are performed, and the accuracy of the estimated angles is
presented as the RMS value, over these trials, of the absolute
difference between the estimated and the actual DOA (for each
of the signals). Since n = 2 here, both the success rate as
well as RMS accuracy of the DOA estimation algorithm is
computed. The success rate is just the number of successful
trials divided by the total number of trials as a percentage.
If fewer than two angles are returned, the trial is counted as
unsuccessful.

For comparison, results obtained by MUSIC on the same
geometry are also included. To this end, the second signal is
excited in quadrature with the first to remove all correlation
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Fig. 6. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.09λ spaced array system. The top panel shows the accuracy
of the extracted angles of arrival, and the bottom panel the success rates
of the methods. The vertical line indicates the expected minimum Rayleigh
resolution limit.

between the signals. Results for the method presented here
are identical to the uncorrelated case when correlated signals
are used, while MUSIC fails in this case. To avoid any ambi-
guity issues for the sparse cases, the array manifold search
space in the algorithm is restricted to the region [min(φ2) −
�φ,φ1+�φ], where the resolution�φ is calculated using (1).
Note that, for a standard λ/2-spaced ULA with 12 elements,
the resolution is expected to be around 10.5◦, and resolutions
for the other examples are indicated as vertical dotted lines on
the result plots in Figs. 6–8.

The results for the d = 0.09λ case are shown in Fig. 6.
For this configuration (ρ = 5), the spacing results in a
0.45λ separation between the closest elements. The worst
case mutual coupling is around −15.3 dB, very similar to
the value obtained from a classical λ/2-spaced ULA. Since
the maximum separation here is only 0.54λ, standard dense
array techniques can be used near broadside without the
risk of ambiguity. Clearly, the new method suggested in this
article, performs significantly better than MUSIC in terms of
resolution. Both incoming signals can be resolved reliably
from about half the Rayleigh limit.

Results for d = 0.3λ and d = 0.48λ are shown
in Figs. 7 and 8, respectively. Similar results as before are
obtained, where the present method not only displays better
resolution than MUSIC, but also lower error values. It must
be stressed here that MUSIC cannot really be used in these
cases, since ambiguous results are found when searching over
the full array manifold (as is normally done). The ambiguity is
artificially removed through prior knowledge of the incoming
signal directions for MUSIC, while the present method returns
unique results. Compared with the narrower spaced results,
increasing d results in reduced mutual coupling and thus
improved accuracy in angle estimation for both methods. Note

Fig. 7. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.3λ spaced array system. Top and bottom panel as in Fig. 6.

Fig. 8. Performance of the presented method (solid line) and MUSIC (dashed
line) for a d = 0.48λ spaced array system. Top and bottom panel as in Fig. 6.

again that the resolution for the d = 0.48λ case is about a
factor 5 better than that achievable with a standard ULA, and
this value can be further increased by increasing the scale and
shift parameters σ and ρ in the array.

VI. CONCLUSION

A new method is presented for DOA estimation in sparse
regularly spaced array systems. The method can be used
on top of any exponential analysis method and completely
removes the dense Nyquist spacing requirement. Instead, it
only requires that the elements are arranged in two uniform
arrays with the one an endfire translated version of the
other. By enforcing a co-prime relation between the element
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spacing and the translation distance, aliasing due to the spa-
cial sparsity of the elements is removed. The larger spacing
allows improved resolution for a fixed number of sensors
and reduced mutual coupling between the antenna elements.
Furthermore, the method provides an accurate estimate of the
number of signals impinging on the system without any prior
knowledge, while there is no requirement that the respective
signals be uncorrelated. Distinct, fully correlated signals, such
as those that occur in a multipath environment, can thus
accurately be distinguished using this new method. Several
examples are presented investigating both the performance
in increasing noise, as well as increasing mutual coupling
scenarios. In all of these, the new method performs better than
standard techniques on a variety of metrics. Work is currently
ongoing toward expansion of the method to the planar case,
which will be reported in a subsequent article. A prototype
implementation is also under development.

REFERENCES

[1] Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-Arrival
Estimation. Norwood, MA, USA: Artech House, 2010.

[2] A. Chippendale and G. Hellbourg, “Interference mitigation with a
modified ASKAP phased array feed on the 64m parkes radio telescope,”
in Proc. Int. Conf. Electromagn. Adv. Appl. (ICEAA), Sep. 2017,
pp. 948–951.

[3] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74–80, Feb. 2014.

[4] R. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[5] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[6] Y. Hua and T. Sarkar, “Matrix pencil method for estimating parameters
of exponentially damped/undamped sinusoids in noise,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 38, no. 5, pp. 814–824, May 1990.

[7] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas
Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.

[8] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to
array processing with enhanced degrees of freedom,” IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[9] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co–prime samplers
and arrays,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573–586,
Feb. 2011.

[10] A. Paulraj and T. Kailath, “Direction of arrival estimation by eigen-
structure methods with unknown sensor gain and phase,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2005,
pp. 640–643.

[11] B. Friedlander and A. Weiss, “Direction finding in the presence of
mutual coupling,” IEEE Trans. Antennas Propag., vol. 39, no. 3,
pp. 273–284, Mar. 1991.

[12] F. Sellone and A. Serra, “A novel online mutual coupling compensation
algorithm for uniform and linear arrays,” IEEE Trans. Signal Process.,
vol. 55, no. 2, pp. 560–573, Feb. 2007.

[13] P. Rocca, M. A. Hannan, M. Salucci, and A. Massa, “Single–snapshot
DoA estimation in array antennas with mutual coupling through a
multiscaling BCS strategy,” IEEE Trans. Antennas Propag., vol. 65,
no. 6, pp. 3203–3213, Jun. 2017.

[14] Z. Ye, J. Dai, X. Xu, and X. Wu, “DOA estimation for uniform
linear array with mutual coupling,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 45, no. 1, pp. 280–288, Jan. 2009.

[15] Y. Wang, M. Trinkle, and B. Ng, “DOA estimation under unknown
mutual coupling and multipath with improved effective array aperture,”
Sensors, vol. 15, no. 12, pp. 30856–30869, Dec. 2015.

[16] E. Boudaher, F. Ahmad, M. G. Amin, and A. Hoorfar, “Effect of mutual
coupling on direction-of-arrival estimation using sparse dipole arrays,”
in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Jun. 2016.

[17] A. Cuyt and W.-S. Lee, “How to get high resolution results from
sparse and coarsely sampled data,” Appl. Comput. Harmon. Anal.,
Oct. 2018.

[18] Z. Tan, Y. C. Eldar, and A. Nehorai, “Direction of arrival estimation
using co–prime arrays: A super resolution viewpoint,” IEEE Trans.
Signal Process., vol. 62, no. 21, pp. 5565–5576, Nov. 2014.

[19] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the music algo-
rithm,” in Proc. Digit. Signal Process. Signal Process. Educ. Meeting
(DSP/SPE), Jan. 2011, pp. 289–294.

[20] G. H. Golub, P. Milanfar, and J. Varah, “A stable numerical method for
inverting shape from moments,” SIAM J. Sci. Comput., vol. 21, no. 4,
pp. 1222–1243, Jan. 1999.

[21] S. Das and A. Neumaier, “Solving overdetermined eigenvalue problems,”
SIAM J. Sci. Comput., vol. 35, no. 2, pp. A541–A560, Jan. 2013.

[22] G. Beylkin and L. Monzón, “On approximation of functions by expo-
nential sums,” Appl. Comput. Harmon. Anal., vol. 19, no. 1, pp. 17–48,
2005.

[23] D. Potts and M. Tasche, “Parameter estimation for exponential sums
by approximate Prony method,” Signal Process., vol. 90, no. 5,
pp. 1631–1642, May 2010.

[24] D. Potts and M. Tasche, “Parameter estimation for nonincreasing expo-
nential sums by Prony-like methods,” Linear Algebra Appl., vol. 439,
no. 4, pp. 1024–1039, Aug. 2013.

[25] R. de Prony, “Essai expérimental et analytique sur les lois de la
dilatabilité des fluides élastiques et sur celles de la force expansive de la
vapeur de l’eau et de la vapeur de l’alkool, à différentes températures,”
J. Ec. Poly., vol. 1, no. 22, pp. 24–76, 1795.

[26] E. Kaltofen and W.-S. Lee, “Early termination in sparse interpolation
algorithms,” J. Symbolic Comput., vol. 36, nos. 3–4, pp. 365–400,
Sep. 2003.

[27] P. Henrici, Applied and Computational Complex Analysis I. Hoboken,
NJ, USA: Wiley, 1974.

[28] A. Cuyt, M.-N. Tsai, M. Verhoye, and W.-S. Lee, “Faint and clustered
components in exponential analysis,” Appl. Math. Comput., vol. 327,
pp. 93–103, Jun. 2018.

[29] L. Weiss and R. N. McDonough, “Prony’s method, Z–transforms, and
padé approximation,” SIAM Rev., vol. 5, no. 2, pp. 145–149, Apr. 1963.

[30] Z. Bajzer, A. Myers, S. Sedarous, and F. Prendergast, “Padé-Laplace
method for analysis of fluorescence intensity decay,” Biophys. J., vol. 56,
no. 1, pp. 79–93, Jul. 1989.

[31] A. Cuyt and W.-S. Lee, Sparse Interpolation and Rational Approxima-
tion (Contemporary Mathematics), vol. 661, D. Hardin, D. Lubinsky,
and B. Simanek, Eds. Providence, RI, USA: American Mathematical
Society, 2016, pp. 229–242.

[32] J. Nuttall, “The convergence of Padé approximants of meromor-
phic functions,” J. Math. Anal. Appl., vol. 31, no. 1, pp. 147–153,
Jul. 1970.

[33] C. Pommerenke, “Padé approximants and convergence in capacity,”
J. Math. Anal. Appl., vol. 41, no. 3, pp. 775–780, Mar. 1973.

[34] P. Barone, “On the distribution of poles of Padé approximants to the
Z-transform of complex Gaussian white noise,” J. Approximation The-
ory, vol. 132, no. 2, pp. 224–240, Feb. 2005.

[35] L. Perotti, D. Vrinceanu, and D. Bessis, “Enhanced frequency resolution
in data analysis,” Amer. J. Comput. Math., vol. 3, no. 3, pp. 242–251,
2013.

[36] D. Bessis, “Padé approximations in noise filtering,” J. Comput. Appl.
Math., vol. 66, nos. 1–2, pp. 85–88, Jan. 1996.

[37] J. Gilewicz and M. Pindor, “Padé approximants and noise: A case of
geometric series,” J. Comput. Appl. Math., vol. 87, no. 2, pp. 199–214,
Dec. 1997.

[38] J. Gilewicz and M. Pindor, “Padé approximants and noise: Rational
functions,” J. Comput. Appl. Math., vol. 105, pp. 285–297, 1999.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
2nd Int. Conf. Knowl. Discovery Data Mining (KDD). Portland, Oregon:
AAAI Press, 1996, pp. 226–231.

[40] M. Briani, A. Cuyt, and W. Lee, “Validated exponential analysis for
harmonic sounds,” in Proc. 20th Int. Conf. Digit. Audio Effects (DAFX),
vol. 20, 2017, pp. 222–227.
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