
H O W D O E S P A S C A L - X S C C O M P A R E T O

O T H E R P R O G R A M M I N G L A N G U A G E S

W I T H R E S P E C T T O T H E I E E E S T A N D A R D ?

PASCAL JANSSENS t AND ANNIE CUYT*
DEPARTMENT WIS-INF

UNIVERSITY OF ANTWERP (UIA)
UNIVERSITEITSPLEIN 1

B-2610 WILRIJK-ANTWERP (BELGIUM)

March 1993

ABSTRACT. hl this report we investigate a number of popular programming languages, when used for sci-
entific computation or computational mathematics. The main aim is to investigate the XSC-philosophy
that has been lammhed in the last few years and has resulted in a number of XSC-extensions of existing
programming languages. We also focus on details of the IEEE standard which, although a standard, is
never followed completely.

1. " G e n e s i s "

In the beginning there was a mechanical calculator, for short calculations, limited to a small number
of steps, with human supervision. Any difficulties could be noticed as they happened and the accuracy
of particular steps adjusted as needed. Then came the computer and lengthy calculations became pos-
sible, allowing thousands of millions of steps. Tiny errors, irrelevant in short calculations, could now
accumulate and overwhelm the desired answer to the problem. Never in the history of mankind had it
been possible to produce so many wrong answers so quickly. Nevertheless, the expectations of the users
grew at least as quickly as the power of the computers they were using. In addition, the floating-point
calculations went on without supervision and computational crises passed without notice. Of course
this created doubts about the reliability of floating-point results. It was clear by now that automatic
computation differed substantially from human computation. The discipline of computer arithmetic was
born. Although computers were historically developed for scientific computation, extensive interest in
the subject of computer arithmetic has mostly developed in the early eighties, yielding some important
improvements in the accuracy of floating-point computations when two IEEE floating-point standards
were agreed upon [Gol91]. They formalized the representation of the floating-point numbers/F~ C/i~ and
the implementation of the basic floating-point operations (the precision t, carried as a subscript, equals
the number of digits in the significant of the float). Among other things [Gol91] these standards specify
that the four basic operations 0, O, ® and ® have to be implemented with exact rounding meaning that

• { + , - , × , /)

where the rounding O : /R ~ /F must be such that if O(r) = f then there does not exist another
floating-point number between r and f . The exact rounding requirement guarantees maximally accurate
results for the arithmetic operations in /Ft, in the sense that the intermediate result x • y is computed
to infinite precision and afterwards rounded to the destination format. However, many computations in
numerical algorithms are carried out in product spaces (complex numbers, vectors, matrices, . . .) . Since
the arithmetic operations in these spaces are traditionally performed in terms of the given elementary

Key words and phrases. Scientific Computation, Computer arithmetic, Floating-point numbers.
1993 Computing Reviews Classification. G.1.0, D.3, G.4

emaih j anssen@ wins.uia.ac.be
• Research Director NFWO

57 ACM SIGPLAN Notices, Volume 28, No. 8, August 1993

floating-point operations in ~ , it is easy to see that the computational error due to the accumulation
of rounding errors of each of the basic floating-point operations can become quite large. Consider for
example the floating-point scalar product ® of two vectors of floating-point numbers x and y in V F t .
Using the basic operations we obtain

x®y=~xi®yi
i = l

Therefore, a new definition of the basic operations in the product spaces which overcomes this shortcom-
ing, was given in [KM81]. Coming back to our example, the scalar product of two vectors in V/F~ is
redefined as

x ® y = Q (x . y) x ,y E V/F~

In [KM81] it is also proven that in order to redefine and implement the basic operations in all these
product spaces with exact rounding, the set of basic operations in the IEEE standard only has to be
extended with this scalar product for vectors. This extension (X) for scientific (S) computation (C)
gave birth to a collection of XSC-languages. Some of these programming languages were offered with a
compiler or precompiler (Pascal-XSC), while in other cases libraries were developed as an addition to a
popular commercial compiler (C-XSC, Acrith-SC for Fortran).

With the use of supercomputers offering compound operations (like a ~ b ® c or like the scalar product
of vectors), institutions like IMACS and GAMM have also expressed the desire that these compound
operations be implemented by the manufacturer in such a way that the floating-point result is obtained
from the exact result by one single rounding according to the rounding mode in use [MKM92].

2. Rel iab i l i ty of n u m e r i c a l resu l t s

In the next sections we screen some compilers available for use on personal computers. We always
selected the most recent implementation, for the time being, namely

• the Microsoft Fortran 5.1 compiler, for those still preferring to use the most popular scientific
programming language around, namely Fortran;

• the Borland-C ++ 3.0 compiler, to test a renown product compiling the widely spread and exten-
sively used programming language C++;

• The Pascal-XSC 2.02 precompiler to Borland-C ++ 3.0, for those wanting to experiment with a
new product promising reliability and portability

We have chosen these 3 languages because of several reasons.

First of all Fortran has always been the most popular language around when dealing with floats.
Nevertheless cases have been reported where an algorithm was executed once in single precision and once
in double precision and none of the coinciding digits in both the result types were significant. Knowing
that this comparison of precisions is a standard trick for people to test for the error accumulation in their
floating-point computations, one must admit that the language lacks tools to guarantee reliability.

Secondly C ++ as a language for scientific computing has recently been gaining increased attention
[Rue92] because of its portability, the class concept and operator overloading that make the language
extensible to user-defined structures, and the possibility of more natural interfaces which is also interesting
for numerical libraries.

Last but not least XSC-languages have built-in tools for the validation of floating-point computations
through their enclosure methods to obtain self-validating numerical algorithms. Interval arithmetic,
which has been around for a long time, is the only computational tool so far available that incorporates
guarantees as part of the basic computational process, but it has often been criticized since its naive
use may deliver bounds which are unreasonably large and thus do not contain much information about
the solution of the problem. It is pointed out in [KM86] that this criticism can be superseded. If one
combines interval computation, the process of defect correction [SvG89] and the optimal scalar product
one can obtain bounds with maximum accuracy. In this approach the role of the optimal scalar product
is again crucial.

In order to screen the three selected compilers, we describe how they conform to the IEEE 754 standard
for Binary Floating-Point Arithmetic. To comply with this standard a language compiler must provide
at least the following 7 items. In the next sections we refer to each of those items with the numbers

58

given below, preceded by a key depending on the section, namely by MSFT for MS-Fortran 5.1, BCPP
for Borland-C ++ and PXSC for Paseal-XSC 2.02:

(1): a single precision and a double precision floating-point number format, of 32 bits and 64
bits respectively;

(2): 6 basic operations: add, subtract, multiply, divide, square root and remainder, that must
be performed with exact rounding;

(3): 4 rounding modes: to nearest, to zero, to +c¢ and to - c ¢ ;
(4): 5 floating-point exceptions (invalid operation, zero divide, overflow, underflow and inexact)

and their handling, including NaN's;
(5): conversions between integer and floating-point formats;
(6): conversions between different floating-point formats;
(7): conversions between basic floating-point numbers and decimal strings.

It's nice that the IEEE standard extended /Ft with signed zeroes, denormals, ::t=o¢ and NaN's, but it
would only be truly practical if one could use all these bit patterns as normal floats. However with some
of the screened compilers, ±c¢ and NaN's cannot be entered as decimal strings. In MS-Fortran 5.1 and
Pascal-XSC 2.02 one has to use the hexadecimal notation instead.

In the sequel of the text, when we refer to a coprocessor, we mean an INTEL coprocessor which was
installed complimentary to the INTEL cpu in the personal computer.

3. M S - F o r t r a n 5 .1

The Microsoft Fortran Compiler offers a choice of three packages for handling floating-point operations:

T h e 8 0 8 7 / 8 0 2 8 7 package : This package allows you to use an 80x87 coprocessor to perform
floating-point operations. You must have an 80x87 installed to use this package.

T h e e m u l a t o r package : This package uses the 80x87 coprocessor if one is installed. If there
is no coprocessor available it provides the necessary 80x87 functions in software. If an 80x87
coprocessor is available you can always force the program to use the emulator by assigning a
value to the environment variable NO87. The emulator package should perform basic oper-
ations to the same degree of accuracy as a coprocessor. However the emulator routines for
transcendental math functions differ slightly from the corresponding 80x87 functions, and this
can cause a slight difference (mostly within 2 bits) in the results.

T h e a l t e r n a t e package : This package gives the smallest and fastest programs you can get
without a coprocessor. However, the program results are never as accurate as results from the
emulator package. The alternate math package uses a subset of the IEEE standard format
numbers: ±oo, NaN's and denormal numbers are not used. Moreover there are no exception-
handlers available in this package.

By default this compiler uses the following mask settings in the control word:

Infinity control Affine
Round control Round to Nearest
Precision control 64 bits
Inexact Masked
Underflow Masked
Overflow Unmasked
Zero-divide Unmasked
Denormalized-operand Masked
Invalid-operation Unmasked

These mask settings can be modified by using the procedure LCWRQQ. However the user cannot affect
the handling of denormals. Retrieval of the status word is done by the procedure SSWRQQ. Unfortunately
the status word cannot be reset by the user.

To screen this compiler we choose the emulator package because it works both with and without 80x87
coprocessor. Keeping in mind the 7 items we listed in section 2 we now give an overview of the behaviour
of floating-points as implemented by the MS-Fortran 5.1 compiler.

59

(M S F T 1)
Fortran provides the basic floating-point formats as follows :

IEEE P r e c i s i o n F o r t r a n r a n g e

Single Precision
(t = 24)

real
real*4

max_pos = 3.40282347(10 +38)
min_pos = 1.17549435(10 -3s)

Double Precision double precision max_pos = 1.7976931348623157(10 +S°s)
(t = 53) real*8 min_pos = 2.22507385072014(10 -3°8)

(M S F T 2)
The basic operations +, - , × and / are supported for real as well as for double precision floating-point

numbers. The remainder and square root are implemented as the intrinsic functions amod and s q r t for
reals and dmod and d s q r t for double precision numbers. Given ±cx~ or NaN's as argument these last 4
functions produce overflow or domain errors.

Signed zeroes are not supported completely by this compiler: - 0 × 4 -- - 0 but ~ - 0 = +0 instead
of ~ - 0 -- - 0 as required. Decimal input of - 0 is not possible. Moreover the sign of the result of an
operation with +c¢ and - c o is not always correct with the emulator. For example: +c¢ × (- c ~) = ÷c~.

(M S F T 3)
The 4 rounding modes as prescribed by the IEEE standard are available. When using the emulator

the extreme case max_pos + max_pos delivers NaN in round to zero and round down modes in single
precision instead of max_pos which should be the result according to the standard. In double precision
the results are correct. With the coprocessor rounding works as expected.

(M S F T 4)
The Microsoft Fortran 5.1 compiler has three kinds of NaN's: IND, QNAN and SNAN. The value

IND is used as the result of invalid operations like 0/0 and 0×c~ and has the bi t -pat tern of a quiet NaN.
However operations with signaling NaN's (SNAN) don ' t result in a quiet NaN. The following operations
should all raise the invalid exception and give a quiet NaN as result when the t rap is disabled. However
from the table below one can see that the IEEE standard is violated in many cases.

0/0
0 × ::kc~
±c¢/0

-

±ooi ± oc

4 REM 0
4 REM 0

r e s u l t (with coprocessor) r a i s e d e x c e p t i o n (s) o r e r r o r

IND
IND
INF (±cx~)
IND
IND

Zero-divide and Invalid
Invalid
Zero-divide
Invalid
Invalid
s q r t : DOMAIN error
d s q r t : DOMAIN error
amod: DOMAIN error
dmod: DOMAIN error

From the table above it is also clear that there are still problems with zero divisors. In the status word
the denormal bit is raised from the moment a denormalized number appears in an operation.

(M S F T 5)
The rounding of a floating-point number that is converted to an integer is realized by the functions

n i n t and an±at . According to the IEEE standard rounding should be round to even in the default
rounding mode but the n i n t function seems to be implemented as:

INTEGER FUNCTION NINT(X)

IF (X > 0.0) THEN

NINT = INT(X+0.6)

ELSE

NINT = INT(X-0.5)
ENDIF

END

60

which implies that NINT(2.5) = 3.0 instead of 2.0 as expected by the standard. Conversion of max_pos to
integer raises an invalid operation as expected by the IEEE standard to signal integer overflow, however
the result equals 0.

(M S F T 6)
Conversion from single precision to double precision works as expected. However the conversion of

maz_pos from double precision to single precision raises an overflow exception and gives +oo in round up
and round to nearest, and NaN in round down and round to zero instead of max_pos. The conversion of
double precision min_pos raises the underflow exception and gives 0 as result in single precision.

(M S F T 7)
To test the conversion of decimal strings to floating-point double precision format we consider the

following real numbers which we entered specifying all digits (the tests have been performed with and
without coprocessor):

rl : 1 + 2 -1 + 2 TM + 2 -53 q //;'54 (rl ~]F53)

= 1.50000005960464488641292746251565404236316680908203125

r2 : 1 + 2 -1 "~- 2 T M "~- 2 -52 q /F53

= 1.5000000596046449974352299250313080847263336181640625

oq = 1.50000005960464488

~2 = 1.50000005960464490

0~3 = 1.50000005960464499

The exact hexadecimal representation of rl in double precision is 3 F F 8 0000 1000 0000 8 which is to be
read as

sign bit = 0
exponent = 011 1111 1111 (0 b iased)
hidden b i t = 1
mantissa = 1000 0000 0000 0000 0000 0001 0000

0000 0000 0000 0000 0000 0000 1000

In round up mode this should give us the floating-point number 1

(~,)
f~3 (r l) = 3 F F 8 0000 1000 0001

and in round down mode the floating-point number

fs(d)tr 3 L 1) "~ 3 F F 8 0000 1000 0000

The hexadecimal representation of r2 in double precision is 3 F F 8 0000 1000 0001. Since this is a double
precision floating-point number we have

(u) (d) / h / h = = r2

Besides, since rl < o~i < r2 with i E {2, 3} we must have

¢ (d)" r ~ a n d (~) and because there is no f E/F53 between .153 t 1) f~3 (r2) = r~ we must also have:

(d) (d)
• f h .f 3 (r l)

and
(~)

Unfortunately in MS Fortran 5.1 we get

(~,) ¢(d)
ff~3 (r l) = ~53 (r l) = 3 F F 8 0000 1000 0000

lupperscript indices indicate rounding mode

61

which is wrong, and for the rest

= f~3 (r2) = r~

f~d)¢c~ ~ 3 F F 8 0000 1000 0000 = Js3 t 1) 3 t 1) = ¢ (d) t r \

(a) ~(d) f~3 (, ~) = 3 F F 8 0000 1000 0001 = ,'2 # Js~ (r l)
(a)

s ~ (~3) = 3 F F 8 0000 1000 0001 = r~ ¢ S~) (~x)

f ~) (~ l) = 3 F F 8 0000 1000 0000 ~ r2

f~])(a2) = 3 F F 8 0000 1000 0001 = r2
(,,)

f~a (o~3) = 3 F F 8 0000 1000 0001 = r2

Since o~i < r2, these results imply that for i 6 {2, 3}

(a)

which is nonsense.

4. Bor land-C ++ 3.0

As for MS-Fortran, programs in Borland-C ++ can be compiled in four ways regarding floating-point
operations:

N o n e : In this mode you can ' t do any floating-point operations.
E m u l a t o r : In this mode the program detects whether your computer has an 80x87 coprocessor

and will use it if i t 's there. If there is no coprocessor detected your p rogram will emulate one.
8087: In this mode direct 8087 coprocessor inline code is used.
80287: In this mode direct 80287 coprocessor inline code is used for floating-point operations.

In some situations you might want to override the default 80x87 auto-detection behavior. For example
when you want to know if your program also produces the right results on machines without a coprocessor.
With the 87 environment variable you can modify this behavior. Setting the 87 environment variable to
N (for No) with the command "SET 87=N" at the DOS prompt tells the s tar tup code that you don ' t
want to use the 80x87, even when it is available. Setting this environment variable to Y (for Yes) means
that the coprocessor is there, and you want the program to use it. I f you set the 87 environment variable
to Y in absence of a coprocessor your system will hang.

The default settings for the control word are as follows:

Infinity control Affine
Round control Round to Nearest
Precision control 64 bits
Inexact Masked
Underflow Masked
Overflow Unmasked
Zero-divide Unmasked
Denormalized-operand Masked
Invalid-operation Unmasked

By default Borland-C ++ programs abort if a floating-point overflow, divide by zero or invalid error
occurs. This behavior can be changed by masking floating-point exceptions by calls to _con t ro l87 . You
can determine whether a floating-point exception occurred by calling _ s t a t u s 8 7 or _c leax87 after its
occurrence. The function _c l ea r87 clears the status word. Certain m a t h errors can also occur in l ibrary
functions. For example: ~ - 4 prints an error message on the screen and returns a NaN.

Let us now screen the implementat ion of floating-points with respect to the IEEE standard discussing
the 7 items of section 2.

(B C P P 1)
The following floating-point formats are provided (since long double is not a required precision of the

standard, we will not mention it further in our discussion of Borland-C++):

62

C s i z e

32 bits
64 bits
80 bits

I E E E P r e c i s i o n C

Single Precision (t=24) float
Double Precision (t=53) double
Extended Precision (t=64) long double

range
float 1.17549435(10 -~) to 3.40282347(10 +3s)
double 2.2250738585072014(10 -3°s) to 1.7976931348623157(10 +~°s)
long double 3.3621031431120935062626778173217526(10 -4932) to

1.1897314953572317650857593266280070(10 +4932)

(BCPP2)
The basic operations --t-,-, x and / are available for the two required precisions. The remainder and the

square root are only defined for double precision arguments and give a double precision number as result.
Borland-C ++ does not issue an error when one calls these two functions with a single precision argument,
but it gives wrong results and continues with the program. For example: x/~ gives -3.27(10+4).

Borland-C ++ supports signed zeroes in all its operations. Furthermore ~ = -0. Operations with
denormal numbers are only possible with a coprocessor installed. The emulator flushes all the denormals
to zero.

(BCPP3)
The 4 rounding modes (round to nearest, round up, round down and round to zero) are supported for

both precisions and act as expected by the IEEE standard.
(BCPP4)

The denormal bit of the status word is not used in Borland-C ++. Due to the fact that with the emulator
all denormals are flushed to zero, the zero divide exception is raised when dividing by a denormal number.
Using a coprocessor results in correct behavior.

The handling of invalid operations when the invalid trap is disabled, is summarized in the following
table. The invalid operations of the remainder function deliver 0 instead of NaN and don't raise the
invalid exception.

(BCPP5)

I resul t I raised except ion or e r ror

0/0 +oo Zero-divide (without 80x87)
0/0 NaN Invalid (with 80x87)
0 x :hoo NaN Invalid
~oo/0 ±oo , -

+oo - (+oo) NaN Invalid
± o o / ± oo NaN Invalid
~ - 4 NaN sqrt : DOMAIN error
4 REM 0 0
+oo REM 5 0

As for the screened Fortran compiler, Borland-C ++ delivers a zero result when converting maz_pos to
an integer value. To signal the integer overflow the invalid exception is raised.
(BCPP6)

Conversion from single precision to double precision works as expected. Conversion of max_pos from
double precision to single precision raises an overflow exception and gives +(x~ in round up and round
to nearest while returning single precision max_pos in the other two rounding modes. This is the correct
behavior according to the IEEE standard. Conversion of double precision min_pos raises the underflow
exception and returns 0 regardless of the rounding mode.
(BCPP7)

The conversion of decimal strings to floating-point double precision format is tested using the input
of the previous section. We obtain the following results for i 6 {1, 2, 3}:

= = = 3 p p 8 0 0 0 0 1 0 0 0 0 0 0 0

63

(=) (=) (=)
f53 (ai) = 3 F F 8 0000 1000 (r l)= 0000

Consequently we have
~(d) (~)

f~3 (r2) r2 Js3 (r2) # =

which is wrong since r2 E/Fs3. The other equations are respected by Borland-C ++ since all downward
roundings and upward roundings are equal respectively.

5. Pascal-XSC 2.02

The software arithmetic of Pascal-XSC is realized using integer arithmetic. In case an IEEE arithmetic
coprocessor is available, it can be used. However, a software emulation of the optimal dot product
for accumulation of numbers and products is still necessary to obtain reliable results. In contrast to
usual programming languages like Fortran, Pascal and Modula 2, Pascal-XSC provides all operations in
product spaces like V ~ (real vectors), I/R (real intervals) and M/R (real matrices) via the usual operator
symbols. Each of these operations calls elementary operations which are implemented using the optimal
dot product. Moreover Pascal-XSC has explicit language support for directed roundings (downward V
and upward A) and the corresponding operations (W and &for all * E {+ , - ,x , / }) .

By default, the exception handlers for the exceptions division by zero, exponent overflow and invalid
operation are enabled and cause the termination of the program after error messages are displayed. The
runtime option - i eee is provided for changing the default settings of the enabled status of exception
handlers. Another possibility of changing the status of the exception handling environment for IEEE
exception is given by the use of the procedures IEEE_trap_enable and IEEE_enviromaent. With the
procedure IEEE_enviromaent you decide whether the processing of the program has to be continued
after leaving a trap-handler. The procedure IEEE_trap_enable lets you change the state of the trap-
handlers. Using the procedure IEEE_test one can test if a particular exception has occurred during the
ex6cution of an operation. With the procedure IEEE._veset the status word can be reset.

(PXSC1)
Pascal-XSC only supports the double precision floating-point format (t=53). However, it is called real.

The real normal floating-point numbers range from 2.2250738585072013(10 -3°s) to 1.7976931348623158
(10+3°s).

(PXSC2)
The basic operations + , - , × , / and the square root are supported for double precision numbers. The

remainder function, as required by the IEEE standard, however is not provided. Signed zeroes are
available in Pascal-XSC, but if you want them displayed in decimal notation you will have to start
your program with the command-line option -sz. ~ - 0 = +0 instead of ~ - 0 = - 0 as required. As for
Borland-C ++, operations with denormal operands are only possible if you have a coprocessor installed.
When there's no coprocessor denormal numbers are flushed to zero. Operations with ±co are not always
correct regarding the sign of the result: +co × (-oo) = +oo.

(PXSC3)
Global rounding modes fixed by a bit-pattern in the control word, as used in C and Fortran, are not

available in Pascal-XSC. One reason for this, is the fact that some arithmetic functions reset the value
of the rounding bits of the control word to its default (round to nearest). Further operations are then
fulfilled in round to nearest mode, which can give unexpected results. Therefore Pascal-XSC provides
each basic operation, even read and wri te , in three rounding modes. Rounding towards zero is not yet
provided.

(PX$C4)
Regardless of the invalid trap handler vrz4 gives the error message "ieee math error: -Normal in

function sqrt". The other invalid operations are handled in the following way by Pascal-XSC:

64

0/0
Ox±oo
+~/0
+oo - (+ o o)
± o o / ± oo
vrq

r e s u l t I e x c e p t i o n I e r r o r w h e n t r a p is e n a b l e d

1.335045212497809(10 -:~U6)
-4-oo
+~:x~

+c~
:kc~

Invalid
Invalid

Invalid
Invalid

invalid operation: 0 / 0
invalid operation: 0 x infinity

unexpected infinity operand

(P X S C 5)
Conversion from double precision max_pos to integer raises an integer overflow error and delivers 0 as

result.

(P X S C 6)
Conversion between different floating-point formats is not possible since there is only one format

provided, namely the double precision.

(P X S C 7)
Recalling the definitions of r l , r2, oq where i E { 1, 2, 3} we obtain the following results in Pascal-XSC:

f~3d)(rl) = 3 F F 8 0000 1000 0000

fg(u), 3 (ra) = 3 F F 8 0000 1000 0001

d3d)(r2) = d~)(r2) = 3 F F 8 0000 1000 0001 = r2
(d) f~3 (oli) = 3 F F 8 0000 1000 0000 = r(d) ,5~ (r l)
(~)

f~a (oq) = 3 F F 8 0000 1000 0000 = r2

with i E {1,2,3}.
Let us also consider the following real number:

r 3 = 1 + 2 -1 + 2 - 2 4 -'F 2 - 5 2 "4- 2 - 8 0 = r2 "{- 2 -80

Pascal-XSC gives the following result (the entire decimal string was entered and apparently also pro-
cessed):

f~3d)(r3) = 3 r E 8 0000 1000 0000

S ~) (r ~) = 3 F F 8 0000 1000 0001

We can easily conclude from these results that Pascal-XSC supports the conversion between decimal and
binary representation as required by the IEEE standard. It even detects a bit way out in the real number:
2 -s° ~ 10 TM. The programmer really feels in control: if he or she wants to enter a long number, all the
digits are respected. If such precise input is not necessary, the programmer enters less digits. Anyway,
from (MSFT7) and (BCPP7) we see that even exact floating-point numbers belonging to/F53 cannot be
retrieved with these compilers.

6. D e a l i n g w i t h c a n c e l l a t i o n in f l o a t i n g - p o i n t c o m p u t a t i o n s

Let us consider the following problem involving floating-point computations. We want to evaluate the
polynomial

p(x) = a3x 3 + . . . + a o
= 543339720x 3 - 768398401x 2 - 1086679440x + 1536796802

in x = 1.414215087890625 by means of the Hornet scheme:

p(x) := a3

p(x) := v (x) ® • • a 3 - , i = 1 , . . . , 3

The correct value is
p(x) = 3.57644118525968224...(10 -3)

65

Although this problem is algebraically simple, it is computationally hard. We are facing catastrophic
cancellation in the Horner scheme as well as in a straightforward evaluation. This difficulty is further
discussed in the next section. Let us first list the different numerical results for the different compilers.
With MS-Fortran and Borland-C ++ we obtain (with and without coprocessor):

p(x) = 3.5766 (10 -3)

Notice that we only print the significant digits because we know the correct result. In real-life situations
this is in general not possible. With PaseaI-XSC we obtain

p(x) E [3.576441185259681 (10-3), 3.576441185259683 (10-3)]

Here the number of significant digits can be read immediately from the interval output.

7. C o n c l u s i o n s

With the end of the 20 th century and with the great era of computers in view, scientists do by now
expect to have a reliable "calculator" at their disposal. Nothing is less true.

The idea to complement computations with an error analysis through interval ari thmetic combined
with defect correction, is a good step in that direction. It is the XSC-philosophy. However, using
a long accumulator for compound operations does not necessarily improve the results. Even when the
accumulator is filled with only slightly contaminated numbers, the error can spread. Consider for instance
the expression

y = 27a 6 - 10a3b 3 - b 6 - 3ab - 12a2b ~

with a = 12970 and b = 16897. For this integer input stored in double precision variables, everything is of
course in order because when calculating y in a long accumulator nor a, nor b nor any of the intermediate
results have to be rounded. All the outcoming digits are reliable. In case of cancellation all the remaining
digits are correct (by the way y = 1 which is almost never computable).

Taking floating-point input a = 1297.0 and b = 1689.7, the best we can do for b always differs from its
exact value in at least the 53 rd bit. Hence

©(b) = b +~

I¢1 _< 2 (10 -12)
Once this last digit is contaminated, up to now nothing can prevent the catastrophic effect when com-
puting b 6:

b 6 ~ ©(b) ® . . . ® ©(b) = (b + e) ® . . . ® (b + e) ,~ b 6 + 6bSe + . . .

16bS~l _< 1 (10 8)

In case of cancellation in a long accumulator, this error term will now remain as the dominant result.

In order for this to be taken care of, extra precision for b should be provided dynamically, after the
catastrophic effect being signaled for instance by reliable error control methods. It is our intention that
future research be carried out for that type of problems.

[Gol91]

[KM81]
[KM86]

[MKM92]

true92]
[SvG89]

[UvG89]

REFERENCES

D. Goldberg, What every computer sc ient is t should know about f loat ing-point ari thmetic , ACM Comp. Surv. 2 3

(1991), 5-48.
U. Kulisch and W. Miranker, C ompu t e r ar i thmet ic in theory and practice, Academic Press, New York, 1981.
U. Kulish and W. Miranker, The ar i thmet ic o] the digital computer : A new approach, SIAM Review 28 (1986),
1-36.
S. M. Markov, E. Kaucher, and G. Mayer (eds.), Compu te r ari thmetic , scienti f ic computat ion and mathemat ica l

modelling, Baltzer, Basel, 1992.
U. Ruede, Synops is on a workshop on scientif ic computing in c ++ , Tech. report , Report T.U. M/inchen, 1992.
G. Schvanacher and J. Wolff yon Gudenberg, Highly accurate numer ica l algorithms, In Ullrich and yon Gudenberg
[UvG89], pp. 1-17.
Ch. Ullrich and J. Wolff yon Gudenberg (eds.), Accurate numerical algorithms, a collection of research papers,
Berlin, Springer-Verlag, 1989.

66

