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ABSTRACT. hl this report we investigate a number of popular programming languages, when used for sci- 
entific computation or computational mathematics.  The main aim is to investigate the XSC-philosophy 
that  has been lammhed in the last few years and has resulted in a number of XSC-extensions of existing 
programming languages. We also focus on details of the IEEE standard which, although a standard,  is 
never followed completely. 

1. " G e n e s i s "  

In the beginning there was a mechanical calculator, for short calculations, limited to a small number 
of steps, with human supervision. Any difficulties could be noticed as they happened and the accuracy 
of particular steps adjusted as needed. Then came the computer and lengthy calculations became pos- 
sible, allowing thousands of millions of steps. Tiny errors, irrelevant in short calculations, could now 
accumulate and overwhelm the desired answer to the problem. Never in the history of mankind had it 
been possible to produce so many wrong answers so quickly. Nevertheless, the expectations of the users 
grew at least as quickly as the power of the computers they were using. In addition, the floating-point 
calculations went on without supervision and computational crises passed without notice. Of course 
this created doubts about the reliability of floating-point results. It was clear by now that  automatic 
computation differed substantially from human computation. The discipline of computer arithmetic was 
born. Although computers were historically developed for scientific computation, extensive interest in 
the subject of computer arithmetic has mostly developed in the early eighties, yielding some important 
improvements in the accuracy of floating-point computations when two IEEE floating-point standards 
were agreed upon [Gol91]. They formalized the representation of the floating-point numbers/F~ C/i~ and 
the implementation of the basic floating-point operations (the precision t, carried as a subscript, equals 
the number of digits in the significant of the float). Among other things [Gol91] these standards specify 
that the four basic operations 0,  O, ® and ® have to be implemented with exact rounding meaning that 

• { + , - , × , / )  

where the rounding O : /R ~ /F must be such that  if O( r )  = f then there does not exist another 
floating-point number between r and f .  The exact rounding requirement guarantees maximally accurate 
results for the arithmetic operations in /Ft, in the sense that the intermediate result x • y is computed 
to infinite precision and afterwards rounded to the destination format. However, many computations in 
numerical algorithms are carried out in product spaces (complex numbers, vectors, matrices, . . . ) .  Since 
the arithmetic operations in these spaces are traditionally performed in terms of the given elementary 
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floating-point operations in ~ ,  it is easy to see that the computational error due to the accumulation 
of rounding errors of each of the basic floating-point operations can become quite large. Consider for 
example the floating-point scalar product ® of two vectors of floating-point numbers x and y in V F t .  
Using the basic operations we obtain 

x®y=~xi®yi 
i = l  

Therefore, a new definition of the basic operations in the product spaces which overcomes this shortcom- 
ing, was given in [KM81]. Coming back to our example, the scalar product of two vectors in V/F~ is 
redefined as 

x ® y = Q ( x .  y) x ,y  E V/F~ 

In [KM81] it is also proven that in order to redefine and implement the basic operations in all these 
product spaces with exact rounding, the set of basic operations in the IEEE standard only has to be 
extended with this scalar product for vectors. This extension (X) for scientific (S) computation (C) 
gave birth to a collection of XSC-languages. Some of these programming languages were offered with a 
compiler or precompiler (Pascal-XSC), while in other cases libraries were developed as an addition to a 
popular commercial compiler (C-XSC, Acrith-SC for Fortran). 

With the use of supercomputers offering compound operations (like a ~ b ® c or like the scalar product 
of vectors), institutions like IMACS and GAMM have also expressed the desire that these compound 
operations be implemented by the manufacturer in such a way that the floating-point result is obtained 
from the exact result by one single rounding according to the rounding mode in use [MKM92]. 

2. Rel iab i l i ty  of  n u m e r i c a l  resu l t s  

In the next sections we screen some compilers available for use on personal computers. We always 
selected the most recent implementation, for the time being, namely 

• the Microsoft Fortran 5.1 compiler, for those still preferring to use the most popular scientific 
programming language around, namely Fortran; 

• the Borland-C ++ 3.0 compiler, to test a renown product compiling the widely spread and exten- 
sively used programming language C++; 

• The Pascal-XSC 2.02 precompiler to Borland-C ++ 3.0, for those wanting to experiment with a 
new product promising reliability and portability 

We have chosen these 3 languages because of several reasons. 

First of all Fortran has always been the most popular language around when dealing with floats. 
Nevertheless cases have been reported where an algorithm was executed once in single precision and once 
in double precision and none of the coinciding digits in both the result types were significant. Knowing 
that this comparison of precisions is a standard trick for people to test for the error accumulation in their 
floating-point computations, one must admit that the language lacks tools to guarantee reliability. 

Secondly C ++ as a language for scientific computing has recently been gaining increased attention 
[Rue92] because of its portability, the class concept and operator overloading that make the language 
extensible to user-defined structures, and the possibility of more natural interfaces which is also interesting 
for numerical libraries. 

Last but not least XSC-languages have built-in tools for the validation of floating-point computations 
through their enclosure methods to obtain self-validating numerical algorithms. Interval arithmetic, 
which has been around for a long time, is the only computational tool so far available that incorporates 
guarantees as part of the basic computational process, but it has often been criticized since its naive 
use may deliver bounds which are unreasonably large and thus do not contain much information about 
the solution of the problem. It is pointed out in [KM86] that this criticism can be superseded. If one 
combines interval computation, the process of defect correction [SvG89] and the optimal scalar product 
one can obtain bounds with maximum accuracy. In this approach the role of the optimal scalar product 
is again crucial. 

In order to screen the three selected compilers, we describe how they conform to the IEEE 754 standard 
for Binary Floating-Point Arithmetic. To comply with this standard a language compiler must provide 
at least the following 7 items. In the next sections we refer to each of those items with the numbers 

58 



given below, preceded by a key depending on the section, namely by MSFT for MS-Fortran 5.1, BCPP 
for Borland-C ++ and PXSC for Paseal-XSC 2.02: 

(1): a single precision and a double precision floating-point number format,  of 32 bits and 64 
bits respectively; 

(2):  6 basic operations: add, subtract, multiply, divide, square root and remainder, that  must 
be performed with exact rounding; 

(3): 4 rounding modes: to nearest, to zero, to +c¢ and to - c ¢ ;  
(4): 5 floating-point exceptions (invalid operation, zero divide, overflow, underflow and inexact) 

and their handling, including NaN's; 
(5): conversions between integer and floating-point formats; 
(6): conversions between different floating-point formats; 
(7): conversions between basic floating-point numbers and decimal strings. 

It's nice that the IEEE standard extended /Ft with signed zeroes, denormals, ::t=o¢ and NaN's, but it 
would only be truly practical if one could use all these bit patterns as normal floats. However with some 
of the screened compilers, ±c¢ and NaN's cannot be entered as decimal strings. In MS-Fortran 5.1 and 
Pascal-XSC 2.02 one has to use the hexadecimal notation instead. 

In the sequel of the text, when we refer to a coprocessor, we mean an INTEL coprocessor which was 
installed complimentary to the INTEL cpu in the personal computer. 

3. M S - F o r t r a n  5 .1  

The Microsoft Fortran Compiler offers a choice of three packages for handling floating-point operations: 

T h e  8 0 8 7 / 8 0 2 8 7  package :  This package allows you to use an 80x87 coprocessor to perform 
floating-point operations. You must have an 80x87 installed to use this package. 

T h e  e m u l a t o r  package :  This package uses the 80x87 coprocessor if one is installed. If there 
is no coprocessor available it provides the necessary 80x87 functions in software. If an 80x87 
coprocessor is available you can always force the program to use the emulator by assigning a 
value to the environment variable NO87. The emulator package should perform basic oper- 
ations to the same degree of accuracy as a coprocessor. However the emulator routines for 
transcendental math  functions differ slightly from the corresponding 80x87 functions, and this 
can cause a slight difference (mostly within 2 bits) in the results. 

T h e  a l t e r n a t e  package :  This package gives the smallest and fastest programs you can get 
without a coprocessor. However, the program results are never as accurate as results from the 
emulator package. The alternate math  package uses a subset of the IEEE standard format  
numbers: ±oo,  NaN's and denormal numbers are not used. Moreover there are no exception- 
handlers available in this package. 

By default this compiler uses the following mask settings in the control word: 

Infinity control Affine 
Round control Round to Nearest 
Precision control 64 bits 
Inexact Masked 
Underflow Masked 
Overflow Unmasked 
Zero-divide Unmasked 
Denormalized-operand Masked 
Invalid-operation Unmasked 

These mask settings can be modified by using the procedure LCWRQQ. However the user cannot affect 
the handling of denormals. Retrieval of the status word is done by the procedure SSWRQQ. Unfortunately 
the status word cannot be reset by the user. 

To screen this compiler we choose the emulator package because it works both with and without 80x87 
coprocessor. Keeping in mind the 7 items we listed in section 2 we now give an overview of the behaviour 
of floating-points as implemented by the MS-Fortran 5.1 compiler. 
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( M S F T  1) 
Fortran provides the basic floating-point formats  as follows : 

IEEE P r e c i s i o n  F o r t r a n  r a n g e  

Single Precision 
(t = 24) 

real 
real*4 

max_pos = 3.40282347(10 +38) 
min_pos = 1.17549435(10 -3s) 

Double Precision double precision max_pos = 1.7976931348623157(10 +S°s) 
(t = 53) real*8 min_pos = 2.22507385072014(10 -3°8) 

( M S F T 2 )  
The basic operations +,  - ,  × and / are supported for real as well as for double precision floating-point 

numbers. The remainder and square root are implemented as the intrinsic functions amod and s q r t  for 
reals and dmod and d s q r t  for double precision numbers.  Given ±cx~ or NaN's  as argument  these last 4 
functions produce overflow or domain errors. 

Signed zeroes are not supported completely by this compiler: - 0  × 4 -- - 0  but ~ - 0  = +0  instead 
of ~ - 0  -- - 0  as required. Decimal input of - 0  is not possible. Moreover the sign of the result of an 
operation with +c¢  and - c o  is not always correct with the emulator.  For example: +c¢  × ( - c ~ )  = ÷c~.  

( M S F T 3 )  
The 4 rounding modes as prescribed by the IEEE standard are available. When using the emulator  

the extreme case max_pos + max_pos delivers NaN in round to zero and round down modes in single 
precision instead of max_pos which should be the result according to the standard.  In double precision 
the results are correct. With  the coprocessor rounding works as expected. 

( M S F T 4 )  
The Microsoft Fortran 5.1 compiler has three kinds of NaN's: IND, QNAN and SNAN. The value 

IND is used as the result of invalid operations like 0/0 and 0×c~ and has the bi t -pat tern of a quiet NaN. 
However operations with signaling NaN's  (SNAN) don ' t  result in a quiet NaN. The following operations 
should all raise the invalid exception and give a quiet NaN as result when the t rap is disabled. However 
from the table below one can see that  the IEEE standard is violated in many  cases. 

0/0 
0 × ::kc~ 
±c¢/0 

- 

±ooi ± oc 

4 REM 0 
4 REM 0 

r e s u l t  (with coprocessor) r a i s e d  e x c e p t i o n ( s )  o r  e r r o r  

IND 
IND 
INF (±cx~) 
IND 
IND 

Zero-divide and Invalid 
Invalid 
Zero-divide 
Invalid 
Invalid 
s q r t :  DOMAIN error 
d s q r t :  DOMAIN error 
amod: DOMAIN error 
dmod: DOMAIN error 

From the table above it is also clear that  there are still problems with zero divisors. In the status word 
the denormal bit is raised from the moment  a denormalized number  appears  in an operation. 

( M S F T 5 )  
The rounding of a floating-point number  that  is converted to an integer is realized by the functions 

n i n t  and an±at .  According to the IEEE standard rounding should be round to even in the default 
rounding mode but the n i n t  function seems to be implemented as: 

INTEGER FUNCTION NINT(X) 

IF (X > 0.0) THEN 

NINT = INT(X+0.6) 

ELSE 

NINT = INT(X-0.5) 
ENDIF 

END 
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which implies that  NINT(2.5) = 3.0 instead of 2.0 as expected by the standard. Conversion of max_pos  to 
integer raises an invalid operation as expected by the IEEE standard to signal integer overflow, however 
the result equals 0. 

( M S F T 6 )  
Conversion from single precision to double precision works as expected. However the conversion of 

maz_pos  from double precision to single precision raises an overflow exception and gives +oo in round up 
and round to nearest, and NaN in round down and round to zero instead of max_pos.  The conversion of 
double precision min_pos  raises the underflow exception and gives 0 as result in single precision. 

( M S F T 7 )  
To test the conversion of decimal strings to floating-point double precision format  we consider the 

following real numbers which we entered specifying all digits (the tests have been performed with and 
without coprocessor): 

rl : 1 + 2 -1 + 2 TM + 2 -53 q //;'54 (rl ~ ]F53) 

= 1.50000005960464488641292746251565404236316680908203125 

r2 : 1 + 2 -1 "~- 2 T M  "~- 2 -52 q /F53 

= 1.5000000596046449974352299250313080847263336181640625 

oq = 1.50000005960464488 

~2 = 1.50000005960464490 

0~3 = 1.50000005960464499 

The exact hexadecimal representation of rl  in double precision is 3 F F 8  0000 1000 0000 8 which is to be 
read as 

sign bit = 0 
exponent = 011 1111 1111 (0 b iased)  
hidden b i t  = 1 
mantissa = 1000 0000 0000 0000 0000 0001 0000 

0000 0000 0000 0000 0000 0000 1000 

In round up mode this should give us the floating-point number 1 

(~,) 
f~3 (r l)  = 3 F F 8  0000 1000 0001 

and in round down mode the floating-point number 

fs(d)tr 3 L 1)  "~ 3 F F 8  0000 1000 0000 

The hexadecimal representation of r2 in double precision is 3 F F 8  0000 1000 0001. Since this is a double 
precision floating-point number we have 

(u) (d) / h  / h  = = r2 

Besides, since rl < o~i < r2 with i E {2, 3} we must have 

¢ (d )" r  ~ a n d  (~) and because there is no f E/F53 between .153 t 1) f~3 (r2) = r~ we must also have: 

(d) (d) 
• f h  .f 3 ( r l )  

and 
(~) 

Unfortunately in MS Fortran 5.1 we get 

(~, ) ¢( d) 
ff~3 ( r l )  = ~53 ( r l )  = 3 F F 8  0000 1000 0000 

lupperscript  indices indicate rounding mode 
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which is wrong, and for the rest 

= f~3 (r2) = r~ 

f~d)¢c~ ~ 3 F F 8  0000 1000 0000 = Js3 t 1) 3 t 1) = ¢ ( d ) t r  \ 

( a) ~( d) f~3 ( , ~ )  = 3 F F 8  0000 1000 0001 = ,'2 # Js~ (r l )  
(a) 

s ~  (~3) = 3 F F 8  0000 1000 0001 = r~ ¢ S~) (~x)  

f ~ ) ( ~ l )  = 3 F F 8  0000 1000 0000 ~ r2 

f~])(a2) = 3 F F 8  0000 1000 0001 = r2 
(,,) 

f~a (o~3) = 3 F F 8  0000 1000 0001 = r2 

Since o~i < r2, these results imply that  for i 6 {2, 3} 

(a) 

which is nonsense. 

4. Bor land-C ++ 3.0 

As for MS-Fortran, programs in Borland-C ++ can be compiled in four ways regarding floating-point 
operations: 

N o n e :  In this mode you can ' t  do any floating-point operations. 
E m u l a t o r :  In this mode the program detects whether your computer  has an 80x87 coprocessor 

and will use it if i t 's  there. If  there is no coprocessor detected your p rogram will emulate one. 
8087: In this mode direct 8087 coprocessor inline code is used. 
80287:  In this mode direct 80287 coprocessor inline code is used for floating-point operations. 

In some situations you might  want to override the default 80x87 auto-detection behavior. For example 
when you want to know if your program also produces the right results on machines without a coprocessor. 
With the 87 environment variable you can modify this behavior. Setting the 87 environment variable to 
N (for No) with the command  "SET 87=N" at the DOS prompt  tells the s tar tup code that  you don ' t  
want to use the 80x87, even when it is available. Setting this environment variable to Y (for Yes) means 
that  the coprocessor is there, and you want the program to use it. I f  you set the 87 environment variable 
to Y in absence of a coprocessor your system will hang. 

The default settings for the control word are as follows: 

Infinity control Affine 
Round control Round to Nearest 
Precision control 64 bits 
Inexact Masked 
Underflow Masked 
Overflow Unmasked 
Zero-divide Unmasked 
Denormalized-operand Masked 
Invalid-operation Unmasked 

By default Borland-C ++ programs abort  if a floating-point overflow, divide by zero or invalid error 
occurs. This behavior can be changed by masking floating-point exceptions by calls to _con t ro l87 .  You 
can determine whether a floating-point exception occurred by calling _ s t a t u s 8 7  or _c leax87 after its 
occurrence. The function _c l ea r87  clears the status word. Certain m a t h  errors can also occur in l ibrary 
functions. For example: ~ - 4  prints an error message on the screen and returns a NaN. 

Let us now screen the implementat ion of floating-points with respect to the IEEE standard discussing 
the 7 items of section 2. 

( B C P P 1 )  
The following floating-point formats  are provided (since long double is not a required precision of the 

standard,  we will not mention it further in our discussion of Borland-C++):  
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C s i z e  

32 bits 
64 bits 
80 bits 

I E E E  P r e c i s i o n  C 

Single Precision (t=24) float 
Double Precision (t=53) double 
Extended Precision (t=64) long double 

range  
float 1.17549435(10 -~ )  to 3.40282347(10 +3s) 
double 2.2250738585072014(10 -3°s) to 1.7976931348623157(10 +~°s) 
long double 3.3621031431120935062626778173217526(10 -4932 ) to 

1.1897314953572317650857593266280070( 10 +4932) 

(BCPP2)  
The basic operations --t-,-, x and / are available for the two required precisions. The remainder and the 

square root are only defined for double precision arguments and give a double precision number as result. 
Borland-C ++ does not issue an error when one calls these two functions with a single precision argument, 
but it gives wrong results and continues with the program. For example: x/~ gives -3.27(10+4). 

Borland-C ++ supports signed zeroes in all its operations. Furthermore ~ = -0.  Operations with 
denormal numbers are only possible with a coprocessor installed. The emulator flushes all the denormals 
to zero. 

(BCPP3)  
The 4 rounding modes (round to nearest, round up, round down and round to zero) are supported for 

both precisions and act as expected by the IEEE standard. 
(BCPP4)  

The denormal bit of the status word is not used in Borland-C ++. Due to the fact that with the emulator 
all denormals are flushed to zero, the zero divide exception is raised when dividing by a denormal number. 
Using a coprocessor results in correct behavior. 

The handling of invalid operations when the invalid trap is disabled, is summarized in the following 
table. The invalid operations of the remainder function deliver 0 instead of NaN and don't raise the 
invalid exception. 

(BCPP5)  

I resul t  I raised except ion  or e r ror  

0/0 +oo Zero-divide (without 80x87) 
0/0 NaN Invalid (with 80x87) 
0 x :hoo NaN Invalid 
~oo/0 ±oo , - 

+oo - (+oo) NaN Invalid 
± o o / ±  oo NaN Invalid 
~ - 4  NaN sqrt :  DOMAIN error 
4 REM 0 0 
+oo REM 5 0 

As for the screened Fortran compiler, Borland-C ++ delivers a zero result when converting maz_pos to 
an integer value. To signal the integer overflow the invalid exception is raised. 
(BCPP6)  

Conversion from single precision to double precision works as expected. Conversion of max_pos from 
double precision to single precision raises an overflow exception and gives +(x~ in round up and round 
to nearest while returning single precision max_pos in the other two rounding modes. This is the correct 
behavior according to the IEEE standard. Conversion of double precision min_pos raises the underflow 
exception and returns 0 regardless of the rounding mode. 
(BCPP7)  

The conversion of decimal strings to floating-point double precision format is tested using the input 
of the previous section. We obtain the following results for i 6 {1, 2, 3}: 

= = = 3 p p 8  0 0 0 0  1 0 0 0  0 0 0 0  
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(=) (=) (=) 
f53 (ai)  = 3 F F 8  0000 1000 ( r l )= 0000 

Consequently we have 
~(d) (~) 

f~3 (r2) r2 Js3 (r2) # = 

which is wrong since r2 E/Fs3. The other equations are respected by Borland-C ++ since all downward 
roundings and upward roundings are equal respectively. 

5. Pascal-XSC 2.02 

The software arithmetic of Pascal-XSC is realized using integer arithmetic. In case an IEEE arithmetic 
coprocessor is available, it can be used. However, a software emulation of the optimal dot product 
for accumulation of numbers and products is still necessary to obtain reliable results. In contrast to 
usual programming languages like Fortran, Pascal and Modula 2, Pascal-XSC provides all operations in 
product spaces like V ~  (real vectors), I/R (real intervals) and M/R (real matrices) via the usual operator 
symbols. Each of these operations calls elementary operations which are implemented using the optimal 
dot product. Moreover Pascal-XSC has explicit language support for directed roundings (downward V 
and upward A) and the corresponding operations (W and &for all * E {+ , - ,x , / } ) .  

By default, the exception handlers for the exceptions division by zero, exponent overflow and invalid 
operation are enabled and cause the termination of the program after error messages are displayed. The 
runtime option - i eee  is provided for changing the default settings of the enabled status of exception 
handlers. Another possibility of changing the status of the exception handling environment for IEEE 
exception is given by the use of the procedures IEEE_trap_enable and IEEE_enviromaent. With the 
procedure IEEE_enviromaent you decide whether the processing of the program has to be continued 
after leaving a trap-handler. The procedure IEEE_trap_enable lets you change the state of the trap- 
handlers. Using the procedure IEEE_test one can test if a particular exception has occurred during the 
ex6cution of an operation. With the procedure IEEE._veset the status word can be reset. 

(PXSC1) 
Pascal-XSC only supports the double precision floating-point format (t=53). However, it is called real. 

The real normal floating-point numbers range from 2.2250738585072013(10 -3°s) to 1.7976931348623158 
(10+3°s). 

(PXSC2) 
The basic operations + , - , × , /  and the square root are supported for double precision numbers. The 

remainder function, as required by the IEEE standard, however is not provided. Signed zeroes are 
available in Pascal-XSC, but if you want them displayed in decimal notation you will have to start 
your program with the command-line option -sz. ~ - 0  = +0 instead of ~ - 0  = - 0  as required. As for 
Borland-C ++, operations with denormal operands are only possible if you have a coprocessor installed. 
When there's no coprocessor denormal numbers are flushed to zero. Operations with ±co are not always 
correct regarding the sign of the result: +co × (-oo) = +oo. 

(PXSC3) 
Global rounding modes fixed by a bit-pattern in the control word, as used in C and Fortran, are not 

available in Pascal-XSC. One reason for this, is the fact that some arithmetic functions reset the value 
of the rounding bits of the control word to its default ( round to nearest ). Further operations are then 
fulfilled in round to nearest mode, which can give unexpected results. Therefore Pascal-XSC provides 
each basic operation, even read and wri te ,  in three rounding modes. Rounding towards zero is not yet 
provided. 

(PX$C4) 
Regardless of the invalid trap handler vrz4 gives the error message "ieee math error: -Normal in 

function sqrt". The other invalid operations are handled in the following way by Pascal-XSC: 

64 



0/0 
Ox±oo  
+~/0 
+oo - ( + o o )  
± o o / ±  oo 
vrq 

r e s u l t  I e x c e p t i o n  I e r r o r  w h e n  t r a p  is e n a b l e d  

1.335045212497809(10 -:~U6) 
-4-oo 
+~:x~ 

+c~ 
:kc~ 

Invalid 
Invalid 

Invalid 
Invalid 

invalid operation: 0 / 0 
invalid operation: 0 x infinity 

unexpected infinity operand 

( P X S C 5 )  
Conversion from double precision max_pos to integer raises an integer overflow error and delivers 0 as 

result. 

( P X S C 6 )  
Conversion between different floating-point formats is not possible since there is only one format 

provided, namely the double precision. 

( P X S C 7 )  
Recalling the definitions of r l ,  r2, oq where i E { 1, 2, 3} we obtain the following results in Pascal-XSC: 

f~3d)(rl) = 3 F F 8  0000 1000 0000 

fg(u), 3 (ra) = 3 F F 8  0000 1000 0001 

d3d)(r2) = d~)(r2)  = 3 F F 8  0000 1000 0001 = r2 
(d) f~3 (oli) = 3 F F 8  0000 1000 0000 = r(d) ,5~ (r l )  
(~) 

f~a (oq) = 3 F F 8  0000 1000 0000 = r2 

with i E {1,2,3}. 
Let us also consider the following real number: 

r 3  = 1 + 2 -1 + 2 - 2 4  -'F 2 - 5 2  "4- 2 - 8 0  = r2  "{- 2 -80 

Pascal-XSC gives the following result (the entire decimal string was entered and apparently also pro- 
cessed): 

f~3d)(r3) = 3 r E 8  0000 1000 0000 

S ~ ) ( r ~ )  = 3 F F 8  0000 1000 0001 

We can easily conclude from these results that  Pascal-XSC supports the conversion between decimal and 
binary representation as required by the IEEE standard. It even detects a bit way out in the real number: 
2 -s° ~ 10 TM. The programmer really feels in control: if he or she wants to enter a long number, all the 
digits are respected. If such precise input is not necessary, the programmer enters less digits. Anyway, 
from (MSFT7) and (BCPP7) we see that  even exact floating-point numbers belonging to/F53 cannot be 
retrieved with these compilers. 

6. D e a l i n g  w i t h  c a n c e l l a t i o n  in  f l o a t i n g - p o i n t  c o m p u t a t i o n s  

Let us consider the following problem involving floating-point computations. We want to evaluate the 
polynomial 

p(x) = a3x 3 + . . . + a o  
= 543339720x 3 -  768398401x 2 -  1086679440x + 1536796802 

in x =  1.414215087890625 by means of the Hornet scheme: 

p(x)  := a3 

p(x)  := v (x )  ® • • a 3 - ,  i = 1 , . . . , 3  

The correct value is 
p(x) = 3.57644118525968224...(10 -3) 
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Although this problem is algebraically simple, it is computationally hard. We are facing catastrophic 
cancellation in the Horner scheme as well as in a straightforward evaluation. This difficulty is further 
discussed in the next section. Let us first list the different numerical results for the different compilers. 
With MS-Fortran and Borland-C ++ we obtain (with and without coprocessor): 

p(x )  = 3.5766 (10 -3) 

Notice that we only print the significant digits because we know the correct result. In real-life situations 
this is in general not possible. With PaseaI-XSC we obtain 

p(x )  E [3.576441185259681 (10-3), 3.576441185259683 (10-3)] 

Here the number of significant digits can be read immediately from the interval output.  

7. C o n c l u s i o n s  

With the end of the 20 th century and with the great era of computers in view, scientists do by now 
expect to have a reliable "calculator" at their disposal. Nothing is less true. 

The idea to complement computations with an error analysis through interval ari thmetic combined 
with defect correction, is a good step in that  direction. It is the XSC-philosophy. However, using 
a long accumulator for compound operations does not necessarily improve the results. Even when the 
accumulator is filled with only slightly contaminated numbers, the error can spread. Consider for instance 
the expression 

y = 27a 6 - 10a3b 3 - b 6 - 3ab - 12a2b ~ 

with a = 12970 and b = 16897. For this integer input stored in double precision variables, everything is of 
course in order because when calculating y in a long accumulator nor a, nor b nor any of the intermediate 
results have to be rounded. All the outcoming digits are reliable. In case of cancellation all the remaining 
digits are correct (by the way y = 1 which is almost never computable).  

Taking floating-point input a = 1297.0 and b = 1689.7, the best we can do for b always differs from its 
exact value in at least the 53 rd bit. Hence 

©(b) = b +~  

I¢1 _< 2 (10 -12) 
Once this last digit is contaminated, up to now nothing can prevent the catastrophic effect when com- 
puting b 6: 

b 6 ~ ©(b) ® . . .  ® ©(b) = (b + e) ® . . .  ® (b + e) ,~ b 6 + 6bSe + . . .  

16bS~l _< 1 (10 8) 

In case of cancellation in a long accumulator, this error term will now remain as the dominant result. 

In order for this to be taken care of, extra precision for b should be provided dynamically, after the 
catastrophic effect being signaled for instance by reliable error control methods. It is our intention that  
future research be carried out for that  type of problems. 
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