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ABSTRACT
A rough analysis of the growth of the Lebesgue constant in the case of barycentric rational interpo-
lation at equidistant interpolation points was made in [Bos et al. 11] and [Bos et al. 12], leading to the
conclusion that it only grows logarithmically. Herewegive afineanalysis, obtaining theprecise growth
formula

2
π

(ln(n + 1) + ln 2 + γ ) + o(1)

for the Lebesgue constant under consideration, with γ being the Euler constant. The similarity
between barycentric rational interpolation at equidistant points and polynomial interpolation at
Chebyshev nodes (or the like) is remarkable. After revisiting the polynomial interpolation case in Sec-
tion 1 and introducing the barycentric rational interpolation case in Section 2, tight lower and upper
bound estimates are given in Section 3. These fine results could only be formulated after performing
very high-order numerical experiments in exact arithmetic. In Section 4, we indicate that the result can
be extended to the rational interpolants introduced by Floater and Hormann in [Floater and Hormann
07]. Finally, the proof of the new tight bounds is detailed in Section 5.

1. Sharp bounds for Lebesgue constants in
polynomial interpolation

Let the function f belong to C([ − 1, 1]). When approx-
imating f by an element from a finite-dimensional Vn =
span{φ0, …, φn} with φi ! C([ − 1, 1]) for 0 " i " n, we
know that there exists at least one element p∗

n ∈ Vn that is
closest to f. When using the || ||∞ norm, this element is
the unique closest one if the φ0, …, φn are a Chebyshev
system. Since the computation of this element is more
complicated than that of the interpolant

n∑

i=0
αiφi(x j) = f (x j), j = 0, . . . , n,

−1 ≤ x j ≤ 1,

there is an interest in interpolation points xj that make the
interpolation error
∣∣∣∣∣

∣∣∣∣∣ f (x) −
n∑

i=0
αiφi(x)

∣∣∣∣∣

∣∣∣∣∣
∞

= max
x∈[−1,1]

∣∣∣∣∣ f (x) −
n∑

i=0
αiφi(x)

∣∣∣∣∣

as small as possible. In other words, there is an inter-
est in using interpolating polynomials that are near-best
approximants.
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Whenφi(x)= xi and f is sufficiently differentiable, then
for the interpolant

pn(x) =
n∑

i=0
αixi,

satisfying pn(xj) = f(xj), 0 " j " n, the error ||f − pn||# is
bounded by [Young and Gregory 72, p. 267]

|| f − pn||∞ ≤ max
x∈[−1,1]

( | f (n+1)(x)|
(n + 1)!

)

× max
x∈[−1,1]

n∏

j=0
|x − x j|. (1–1)

It is well-known that ||(x − x0)$$$(x − xn)||# is minimal
on [− 1, 1] if the xj are the zeroes of the (n+ 1)-th degree
Chebyshev polynomial Tn+1(x) = cos((n + 1) arccos x).

The operator that associates with f its interpolant pn is
linear and given by

Pn : C([−1, 1]) → Vn : f (x) → pn(x) =
n∑

i=0
f (xi)ℓi(x)
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where the basic Lagrange polynomials ℓi(x),

ℓi(x) =
n∏

j=0, i̸= j

x − x j

xi − x j
,

satisfy ℓi(xj)= δij. So another bound for the interpolation
error is given by

|| f − pn||∞ ≤ (1 + ||Pn||) || f − p∗
n||∞,

||Pn|| = max
x∈[−1,1]

n∑

i=0
|ℓi(x)| .

Here 'n % 'n(x0, …, xn) = ||Pn|| is called the Lebesgue
constant, and Ln(x) % Ln(x0, …, xn; x) = |ℓ0(x)| + …
+ |ℓn(x)| is called the Lebesgue function. Both 'n and
Ln(x) clearly depend on the location of the interpolation
points xj. An explicit formula for the xj that minimize the
Lebesgue constant is not known, and if no further con-
straints are imposed on the interpolation points, then the
solution is not even unique. But it is proved in [Vértesi 86,
Szabados and Vértesi 90, pp. 110–121] that the minimal
growth of the Lebesgue constant, in terms of the number
of interpolation points n + 1, is given by

2
π

(
ln(n + 1) + γ + ln

( 4
π

))
∼ 2

π
ln(n + 1)

+0.52125 . . .

with γ the Euler constant.
Several node sets {x0, …, xn} come close to realizing

this minimal growth, among which the Chebyshev zeroes
[Rivlin 74, Ehlich and Zeller 66, Günttner 80] and the
Fekete points [Sündermann 83]. A simple node set known
in closed form that approximates the optimal node set
very well is the so-called extended Chebyshev node set
given by

x j = −
cos

(
(2 j+1)π
2(n+1)

)

cos
(

π
2(n+1)

) , j = 0, . . . , n. (1–2)

The division by cos (π /(2n+ 2)) guarantees that x0 = −1
and xn = 1. The growth of the Lebesgue constant for the
extended Chebyshev nodes is bounded by [Günttner 80,
Hesthaven 98]

'n(x0, . . . , xn) <
2
π
log(n + 1) + 0.5829 . . . , n ≥ 4,

which is only slightly larger than the minimal growth. At
the same time, it is known that the Lebesgue constant 'n
for equidistant interpolation points grows exponentially
[Schönhage 61, Turetskii 40].

2. Lebesgue constants for rational interpolation
with preassigned poles

When moving to rational functions instead of poly-
nomials, the approximation and interpolation problems

become nonlinear unless one considers the case of an a
priori fixed denominator or a priori fixed poles, as we do
in this article.

So let qm(x) =
∏m−1

k=0 (1 − x/ξk)with ξk ̸∈ [−1, 1] and
interpolate

pn(x j) = f (x j)qm(x j), j = 0, . . . , n (2–3)

with pn(x) ! span{1, …, xn}. The rational interpolant
pn/qm now belongs to Vn = span{1/qm(x), …, xn/qm(x)}.
In the sequel, we restrict ourselves to polynomials qm(x)
having real coefficients, in other words having poles that
are real or appear in complex conjugate pairs.

With xj ! [ − 1, 1] and ξk ̸∈ [−1, 1] and since pn
now interpolates fqm, the rational interpolation error is
bounded from above by

∣∣∣∣

∣∣∣∣ f − pn
qm

∣∣∣∣

∣∣∣∣
∞

≤ max
x∈[−1,1]

( |( f qm)(n+1)(x)|
(n + 1)!

)

× max
x∈[−1,1]

n∏

j=0

|x − x j|
|qm(x)|

. (2–4)

The factor (x− x0)$$$(x− xn)/qm(x) hasminimal uni-
form norm if the xj are the Chebyshev–Markov nodes
[Lukashov 04]. These are also the zeroes of the orthogonal
rational function Tn+1(x) with numerator of degree n +
1, denominator equal to qm(x) and satisfying [Van Deun
10]

∫ 1

−1
Tn+1(x)

pk(x)
qm(x)

dx√
1 − x2

= 0, k = 0, . . . , n.

If the poles ξ k are real or appear in complex conjugate
pairs, then the zeroes of Tn+1(x) are indeed real, simple,
and belong to the open interval ( − 1, 1) [Van Deun 10].
In the sequel, we assume thatm = n.

The operator that associates with f its rational inter-
polant pn/qn satisfying (2–3) is still linear and given by

Rn : C([−1, 1]) → Vn : f (x) → pn(x)
qn(x)

=
n∑

i=0
f (xi)

qn(xi)ℓi(x)
qn(x)

.

In the sameway as in Section 1, we obtain that the error in
rational interpolation with preassigned poles is bounded
from above by

∣∣∣∣

∣∣∣∣ f − pn
qn

∣∣∣∣

∣∣∣∣
∞

≤ (1 + ||Rn||)
∣∣∣∣

∣∣∣∣ f − p∗
n

qn

∣∣∣∣

∣∣∣∣
∞

,

||Rn|| = max
x∈[−1,1]

n∑

i=0

|qn(xi)ℓi(x)|
|qn(x)|

,

where p∗
n is the best polynomial approximant of degree

n to fqn. Here Mn % Mn(x0, …, xn; ξ 1, …, ξn) = ||Rn||
is the Lebesgue constant of rational interpolation in the



EXPERIMENTAL MATHEMATICS 349

points x0, …, xn with preassigned poles at ξ 1, …, ξn. The
function

Mn(x) := Mn(x0, . . . , xn; ξ1, . . . , ξn; x)

=
n∑

i=0

|qn(xi)ℓi(x)|
|qn(x)|

is called the Lebesgue function of rational interpolation
with predetermined poles.

In [Cuyt et al. 11], the behavior ofMn is investigated in
case the xj are the extendedChebyshev–Markov nodes for
some predetermined qn(x). The notion extended is again
to be understood in the way as in (1–2). It is important
to note that Tn+1(x) is the rational function with monic
numerator of degree n+ 1 and denominator qm(x) having
minimal || · ||# on [ − 1, 1]. So Tn+1(x) minimizes the
bound (2–4) in the same way as Tn + 1(x) minimizes (1–
1).

In [Berrut and Mittelmann 97], the poles ξ k are deter-
mined in order to minimizeMn in the case of equidistant
interpolation points xj. So there the location of the poles
is adapted to the given equidistant interpolation points,
while in [Cuyt et al. 11] the location of the interpola-
tion points is optimized for given poles. It depends on
the numerical application of course, whether it is more
important to have equidistant data available than to make
use of predetermined poles that dictate the shape and the
behavior of the interpolant.

Here, we want to give sharp bounds on the growth of
the Lebesgue constantMn in the case of n+ 1 equidistant
interpolation points xj and n poles fixed either by [Berrut
88]

qn(x) =
n∑

i=0
(−1)i

n∏

j=0, j ̸=i

(x − x j) (2–5)

as in Section 3 or by [Floater and Hormann 07]

s(d)
n (x) =

n∑

i=0
(−1)iσi

n∏

j=0, j ̸=i

(x − x j),

σi =
min(i,n−d)∑

j=max(i−d,0)

(
d

i − j

)
,

n ≥ 2d, d = 1, 2, . . . (2–6)

as in Section 4. It is well-known that neither the polyno-
mial qn(x) [Berrut 88] nor the polynomial s(d)

n (x) [Floater
and Hormann 07] have zeroes on the real line. Hence, in
both cases ξk ̸∈ [−1, 1].

A first analysis of Mn for equidistant interpolation
points and poles preassigned by (2–5) or (2–6) is given in
[Bos et al. 11] and [Bos et al. 12], respectively. We denote
the former Lebesgue constant by

M(0)
n := Mn(x0, . . . , xn; qn(ξk) = 0)

Figure . Bounds for M(0)
n as in [Bos et al. ] with M(0)

n deno-
ted by!.

and the latter by

M(d)
n := Mn(x0, . . . , xn; s(d)

n (ξk) = 0), d ≥ 1.

In both cases, we denote the Lebesgue function byMn(x),
as it is clear from the context in which case we are.

3. Precise growth formula for Berrut’s rational
interpolant

For qn(x) in ||Rn|| given by (2–5), the expression for the
Lebesgue functionMn(x) can be simplified to

Mn(x) =
∑n

i=0 1/|x − xi|∣∣∑n
i=0(−1)i/(x − xi)

∣∣ . (3–7)

In [Bos et al. 11], crude lower and upper bounds are
given forM(0)

n :

2
π + 4

n
ln(n + 1) ≤ M(0)

n ≤ 2 + ln(n).

We illustrate these in Figure 1, whereM(0)
n , for subsequent

values of n, is indicated with the symbol !.
As proved in Section 5, the growth rate ofM(0)

n is given
more precisely by

2 (ln(n + 1) + ln 2 + γ )

π + 4
n+3

≤ M(0)
n

≃
2
(
ln(n + 1) + ln 2 + γ + 1

24n
)

π − 4
n+2

. (3–8)

This is the exact asymptotic growth of the Lebesgue con-
stantM(0)

n . The new bounds are illustrated in Figure 2.
The tight formulation (3–8)was only possible after car-

rying out numerical experiments in exact arithmetic up
to n = O(101000)! The proof follows in Section 5. The
advantage of exact arithmetic here (besides the absence
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Figure . Sharpened bounds forM(0)
n withM(0)

n denoted by!.

of rounding errors) is that, in computer algebra soft-
ware, there is a nice compact expression for the evalu-
ation of Mn(x) halfway between two neighboring inter-
polation points in terms of the digamma function *(x).
This expression allows us to evaluate it for very high val-
ues of n. When making such a detailed analysis, the true
problem to obtain an accurate bound becomes clear. The
maximum value of the Lebesgue functionMn(x) does not
occur near a fixed location independent of n, like themid-
point or the endpoints of the interval: for n even, the pos-
itive argument of the maximum is a function of log10n.
More precisely, it changes with n mod 4 and moves up
with log10⌊n/4⌋ when n is even! To illustrate this, we dis-
play the value ofMn(x) near the many local maxima (also
see Figure 5).

For n= 4× 10100 (situation as in Figure 5 top left) and
x = (20i + 9)/n, i = 0, …, 9, the values can be found in
Table 1: a global maximum occurs (not even at, but) near
x = 149/n (we also show the values ofMn(x) at x = 145/n
and x = 153/n for comparison). For n = 4 × 101000 +
2 (situation as in Figure 5 bottom left) and x = (200i +
67)/n, i = 0, …, 7, the values can be found in Table 2: a
global maximum occurs very near x = 1467/n (compare
with the value ofMn(x) at x = 1463/n and x = 1471/n).

Table . Values ofMn(x), n= × ,  digits.

Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 

Table . Values ofMn(x), n= ×  + ,  digits.

Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 
Mn(/n) . ( digits) 

4. Growth formulas for Floater and Hormann’s
rational interpolant

For qn(x) in ||Rn|| given by (2–6), the expression for the
Lebesgue functionMn(x) simplifies to

Mn(x) =
∑n

i=0 σi/|x − xi|∣∣∑n
i=0(−1)iσi/(x − xi)

∣∣ , (4–9)

with σ i, i = 0, …, n given by

σi =

⎧
⎨

⎩

∑i
j=0

(d
j
)
, i ≤ d,

2d, d ≤ i ≤ n − d,

σn−i, i ≥ n − d.

For n odd and d= 1, the maximum of the Lebesgue func-
tion occurs near the origin, not precisely at the origin. We
illustrate this in Figure 3: with n= 11, d= 1 the Lebesgue
functionMn(x) achieves its maximum at about ±2/11. A
more precise statement is that for n mod 4 = 1 the max-
imum is at x∗ = 0 and for n mod 4 = 3 the maximum
occurs near±2/n. With n even themaximum occurs near
1/n.

The same sharp lower and upper bound estimates from
(3–8) apply toM(1)

n with d = 1 in (2–6). An illustration is
given in Figure 4, whereM(1)

n is indicated by &.

Figure . M11(x).
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Figure . Sharpened bounds forM(1)
n withM(1)

n denoted by&.

When d> 1, then an improved (but not yet fine) upper
bound is given by:

M(d)
n ≤ 2d−1 2

π − 4
n+2

(
ln(n + 1) + ln 2 + γ + 1

24n

)
,

d > 1. (4–10)

The results mentioned in this section for d ' 1 can be
proved in a similar way as we prove (3–8) in Section 5.

5. Proof of sharp growth estimates forM(0)
n

Let the interpolation points xj be equidistant, xj = −1 +
2j/n, j = 0, …, n and let the poles ξ 1, …, ξn lie outside
[ − 1, 1]. The Lebesgue function Mn(x) given by (3–7)
takes the (minimum) value 1 at the interpolation points
xj, j = 0, …, n and has n local maxima in between each
pair of consecutive interpolation points. It is clear that the
Lebesgue functionMn(x) is symmetric with respect to the
origin:Mn(− x)=Mn(x). The graph ofMn(x) essentially
takes four different shapes, depending on the value of n,
and the proof of the growth rate distinguishes these four
different cases. In Figure 5, we showMn(x) for n = 4k, 4k
+ 1, 4k + 2, 4k + 3 with k = 1. Because of the symmetry
ofMn(x), whenever a maximum is attained at x∗, so it is at
−x∗. We focus on the positive argument of themaximum.

As we prove further down and as is illustrated
in Figure 5, the position of x∗ = argmax0≤x≤1 Mn(x)
changes with n mod 4 and is (except for n = 4k + 3)
located near (not precisely at!) a midpoint of two inter-
polation points (note that 2/n is the distance between two
consecutive interpolation points).

For small n ' 3 (for n = 1, x∗ = 0 and for n = 2, x∗ (
1/2), the statement can be made rather precise:

n mod 4 = 0 : x∗ ≈ 1
n , n ≤ 24,

n mod 4 = 1 : x∗ ≈ 2
n ,

n mod 4 = 2 : x∗ ≈ 3
n , n ≤ 718,

n mod 4 = 3 : x∗ = 0.

(5–11)

And more generally, for k = ⌊n/4⌋ > 1:

n mod 4 = 0 : x∗ ∈]x2k, x2k+⌈log10 k⌉+2[= ] 0,
2(⌈log10 k⌉ + 2)

n
[,

n mod 4 = 1 : x∗ ≈ 2
n
,

n mod 4 = 2 : x∗ ∈]x2k+1, x2k+⌈log10 k⌉+1[= ] 0,
2⌈log10 k⌉

n
[,

n mod 4 = 3 : x∗ = 0. (5–12)

To determine the location of x∗ where a maximum is
attained, we further make use of some simple rules.

Rules
N
D

<
A
B

⇒ N
D

<
N + A
D + B

, N,D,A,B > 0, (5–13a)

D ≤ N ⇒ N +C
D +C

≤ N
D

, N,D,C > 0, (5–13b)

D ≤ N,B < D ⇒ N + A
D + A

≤ N + B
D − B

,

N,D,A,B > 0, (5–13c)

D ≤ N,B < A ⇒ N + A
D + A

≤ N + B
D + B

,

N,D,A,B > 0. (5–13d)

To prove (3–8), once the location of x∗ is known, we
also need a lemma [Günttner 88] and bounds on the par-
tial sums of the Leibniz series.
Lemma

n∑

k=0

1
2k + 1

<
1
2
ln(n + 1) + ln 2 + γ

2

+ 1
48(n + 1)2

. (5–14)

Series
π

4
− 1

2n + 3
<

n∑

k=0

(−1)k

2k + 1
<

π

4
+ 1

2n + 3
.

Now let’s start the proof of (3–8). In order to simplify
the computations, we make a change of variable, from x
! [ − 1, 1] to y ! [0, 1] by y % (x + 1)/2. This way we are
dealing only with positive values in the subsequent sums.
The interpolation points xi are then mapped to equidis-
tant points yi at a distance 1/n of each other. Because there
is no risk of ambiguity, when consistently using y-values
with evaluations expressed in the transformed variable
and x-values with evaluations expressed in the original
variable, the same notation Mn is used for the Lebesgue
function in the variable x and the function after the trans-
formation of x to y.
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Figure . Graphs ofM(x),M(x),M(x),M(x) from left to right and top to bottom.

We now investigate the value of the Lebesgue function
Mn(y) at the midpoints ŷi = (yi−1 + yi)/2, i = 1, . . . , n
which are very close to the arguments of the local maxima
of the Lebesgue function (the values displayed in Table 1
are for instance Mn(ŷ2k+ℓ) for ℓ = 10i + 5, i = 0, …, 9).
It is easy to verify that

Mn(ŷi) = Nn(ŷi)
Dn(ŷi)

, i = 1, . . . , n,

where

Nn(ŷi) =
i−1∑

j=0

1
2 j + 1

+
n−i∑

j=0

1
2 j + 1

, (5–15a)

Dn(ŷi) =
i−1∑

j=0

(−1) j

2 j + 1
+

n−i∑

j=0

(−1) j

2 j + 1
. (5–15b)

We write n = 4k + (n mod 4). For n mod 4 = 1 and
n mod 4 = 2, we have

Nn(ŷ1) < Nn(ŷ2) < . . . < Nn(ŷ2k+1)

and

Dn(ŷ2i+1) > Dn(ŷ2i+2), i = 0, . . . , k − 1,
Dn(ŷ2i+1) > Dn(ŷ2i+3), i = 0, . . . , k − 1.

For n mod 4 = 0, the statements aboutNn andDn at ŷ2k+1
are dropped, and for n mod 4 = 3, similar statements at

ŷ2k+2 are added. From the above, we can deduce that for
n mod 4 = 1 and n mod 4 = 2,

Mn(ŷ2i+1) < Mn(ŷ2i+2), i = 0, . . . , k − 1,
Mn(ŷ2i+1) < Mn(ŷ2i+3), i = 0, . . . , k − 1,

with a similar adjustment for n mod 4 = 0 and n mod
4 = 3 as before. Now we treat the cases n odd and n even
separately.

When n is odd, we find that for n mod 4 = 1,

Mn(ŷ2i) ≤ Mn(ŷ2k), i = 1, . . . , k − 1 (5–16)

by combining (5–13a) for N = Nn(ŷ2i),D = Dn(ŷ2i)
with

Nn(ŷ2k) − Nn(ŷ2i)
Dn(ŷ2k) − Dn(ŷ2i)

≤ Nn(ŷ2k) − Nn(ŷ2i+2)

Dn(ŷ2k) − Dn(ŷ2i+2)
,

i = 1, . . . , k − 2.

Analogously, for n mod 4 = 3, the statement (5–16)
holds for i = 1, …, k with ŷ2k in the right-hand side
replaced by ŷ2k+2.

The situation is more complicated when n is even
though. But fortunately the following inequalities for the
near-maxima at ŷ2k, and the other local maxima near ŷ2i,
help us out. Using (5–13a), we find

M4k+1(ŷ2k) ≤ M4k+3(ŷ2k+2).
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From (5–13b), we obtain

M4k+2(ŷ2i) ≤ M4k+1(ŷ2i), i = 1, . . . , k.

And finally (5–13c) gives

M4k(ŷ2i) ≤ M4k+2(ŷ2i), i = 1, . . . , k.

Remains to investigateMn(ŷ2k+1) in case n mod 4 = 1
or n mod 4 = 2. Using (5–13c), we obtain

M4k+1(ŷ2k+1) ≤ M4k+1(ŷ2k)

and at last from (5–13d)

M4k+2(ŷ2k+1) ≤ M4k+2(ŷ2k).

Since we know that when n mod 4 = 3 a maximum
occurs exactly atMn(ŷ2k+2), we can use this value to com-
pute an upper bound estimate for the Lebesgue constant
M(0)

n . Likewise, a lower bound for M(0)
n can be obtained

becauseM4k(ŷ2k) ≤ M(0)
4k ≤ M(0)

n for general n.
To conclude:

max
n

max
x∈[−1,1]

Mn(x) ≈ M4k+3(0)

and

min
n

max
x∈[−1,1]

Mn(x) ≥ M4k(1/n).

In other words, a sharp upper bound for M4k + 3(0) is
an accurate estimate forMn(x∗), n= 4k+ i, 0" i" 3, and
a lower bound forM4k(1/n) is a lower bound forMn(x∗),
n = 4k + i, 0 " i " 3.

To prove the actual bounds, we make use of the trans-
formed variable y again. For the upper bound we have:

M4k+3(
1/2) = N4k+3(

1/2)

D4k+3(1/2)
,

N4k+3(
1/2) = 2

2k+1∑

j=0

1
2 j + 1

≤ ln(8k + 8) + γ

+ 1
24(2k + 2)2

≤ ln(2n + 2) + γ + 1
24n

,

D4k+3(
1/2) = 2

∣∣∣∣∣∣

2k+1∑

j=0

(−1) j+2k+1

2 j + 1

∣∣∣∣∣∣
≥ π

2
− 2

n + 2
.

From these inequalities, it follows that (stated in the vari-
able x now)

max
n

max
x∈[−1,1]

Mn(x) ≃ 2
π − 4

n+2

×
(
ln(n + 1) + ln 2 + γ + 1

24n

)
.

For the lower bound, expressed in the transformed vari-
able y, we use the fact that the numerator ofM4k(n + 1/2n)

can be expressed using the digamma function*(y) where
for y > 0 it holds that ln (y) − 1/y " *(y):

M4k(
n+1/2n) = N4k(

n+1/2n)

D4k(n+1/2n)
,

N4k(
n+1/2n) =

2k+2∑

j=0

1
2 j + 1

+
2k+1∑

j=0

1
2 j + 1

≥ ln(8k + 2)

+γ = ln(2n + 2) + γ ,

D4k(
n+1/2n) ≤ 2

∣∣∣∣∣∣

2k+2∑

j=0

(−1) j

2 j + 1

∣∣∣∣∣∣
≤ π

2
+ 2

n + 3

from which (3–8) follows.
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