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Ahsrruct: Section 1 describes the univariate situation in the case of non-normal Pade approximants and Cordellier’s 

extension of the famous five-star identity of Wynn. Section 2 repeats our definition of multivariate Pade approximants 
and proves a number of theorems that remain valid when going from the univariate to the multivariate case. These 
theorems and more new results given in Section 3. will finally also copy Cordellier’s extension from the untvariate to 
the multivariate case. 

0. Motivation 

Let us first sketch the univariate situation. The calculation of the function value of a Pade 
approximant can easily be done by means of the e-algorithm. The interrelation between the 
e-table and the Pad&table has allowed Wynn to prove the famous five-star identity bringing 
together five neighbouring Pade approximants. Of course this identity is only valid when we are 
dealing with normal Pade approximants. In [2] Cordellier described an extension of this five star 
identity in the case of non-normal univariate Pade approximants, while in [3] the validity of the 
five star identity for normal multivariate Pade approximants was proved. It is our intention now 
to formulate analogous multivariate theorems as the univariate ones on which Cordellier based 
his reasoning and thus to solve the computational problem also in case some multiv~ariate Pade 
approximants are non-normal. 

1. The extension of Wynn’s univariate identih 

We adopt some terminology introduced by Gilewicz in [7]. In this section we restrict ourselves 
to the univariate case. Suppose we are given the formal power series 

f(x)= f ChXh. 
h =0 

Definition 1.1. A rational function 

%(x) = e LI,x’/ f +/ 

[ !I ,,I I =o , = 0 
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is called a PudP form (PF) of order (n. m) for f if 

(fq,,.*,]-P I,,.,, ,,)b)= c dL 
/, .? I, + 181 + 1 

For fixed n and nz, different Pad6 forms ( P,,,,,,,,/qr ,,,,, Il Xx- 1 and (r,,, .,,, /s ,,,,,, Il )( x.) are equivalent. 

in other words 

P[ ,,., ,,](x-1 ‘S[ ,,., ,1](X) = 4[,,.,,,](4 .r[,I.r?r](x). 

This justifies the following definition. 

Definition 1.2. The irreducible form ( pc,l,,,l,/q,n.n,,)( x) of a Pad6 form ( p,,l,nll/q~,,,nll)( x) for f is 
called the Pad6 approxinzant (PA) of order (n, n?) for f. 

This irreducible form is unique up to a normalization. From now on we assume that all rational 
functions considered are normalized according to a fixed kind of normalization, e.g. a manic 

normalization of the denominator. 
The PA is not necessarily a PF anymore because a polynomial in numerator and denominator 

of P,,~.,,,,/q(~~.m,( -) x may be cancelled. Anyhow the following properties can be proved. 
Let us order the PA for different values of n and YII in a table which we call the table of Pad6 

approximants. 

P,o.o, P,O.l) Pw, . . . 

Ymu YW.1) 4w.2, 

PC I .(I1 PC1.l, . . . 
q, I .Ol 4,l.U 

P,?ll, 

Y~2.0, 

We will denote the exact degree of a polynomial by a. 

Theorem 1.1. Ler ( p, ,,,,, Il /y, ,,,,,,,) ( X) be rhe PA of order (It, nt) for f( x), M’ith 

II’ = i)Pc,,.,,,, und m’ = aq, ,,,,,,, . Therr 

(4 (f.Y,,,.,,,,-P,,,.,,,,)(-\.)= c d,xk 
x ‘fr’~lrr’+r+l 

M.ifh t > 0 und d,,. + ,,,‘+, + , # 0. 

(b) n’ < II < n’ + f md 111’ < m d nl’ •t t . 

(4 (P(,.,,/4 ,,., ,)b-) = (P,,l.,,r,/4,,,.,,l,)(x-) 

for n’ < i < n’ + t und m’ <j < nl’ + t. 

For the proof we refer to [8]. This theorem describes the block-structure of the table of PA and 
enables us to give the following definition of normality of a PA. 



Definition 1.3. The Pad6 approximant of order (n, nr) for f is called normul if it occurs only 

once in the table of PA. 

For normal PA: 

(PI,*.m,/41n.nll)(X) = (P(r*.m,/q(,,.nr,)(X). 

It is clear that in the block of size t + 1, as showed in Fig. 1 .l, all the PA belonging to the shaded 
triangle are also PF. The PA belonging to the other triangle have to be multiplied in numerator 
and denominator by a certain power of x in order to get a PF. The PF can now only be ordered 
in a table if they are unique. If a PF is not unique we will call it undefined. Gilewicz has proved 
the following [7, p. 1781. 

Theorem 1.2. Let ( p (,,,,l,)/q(,I,.,,)(x) be rhe PA of order ( )I. m) for f( x) Lrith n’ = llp(,l,,l,, ctnd 

m’ = aq( ,,,,,,,. Then 

(a) the Pad& form ( p ,,.,,/q,,,,,)(x) is unique for min(i - n’. j - )H’) = 0 und for max( i - 11’. j 

- m’) = t, 

(b) the Pud6 form ( p ,,.,, /q ,,.,, )( x) is undefined for n’ < i < 11’ + t und m’ <,j < m’ + t. 

So the table of Pad6 forms has the structure, as showed in Fig. 1.2; in the shaded square all the 
PF are undefined. What’s more: the PF p,,.,l/q,,,,l in the shaded region of Fig. 1.3 result from 

the PA (p ,n,~(,_~,,,_~~,~i”~~/q~~l~.~l~~) by multiplication of numerator and denominator by the monomial 

.Y . We shall be able to generalize this to the multivariate case in Section 2. 
We call two PF (p ,,l,.m,1/q,n,.nl,l) and (P,Il~.nl,,/q~,l.,~ll]) or PA (P,,l,.,,l,,/4,,1,.,,1,, and 

( P(,l~.n,l,/q(,l,.m,,) nekhbouring if 

In, - nZj+/n7, - r?lzl= 1. 

For neighbouring PF Cordellier proved the following theorem [2]. 

Theorem 1.3. TW~O neighhouring PF not belonging to the sume squure block tcrke different rvlues for 
ull nonzero arguments x. 

In fact one might say here: for all s not being the zero of a univariate homogeneous polynomial. 
This is clearly equivalent with the statement s being nonzero. but the formulation involving the 
homogeneous polynomial can be generalized to the multivariate case. 

With the power series f(x) we can associate its sequence of partial sums S,,(s) = E~=,)cLs/ 

PI,@,mn; 

q [n’,m’l 

PC,,, l t,m,+t1 
qcnm +t,m'+t) 

Fig. 1.1. 
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and introduce the Hankel determinants 

/ s,, ( x ) s,?+,(x) ... s ,,+k-A-4 / 
IS,,+,(x) 

m-%(x)) = . 

L-l(X) . . . s ,,+*A-2(x) 

and the forward differences As,,(x) = c,,+,x”~’ and A2S,,(x) = AS,,+,(x) -AS,?(x). It is easy to 

verify that 

P[n.m] = H,,,+,(s,,-,,,(x)) and 4r 
nnI 

= Ht”(A2s;;,;“‘(x)) 
X 

I, ,,I ) 
X 

constitute a PF. The multivariate analogon will be given in Section 2 but first of all we shall now 
describe the e-algorithm. Input of the &-algorithm is the sequence S,,(x): 

&(_I1) = 0, e$;‘-l) = 0 , EL’)= S,(x), j=O,l,2 ,... . 

We perform the following computations: 

(i) (I+11 + 1 
'j+l '&,__I (r+l) _ E(i) j=O, 1,2 ,... , i= -j, -j+ l,... . 

&J .I 

The subscript j indicates a column and the superscript (i) indicates a diagonal in the E-table 

C-1) 
&cl 

p (-1) 
-1 El 

. . . 

(0) 
Eo 

E(l) (‘1) . . . 
-1 El 

(I) . 
% 

p . 
-1 . 

It is well known that E(Z):;“‘) = H,,+, (S,,_,,,( x))/H,,( A*&_,,,( x)) [l, pp. 44-461 and thus that it is 
a PF. The following five star identities are respectively due to Wynn and Cordellier. 

‘[ n’,m’ ] 

q[ n’,m’ ] 

P[n'+t,m'+t] 

'[n'+t,m'+t ] 

Fig. 1.2. Fig. 1.3. 
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Theorem 1.4. (a) If the table of PA is normal, then 

Pt,+,.,-1, PO-r,.,, 
-1 

-~ 

i I 

+ P(r+,.,+l) PC,+,.,,‘-’ -~ 

qcr+,..,-1) qcr+,../, I q(!+,.,+ll qt,+,.,, , 

P 
-1 

(,+/r-1./) PC,+,.,) = I i +p 
c/+/+1./) PO+,.,) 

-1 

-~ 
q(r+,-l.,) qc,+,.,, 40+,+1.,, q(l+,..,, 

forj=O,l,2 ,_._, i= -j, -j-t1 ,...; 
(b) If the table of PA contains a block of size t + 1 with p(, +,,., ,/q(, +,. ,, ir? the uppemost left 

corner, then 

P[r+,+r-/.,+,+I] PII+,./ 
-1 

P[,+,+/./-11 -~ -____ 

qr t+j+l.J-l] cY[r+,,+r-/.,+r+l] %J+,.,l 

Pll+l..ll 
-1 -1 

PI,+.,--I.,+/1 

i ( +p 
[l+./+r+l..,+f-/] P [‘+/./I 

= -___ -____ 

q[,+,-I.,+/] qi,+J./l q[r+,+r+l.,+r-l] %r+.,.,l i 

for I = 0,. . . , t. 

A figure will illustrate the meaning of this theorem. In case of normality the following five 

neighbouring PA are used 

P(r+,.,-1, 

4(,+,.,-l, 

In case of non-normality 

PC,+,-I.,, 

qc,+,-l.,) 

PO+,.,, P(,+,.,+l) 

qtr+,.,, qo+,..l+l) 

P(,+,+l.J) 

q(l+,+l.,) 

the following PF are involved 

I p[I+J-I..,] 

/ 4 1,+/-1./l 
---------pI 

Pi,+,.,-11 ,+ 

q[,+J.,-I] %11-,./l 

-i 
P[,+,+,+l.,+r] I 

/ 
q[r+,+r+l.,+r] ; 

1 

I=0 

P[,+,+r,,+r+1] 

4[,+,+,.,+r+l] 
--------------- 

These five-star identities are based on the respective identities for the E-values [2]: if, in the 
E-table, we have i, j and t 2 0 such that 

‘2J 

(f-t/) = a 
7 ‘2(/-l) 

(t+1+1) _# a, I=0 t ,.... . 

E?~~” # a, $I+!+ 1) f a, 
21 
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i 
(;+/+I) 

&2(,-l) -a 
~)-I=(E(2;7jJ:)-Uj-1+(E:;:::l:)-~)-’, I=O,...,t. 

Since the &-algorithm is also valid for our definition of multivariate PadC approximants. this 
identity will also be the basis for our generalization. 

2. Multivariate Pad& approximants 

We will describe everything in the case of two variables, but of course the statements are also 
valid for more than two variables. Suppose we are given a formal power series 

f(x, y) = 2 c,Jx’Y’= f c C,/X’L’j 

r./=o k=O I+/=,, 

which we shall denote by 

k=O 

The Ck(x, y)’ are homogeneous bivariate polynomials of degree k. 

Definition 2.1. A rational function 

z(x, Y) = “nf” 
t7~l+Wl fl~l+ll 

a,jx’~~J 
C bijx’_YJ= C A,(X, _I’)’ 

l+J=““’ l+J=fliW i = ,,I?, i 

,tn, + n, 

C B,(x* _V)’ 

i = llr?, 

is called a multicuriate Pad& form (MPF) of order (n, rn) for f if 

Cf. 4,,r.ni,-P,a.,*,)(X( Y) = 
I, 

If we define S,,(x. J) = C;‘=oCa(.u. y)” 

4, (x. I’) 

\ z7+lbI Jd 
)= . 

L-lb, J-1 . . . S n+Zk-2(X* Y) 

In [5] is proved that 

c E,(x, y)“. 
3 ,,,,I + ,I + 111 + 1 

then we can consider the Hankel determinants 

&+,(x3 Y) ... L-,(x- Y) 

PI~.&~ Y) = 4,AS,,-h~ Y)) 
q,n.n& Y) H,,,( A’S,_,,(x, y)) 

is a MPF of order (n, m) for f. Since the quotient of these Hankel determinants can be 
calculated by means of the E-algorithm, it is clear that the &-algorithm remains valid for the 
calculation of our MPF. 
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On can also prove that another MPF (r ~,,,,,l/~~,,.,,l)(~, y,) of order (n, nr) for f(x, .v) supplies 
an equivalent rational function: 

P,,l.n,](x~ v) ‘S[,,.,,] (x. 4’)=4,,,.“,](X~ J9.r I,,. ,,,(x. Y) 

and that at least one nontrivial MPF exists [4]. 
Hence we can define the multivariate Pade approximant 

Definition 2.2. The irreducible form ( Pcn.n,,/qc,l,nl,)( x, y ) of a MPF( p ,,,.,,,, /q,,,.,,,,)( x. .v) for f is 
called the multivariate Padk approximant ( MPA) of order ( n, m ) for f. 

Again we assume that a normalization is prescribed so that the considered rational functions are 
unique. 

If we order multivariate Pade approximants in a table then this table also has a block-structure 
[4]. We denote the order of a polynomial, which is the degree of the first nonzero term, by a,. For 
instance in definition 2.1.: 

(2) 

Theorem 2.1. Let ( Pc,t.nl,/4cn.nl, )(x, y) be the MPA of order (n. m) forf(x, v) with 

n’ = ap(%“,) - %q(n.mJ and m’ = aqc,l.nl,- aOq~n.nl). 

Then 

(a) %(f. 4(,,.“7, - P(“J = aclq0I.nl~ +n’+m’+t+l ulith4>0, 

(b) n’~n~n’+tandm’~m~m’+t. 

(4 2(x. .Y> = J-(x, _Y> 
I 

forn’<i<n’+t and m’<j<m’+t. 

Proof. The proof of (a) and (b) is given in [4]. The proof of (c) was given under the condition that 

%CL?,, G n’ * m’. We shall here show that this condition is in fact always satisfied for MPA. We 
know, by definition of n’ and m’, that P(,,.~,, and q(,,,n,, are of the form 

a, IYE ,, ,,, , + “” 44 I/ 111, + ‘1’ 

qt,,.n,,b3 Y) = c b&A ~~,~.~,,(x. I’) = c a,,x’y’. 
’ +J = at IY, t, ,n, , 1 +  I = h/, ,, ,,, , 

If we calculate a MPF of order (n’, m’) for f, we obtain pr,,8,~7,, and q,,ls.n,sl of the form 
)l’t?l’ + !?I’ ,I’Ii!’ + 11’ 

4,,?5?l+1 v) = c J,,x’u’+ P[,,Rn,,](xl .v)= c C,x’Y. 
, + / =)J’l>t’ I + / = ll’lI1’ 

Now 

%( P(n.,,,,q[,l,.n,,]-P[n,.m,~q(n.m,) 

? a,{ (fqrnW, -P[?l’.&,)q(..W,, - (fqW?,, -p0?.,,,)q,,W,} 

> aOqc,,.nl) +n’m’+n’+m’+l 
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while 

~(Pc,1.n7,4~n~.nl~~ -P~,thd~4,,1.nJ G %qf,t.n,j + n’m’ + n’ + m’. 

Hence 

PC 4 n.nr) [n’.n1’] = P[,z,.nl,]q(,l.nl,. 

Consequently 

PC .W,/4(,1W, = Pc,Ln,,/q(,Lm,* 

and thus 

%O?.nl) = %q(,,.nt) + m’ = 41q(,t’.nl’) + m’ =G n’m’ + m’ 

or aOqtn,n,j < n’m’. 0 

Remark that the block-structure is exactly the same as in the univariate case. Hence normality 
can also be defined in the same way. 

Definition 2.3. The MPA pc,,,n,,/q( n.n,j of order (n, m) for f is called normal if it occurs only 
once in the table of MPA. 

Other conditions for normality are given in [5]. 
For the MPF a property can be proved which is comparable with the structure of the 

univariate table of PF described in the Figs. 1.1, 1.2 and 1.3. 

Theorem 2.2. Ler ( PC II. n, j/4( ,I. n, ) )(x. y) be the MPA of order (n, m) forf(x. y). with n’ = a~(,,,,,,) 

- %qWN and m’ = aqc,r.nl, - %q(,,.,,,,. Then 

(4 ~,,.,,b~ y) := P~,~.,,&~ y) .D,b VT- 

4,,.,,(X~ y):=q(n.nl,(X~ y).D,b, y)” (3) 

with k = i . j - dOqc,,,,,,) and D, (x, y )’ a homogeneous po[vnomial of degree k, constitute a MPF of 
order (i, j) for f. if 

n’< i < n’ + t, m’<j,(m’+t, i+j<n’+m’+t; 

(b) P ,r.,, (~7 Y):=P~,,.,&~ r)~D&~ Y)‘* 

q,,.,,b’ Y):= q~n.nt,b~ y).Dxb* Y)’ (4) 

with k = i .j - 30q(,t,m, + min( i - n’, j - m’) and D,( x, y)l’ a homogeneous po@nomial of degree 
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k, constitute a MPF of order (i, j) for f, if 

n’ < i < n’ + t, m’<j<m’+ t, i + j > n’ + m + t; 

(c) for min( i - n’. j - m’) = 0 we have 

H,,I(%,b, y,) =pcWJX~ Y)‘D&. y)“3 

H/(Azs,_,(x. ,,) = q(,I.nJX, y) .D,(x. y)” 

M’ith k = i .j - CIOqCn.n,l and Dk( x, y )’ a nontrivial homogeneous po&nomial of degree k. and for 
max( i - n’, j - m’) = t < 00 we have 

H,+,(%,b, y)) =Pcn.nr,b~ y).D,b. y)“? 

H,(A’s,-,b. Y)) = qcn.n,,b, y>.D,b, v)” 

with k = i *j - 30q(,l.,,,) + min(i - n’, j - m’) and D,(x, _v)‘! a nontrivial homogeneous po!ynomial 

of degree k. 

Proof. If we consider the block of equal MPA showed in Fig. 2.1. Then we will divide this block 
into two triangles: part (a) applies to the shaded triangle, part (b) to the other one. 

(a) Since a,( fq(,.,,, -P(~.~,)) = a,,qCn.nll + n’ + m’ + f + 1 it is obvious that 

a,[ Cf. 4(n.n,, -Pc,l.nJDJ aij+i+j+l 

if k = ij - llOqCn,nlJ and if i+j<n’+m’+t. 

Ah M /+,,.,,,,Dk) 2 ij, a( P(n.n,) D,)<ij+n’<ij+i, 

%(qcn.,,,,Dk) a ij. d(q (,,,,,,, DI><ij+m’<ij+j. 

so Pc,Lnl,DJq(n.n*) D, satisfies Definition 2.1. 

(b) Now 

4&f. (I(rl.Pn, -PI,,.,,,,)4] >ij+i+j+l 

because 

%q0l.m) + n’ + m + t + 1 + (ij - aOqc,,,,,,)) + min( i - n’, j - m’) 2 ij + i + j + 1. 

The order and degree of numerator and denominator also satisfy the necessary conditions so that 
we have again a MPF. 

(c) We are especially interested in MPF lying in the shaded region of Fig. 2.2. For the first row 
and the first column in the block we have min( i - n’, j - m’) = 0 and MPF given by Definition 

Fig. 2.1. Fig. 2.2. 
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2.1 can only be of the form (3). In [6] we proved that for min( i - n’, j - m’) = 0 the determinant 
li,(AS,_,) is nontrivial. Since this is the term of lowest degree in q,,,,) = H,( 4’S,_,) it is obvious 
that D, is nontrivial. For the last row and the last column in the block the proof goes as follows. 

Consider a MPF p[,.,l/q,,.,l. Then there is a polynomial T(x, v) such that p,,,,,=pc,l.,,l,. T and 

4[l..,l = q(n.nl) - T. If we write t, = a,T and 7(x, JJ) = B:=,~,~,(x. _v)” then the following conclu- 
sion can be drawn [4]: P~,~,,,~,. ?;,,/q(n,n,, . 7;,, is a MPF of order (i. j) 

a,[ ( fqcn.nl, -pc,l.,,,j)7;,,) = aOq(,l,,,,j + n’ + m’ + f + 1 + t, because of Theorem 2.1 (a). 

L?&( (fqcn.m, -~~~.~,))7;,,) > ij + i +j + 1 because of Definition 2.1. 

aT= Q,,.,l- Qn,m, G ij t-j - $,q(n.mj - m’. 

Take for instance the case i = n’ + t. Then 

a oq( ~~,,,+n’+m’+t+l+t,>,ij+n’+t+j+l 

which implies 

r, > ij - aOq{n.n,) +j - m’. 

Also 

aT < ij - aOqcn.n,, + j - m’. 

Hence ~~l.,l/q~,.,l is of the form (4). To prove the nontriviality of T( x, y ) = D,( s, J*)~ we take a 
look at the linear systems of equations satisfied by a MPF of order (i, j): if p,,.,,/qI,.,l(x, y) = 

C;+4,(x, yy’+~/&B,(x, y)“+’ where A, and B, are homogeneous polynomials of degree 
(ij + l), then 

co. Bo(x, y)” = A,(x, y)“, 

c,(X, +Bo(x, )‘)“+ Co.B,(x, y)“+l =A,(x, #+‘, (54 

k,h _$B,(x, y)“’ a.- +C,.B,(x, y)“+‘=,g(x, y)“+’ 

with B,(x, y)“+’ 3 0 if I > ij +j, and 

C,+,(x, _v)‘+‘.Bo(x. _v)“+ ... +C,+,_,,(x, _v)‘+‘-‘.B,(x. y)“+‘=O. 

1: 

(W 

C,+,(x, y)‘+‘.B,(x, I’)“+ ... +C,(x, y)‘.B,(x, y)“+‘=O 

with C,(x, y)’ = 0 if I < 0. Consider the case i = n’ + r. If q ,,..,, (x3 .Y) = H,(A’S;-,(x9 Y)) = 0 
then for all (x, y) in R* the rank of the homogeneous system is less than m. So an additional 
equation 

C ,+,+,(x. y)‘+.‘+‘.B,(x, y)“+ ... +C,+,(x, y)‘+‘+(x, ?)I’+‘=0 (5c) 

can be added and one can see [3] that the enlarged homogeneous system still has a nontrivial 
solution. This enables us to construct nontrivial polynomials pt,+,.;, = CjLhA,( x, y)(‘+‘)‘+’ and 
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4[,+1.,] = GJWX~ Y) (‘+,)‘+’ for which the equations (5a), (5b), and (5~) can be rewritten as: 

CO . B,,( x, y)(‘+‘)’ = A,( x, J)(‘+“‘, 

1; 

i 

c,(x, ~~)‘4,(X. y)(‘+‘)‘+ ... +c()-B,(x, _v)(‘+‘)‘+‘=A,(x, y)“+‘)‘+‘, 

c,+,(x, y)‘+’ d&(x, y)(‘+‘)‘+ . *. +c,+‘_,(x, _y)‘+‘-‘. B,(x-_#+‘)‘+’ 

= A,+l(x, y)(‘+‘)/+‘+’ 

with A,+‘(x, .v) (I+“/+)+’ S 0, and 

c,+?(x, ,)‘+2. I&(x. 1’)(‘+“‘+ . . . +c,+z_,(x. y)‘+2-‘. B,(x, _V)(‘+‘)‘+‘= 0. 

I: C ,+,+,(x, y)‘+‘+‘. B,(x, y)(‘+‘)‘+ . . . +c,+‘(x, _y)‘+‘. B,(x, y)(‘+‘)‘+‘=o. 

Con=luentlY Pc,+1.,,/4(,+l.J,=Pcr.,)/4~,.,,=P~n,.nl,,/4cn,.n,,, which contradicts the definition of 
the block-size. 

In case j = WI’ + t we can prove in an analogous way that pc,,,+,,/qC ,,., +,) = pc,.,,/qC,.,, = 

PC ,,‘.>,,‘/q, ,,‘.?fl’) which is again a contradiction. Hence D,(x, y)’ is nontrivial. q 

The formulas (2). (3) and (4) clearly indicate that in the multivariate case it is not possible to 
have unicity of the Pade forms: there is a tremendous choice for the homogeneous forms D,. In 
the univariate case there’s only one homogeneous polynomial of degree k to multiply numerator 
and denominator of the PA with in order to get a PF. However, the problem of unicity of the 
Pade form is eliminated if we consider the table of the ( p,,,,,l/q,,,,,,,l)(x, _y) = 

{ K,+,(L,,(x~ .v))/K,(~*L,,(x~ ~9))~ i.e., 

f46%) H2(S-,) H&L) 

Ho ( A’% > Hl(A’L) H,(A’S_,) “* 

fw,) H, ( So 1 . . . 
Ho ( A2Sl 1 HI ( 32s” 1 

fw2) 

Ho ( A2S2 > 

(6) 

Let us now try to establish five-star identities for these quantities. 

3. Multivariate five-star identities 

First of all we generalize Theorem 1.3. 

Theorem 3.1. Two neighbouring MPF in (6) of which the MPA do not belong to the same block, 
take different values for all arguments (x, v) not being the zero of a certain bivariate homogeneous 
poJynomia1. 
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Proof: Consider the PadC forms p,,l,,n,,l/q,,ll~nl,l and P,~ ,,m,l/qt,rJ.,,,J,. Because of Theorem 2.2(c) 
they are well defined, i.e. the denominators are nontrivial. 

Without loss of generality we can assume that n2 >, n, and 171~ > m,. Now 

%(P [,l,.n,,]4[,~,.r?l,] -P[11~.1~1~]q[ll,nl,] ) 

= 43if&+n12] -P,n,.nlI, 4[,,,.m,] - 1 V 4[,,.n,,] - P1,,,.,,,,!4,,,,.,,,II) 

> n,m, + nzmz + n, + m, + 1, 

because n, + m, G n2 + m2 while 

a(P 4 [rz,.m,] [nr.n2:] - P[II_.nl_]q[ll,.,~I,] ) 

< n,m, + nzm2 + max(n, + m2. n, + m,) < nlml + nzmz + 11, + ml + 1. 

so 

with k = n,m, + n2mz + n, + m, + 1 and D, homogeneous. Hence ( p ,,,,., ,,,,/q,,, ,.,, 1,,)( x. 1~) = 

(P,,f,.n,,l/q’[n,.m,l)(xl Y) implies Wx3 y)’ = 0. 0 

An important consequence of this theorem is that neighbouring MPF in (6) of which the MPA 
do not belong to the same block, take different values on a dense set in R’. 

As we already remarked, the e-algorithm remains valid for the calculation of the function value 
of a MPA: with rbJ’= S,( x, y) we have 

E’~-“‘)= I?,,,+,@ _ (x 2m I, ,,I ’ y))/H ,,I (A’S _ (x y)) ,I n, 3 * 

Also relation (1) remains valid since the multivariate e-algorithm is performed exactly in the same 
way as the univariate e-algorithm; only the starting values EL’) are multivariate partial sums 

instead of univariate ones. So we have the following generalization of Theorem 1.4. 

Theorem 3.2. For 

the following identities hold: 
(a) If the table of MPA is normal, then 

forj=O, 1, 2 ,..., i= -j, -j-t l,... _ 



(b) If the table of MPA contuins u block of si:e t + 1 n~itll ( p,, + ,, , ,/q,, _,. , , )( s. J’ ) iti the 

uppermost left corner. the?1 

-1 

for I = 0.. . . , t. 

Proof. The proof of (a) was given in [3]. The proof of (b) is performed in the same way as in [2]. 

0 
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