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Abstract: Section 1 describes the univariate situation in the case of non-normal Padé approximants and Cordellier’s
extension of the famous five-star identity of Wynn. Section 2 repeats our definition of multivariate Padé approximants
and proves a number of theorems that remain valid when going from the univariate to the multivariate case. These
theorems and more new results given in Section 3. will finally also copy Cordellier’s extension from the univariate to
the multivariate case.

0. Motivation

Let us first sketch the univariate situation. The calculation of the function value of a Padé
approximant can easily be done by means of the e-algorithm. The interrelation between the
e-table and the Padé-table has allowed Wynn to prove the famous five-star identity bringing
together five neighbouring Padé approximants. Of course this identity is only valid when we are
dealing with normal Padé approximants. In [2] Cordellier described an extension of this five star
identity in the case of non-normal univariate Pad¢ approximants, while in [3] the validity of the
five star identity for normal multivariate Padé approximants was proved. It is our intention now
to formulate analogous multivariate theorems as the univariate ones on which Cordellier based
his reasoning and thus to solve the computational problem also in case some multivariate Padé
approximants are non-normal.

1. The extension of Wynn's univariate identity

We adopt some terminology introduced by Gilewicz in [7]. In this section we restrict ourselves
to the univariate case. Suppose we are given the formal power series

f(x)= X ¢xt.

A=

Definition 1.1. A rational function

ni

(x)= L ax/ L by

9in.my i=0 ;=0

p[an]
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is called a Padé form (PF) of order (n. m) for f if
(f.q[mm]_p[n.m])('x)= Z dAXA‘

Aezn+m+1

For fixed n and m, different Padé forms ( p,, ,.../q,...)(x) and (ry, ,...,/s;,, . ))(X) are equivalent,

in other words

p[n_m](x) 's[n.m](‘x) = q[nwl](x) 'r[n.m]('x)'

This justifies the following definition.

Definition 1.2. The irreducible form ( p, /4 (n.m) ) X) of a Padé form ( p,, .1/ q (. m)(x) for f s
called the Padé approximant (PA) of order (n, m) for f.

This irreducible form is unique up to a normalization. From now on we assume that all rational
functions considered are normalized according to a fixed kind of normalization, e.g. a monic
normalization of the denominator.

The PA is not necessarily a PF anymore because a polynomial in numerator and denominator
of Py w/q(n.m(x) may be cancelled. Anyhow the following properties can be proved.

Let us order the PA for different values of n and m in a table which we call the table of Padé

approximants.
P
90.0)
Puo
910
p12_(h)
i)

Pon
90.1)
Paa
da.a

p(().2)

4.2

We will denote the exact degree of a polynomial by 0.

Theorem L.1. Let (p,,, )/ 4n.m,) (X) be the PA of order (n. m) for f(x), with

r__ - .
n'=0p, ., andm'=9gq,, ... Then

(a) (f‘qu.nl)_pannj)('\‘)

witht =0 andd, ., .,.,#0.

= Y d, x*

Aon'+=m+1+1

(b) nwngn trandm <m<m +1,

(©)  (Pu/ 9 i X)) =P/ G )(X)

forn <i<n' +randm’ <j<m +1.

For the proof we refer to [8]. This theorem describes the block-structure of the table of PA and
enables us to give the following definition of normality of a PA.
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Definition 1.3. The Padé approximant of order (n, m) for f is called normal if 1t occurs only
once in the table of PA.

For normal PA:

(p[n.m]/q[n.m])(x) = (p(n,m)/Q(n.m))(X)'

It is clear that in the block of size ¢+ + 1, as showed in Fig. 1.1. all the PA belonging to the shaded
triangle are also PF. The PA belonging to the other triangle have to be multiplied in numerator
and denominator by a certain power of x in order to get a PF. The PF can now only be ordered
in a table if they are unique. If a PF is not unique we will call it undefined. Gilewicz has proved
the following [7, p. 178].

Theorem 1.2. Let (P, )/ n.m ) X) be the PA of order (n, m) for f(x) with n"=0p,,, ,, and
n‘l - aq( n. "lj Ther[

(a) the Padé form (p|, ,,/q,, 1Nx) is unique for min(i —n'. j—m")=0 and for max(i —n'. j
-my=1,

(b) the Padé form (p,, ,,/q, ,)(x) is undefined for n’ <i<n'+1andm’' <j<m'+1.

So the table of Padé forms has the structure, as showed in Fig. 1.2; in the shaded square all the
PF are undefined. What’s more: the PF p /a.. ., 1n the shaded rPglnn of F:o 1.3 result from

wiilaainit, 1at' s mor (33 Lo s § 1’[' A NI

the PA (P, m/4Gw.my) by mu ultiplication of numerator and denominator by the monomial
xmin(i—n".j=m) YWa chall be able to eeneralize this to the multivariate case in Sec

w Aalllu gelitliallzy ity Liie iy idlc Ldst 111 D

We call two PF (P[n, m,]/ n]m,]) and (p[n NoN ]/q[n RER ]) or PA (pn,m,)/q(n,rm) and
(p, /a. ,) neighbouring 1f

Pinsom/ Ainsams)
|y —ny |+ |my —m,|=1.

For neighbouring PF Cordellier proved the following theorem [2].

In fact one might say here: for all x not being the zero of a univariate homogeneous poivnomiai.
This is clearly equivalent with the statement x being nonzero. but the formulation involving the
Py

uuu‘xugcucuus pUlyllU[Illd‘l C
With the power series f(x

-

Fig. 1.1,

an UC gCIlCIdllLCU Lo lllC iIlUlllVdrldlC casc.
(x) we can associate its sequence of partial sums S, (x)=X/_,c, x*

"

D(n'*t,m'*t]

q(n";k m' st
{n'+t,m +12
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and introduce the Hankel determinants

fsn(x) Sn+l(x) S,,+k_1(—x)
|S"+](X)

Hk(S,,(x))= .
Sn+k—](x) S;1+2A—2(X)

and the forward differences AS,(x)=c,.,x"*" and A’S,(x)=AS,, (x)—AS,(x). It is easy to
verify that

H",+1(S,,-,,,(X)) Hm(AZSn—m(X))

p[n.m] = X" and q[n.m] = xm

constitute a PF. The multivariate analogon will be given in Section 2 but first of all we shall now
describe the e-algorithm. Input of the e-algorithm is the sequence S, (x):

e]=0, &77"=0, &’ =5,(x), j=0,1,2,....

We perform the following computations:

il = e+ R R AL

(i+1) _ (D)
g €

The subscript j indicates a column and the superscript (/) indicates a diagonal in the e-table

&

e g~V
e

8(_] ) 8;0)
8:1” .

e

It is well known that £~ = H_ . (S,_,.(x)/H,(AS,_, (x)) [1, pp. 44-46] and thus that it is

2m

a PF. The following five star identities are respectively due to Wynn and Cordellier.

p[nr‘mv ]

%ntam ] /
/%

A

Pln'+t,m +t ] I/////////

q[ n'+t,m'+t ]

Fig. 1.2. Fig. 1.3.
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Theorem 1.4. (a) If the table of PA is normal, then
— v —1
(P(i+,‘._/—1) _ p(:ﬂ._/) ) : + ( p<l+,/-,/+1) R p(/+_/-j) )

q(:-r_/.j-#li q(lf/.j),

q(l’+j.,/—1) q(i+,/-,/)

( Piviciy  Pussp ) + ( Pi+j+1.p  Pu+ip )

q(i+_[—1,_/) q(l+j.j) q(l+j+l,_/) q(/+/.j)

forj=01,2,.... i=—j, —j+1....;
(b) If the table of PA contains a block of size t + 1 with Pisin/Disy g i1 the uppermost left
corner, then
(Pl'+./+/._/—u _ Puig )_1 N ( Plsjsi=tg+iv1) _ Puss )‘1

Qiivj+i1-11  Qi+;.0)

Qrivjvi—ij+r+11  Di+j

-1 =1
_ ( Privj=1j+0  Plivs ) 4 ( Prsj+istjri=ny  Plivjj) )
Qiivi-1.+0n Qi+ Qlivjvretjer=1]  Qii+vi )

for1=0,....1.

A figure will illustrate the meaning of this theorem. In case of normality the following five
neighbouring PA are used

Pii+vj—1. 5
q(lf/—l.j)

p(l‘f/‘.»/']) p(l-ﬁ/._/') p(i+_/.j+|)

Qiivj. -1y Qii+vj py Qiivij+1
p(l+»]+].])

q(:+_/+].,/)

In case of non-normality the following PF are involved

L Plivi-1

I Gl 1Y)

TR W
pll+.i-‘i—1] P[,+,_,] /=0
vy -1 qii+) )

p[i+_/+l__;'+l+1]

q[l+»[+l.l+l+]]

p[l+»/+l+l.j+l] :

i
q[:‘+7,+1+1.»/+:] i
i

These five-star identities are based on the respective identities for the e-values [2]: if, in the
e-table, we have /, j and ¢ > 0 such that

(i+171) (i+1+1) —

& V=a, &;5) *a, [=0,...,1,
(-1 (i+r+1)

£ #+da, 3y #*a,
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then
((i+l+1)_ "1+ (G-1-1) _ )‘1_ G—1-1) _ _1+ (i+i+1) -1 /=
€31 —4a E +i+1n—4a =&+ —a &G+i-n—al  1=0,.... t.
(1)

Since the e-algorithm is also valid for our definition of multivariate Padé approximants. this
identity will also be the basis for our generalization.

2. Multivariate Padé approximants

We will describe everything in the case of two variables, but of course the statements are also
valid for more than two variables. Suppose we are given a formal power series

f(x,y)= Z Cijxiyi= Z ( Z Cuxiyj)
ij=0 k=0 \i+j=k
which we shall denote by
Z Ce(x, Y)k-
k=0
The C,(x, y)* are homogeneous bivariate polynomials of degree k.

Definition 2.1. A rational function

nm+n nm-+m nm+n nm+m

pn.m i i i i i i
_[_‘J(X~Y)= Z aij'x’yj Z bijxlyj= Z A, (x, ») Z B.(x.y)

q["J"} i+j=nm i+j=nm =nm i=nm

is called a multivariate Padé form (MPF) of order (n, m) for f if

(f'q[n.ml—p[n.m])('x* —V) = Z Ek(xv y)k'

Aznm+n+n+1

If we define S,(x. y)=X/_,C.(x. ¥)* then we can consider the Hankel determinants

Sn(x‘y) Sn+l(x* y) s Sn+k—](x' y)
Sr(x.¥)

Hk(Sn(x )))_ . ]
Sprk—alx. ) coo o Sprak—a(x. )

In [5] is proved that
p["~’"]('x’ y) _ Hm+l(Sn—m(x’ y))

q[n.m].(x’ }') Hm(AZSn*m(x’ y))

is a MPF of order (n, m) for f. Since the quotient of these Hankel determinants can be
calculated by means of the e-algorithm, it is clear that the e-algorithm remains valid for the
calculation of our MPF.
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On can also prove that another MPF (r,, ,.../5(, ,.))(x. ) of order (n, m) for f(x. v) supplies
an equivalent rational function:

p{n.m]('x’ y)'s[n.m](x‘ -y):q[nJﬂ](x’ .v).r[n.m](x' ,v)

and that at least one nontrivial MPF exists [4].
Hence we can define the multivariate Padé approximant

Definition 2.2. The irreducible form ( p,,, m,/Gn.m) X X. ¥) of a MPF(p, .1/ q(, ) x. ») for f is
called the multivariate Padé approximant (MPA) of order (n, m) for f.

Again we assume that a normalization is prescribed so that the considered rational functions are
unique.

If we order multivariate Padé approximants in a table then this table also has a block-structure
[4]. We denote the order of a polynomial, which is the degree of the first nonzero term, by d,. For
instance in definition 2.1.:

00 P (n.m) = N, 304 n.my = N (2)

Theorem 2.1. Let (P, )/ G(n.m N X: V) be the MPA of order (n, m) for f(x. y) with

r_ _ r_ _
n = ap(n.m) an(n.m) and m'= aq(n.m) a()q(n.m)'

Then
(a) a()(f.q(n.m)_p(n.m))=an(n,m)+n,+ml+t+ 1 M’ith[,}(),
(b) n<n<n +tandm' <m<m +1,
p(l./’) p(n.m)
() —=(x.y)=——(x.y)
q(l}j) q(n.m)

forn' <ig<n' +t and m'j<m +1t.

Proof. The proof of (a) and (b) is given in [4]. The proof of (¢) was given under the condition that
3G (n.m)<n’ - m’. We shall here show that this condition is in fact always satisfied for MPA. We
know, by definition of »” and m’, that p, ., and ¢, ,,, are of the form

4+’ (IR T

:::::

q(n.m)('x’ y) = Z bijxiyj’ p(n.m)(x‘ )‘) = Z aijxlyj'

P+ =004,, ) i+j=0,4,

If we calculate a MPF of order (n’, m’) for f, we obtain p, ., and g, of the form

n’'m’+m’ n'm'+n’

q[n'.m’](x* y) = Z bijxlyj* p[n’.m’]('x’ ,V) = Z a:./xiyj‘

i+j=n'm’ i+j=n'm’

Now
aO( p(n.m)q[n’,m'] _p[n'.m']q(n.m))

= aO{(fq[n’.m'] —p[n’.m’])q(n_m) - (fq(n.m) _p(n.m))q[n’.m'}}
>00g .y tnm +n +m+1
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while
n(p(n.m)q[n'.m’] =Pt Ginm ) S G nmy TR+ 1+
Hence
Pin.oydin.m'1 = P .19 (o
Consequently
Pinems/ Aiwromy = Pin s/ Dion .oy -
and thus
aOq(n.m) = an(n'.m’)’ aq(n.m) = aq(n’.m’) <n'm’ +m’,

which implies
— r_ ' ’r ’
aq(n.m)_ an(n.n1)+m - an(n'.m')+m <nm +m

P - foaat

~e A < yw'im —
Ul UO(I("_,”)\ r . J

Remark that the block-structure is exactly the same as in the univariate case. Hence normality
can also be defined in the same way.

23. The MPA p., . . /g of orde

gl i : = Sor{n.mjy/ I{n.m) \"*

-y
3
3

N’

for f is called normal if it occurs only

Other conditions for normality are given in [5].
128 7
v

For the MPF a property can be proved which is comparable with the structure of the
univariate table of PF described in the Figs. 1.1, 1.2 and 1.3
Theorem 2.2. Let ( p,,, .,/ Q.o X. ¥) be the MPA of order (n. m) for f(x. y). with n’ =203p,, .,
qu(n nt) and m’ = dq( n.m) qu( n.mj* Then
I ~ (o N (o~ Y. N {+ AKX
(a) P\ X Y= Pl \ X, ¥y Diix, v,
k
. v x. v)- X. Vv (3)
"1’[,.]](/“ ) = 4n. m)("‘ y) - Dilx, y) )

with k =1i-j—9yq,, ,, and D;(x, v)* a homogeneous polynomial of degree k. constitute ¢ MPF of
order (i, j) for [, if

’

ri

(b)  pu(x. ) =poa(x. ¥)-D(x. y),
D,

(x. )" (4)

with k =1i-j— 84, ., +min(i —n’, j—m’) and D (x, y)* a homogeneous polynomial of degree

’

s < 4 al 3 o aan ¥ P B g [T .
i n +1, mosjism o vi, I TjK7 - T I

N

q[i‘j]('x~ }’) = q(n m)(x J’)
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k. constitute a MPF of order (i, j) for f, if
ngisn +1t, m<j<m +1, i+j>n"+m +1,
(c) for min(i — n’, j—m’) =0 we have
IS
Hj+1(Sl—j('x’ y))=p(n.m)(x* y)'Dk(X* _V) )
: &
H/’(Azslvj(x' y))zq(nmr)(x' }‘)'Dk('xb‘ y)

with k=1i-j— 044, ., and D, (x, ¥)* a nontrivial homogeneous polvnomial of degree k. and for
max(i —n', j—m')=1 < oo we have

H/'+1(S/~_/(x’ y)) =P(n.m)(x~ »)-D,(x. ,V)k’

HJ(Azsl—j(x’ y)): q(n.m}(‘x’ y)'Dk(x* y)k

with k =1i-j— 08,4, ,,,+min(i—n', j—m’) and D,(x, v)* a nontrivial homogeneous polynomial
of degree k.

Proof. If we consider the block of equal MPA showed in Fig. 2.1. Then we will divide this block
into two triangles: part (a) applies to the shaded triangle, part (b) to the other one.
(a) Since 0y( /G, my = Piw.my) = 0G(n.my + 1 +m' +1+1itis obvious that

aO[(f'q(n,m)'—p(n.m))Dk] 2 U+l+j+ 1

if k=1ij—0yq., .y and if i+j<n" +m' +1.
Also 3( p,.,Di) = i, Py D)< Y+n" <+,
90 qenmyDi) = ). NGy Di) <G +m <ij+).
SO PmyPi/ 4 n.my Dy satisfies Definition 2.1.
(b) Now

80[(f q("-m)y_p(n.m))Dk] = 1_]+ ] +]+ l
because
B9Gn.my T 1+ M+ 141+ (i =G, ) +min(i—n's j—m)>§+i+j+1.

The order and degree of numerator and denominator also satisfy the necessary conditions so that
we have again a MPF.

(c) We are especially interested in MPF lying in the shaded region of Fig. 2.2. For the first row
and the first column in the block we have min(i — n’, j — m’) =0 and MPF given by Definition

D(n',m’]
Ynr ,m')
I
T
7
P (n*+t,m’+t) % /
. Vi

C‘(n"t,m’*t]

Fig. 2.1, Fig. 2.2
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2.1 can only be of the form (3). In [6] we proved that for min(i/ — »n’, j — m’) = 0 the determinant
H(AS,_,) is nontrivial. Since this is the term of lowest degree in g, ,;= H,(A%S,_}) it is obvious
that D, is nontrivial. For the last row and the last column in the block the proof goes as follows.
Consider a MPF p(, ;,/q,; ;- Then there is a polynomial 7(x. y) such that p, ,=p, ., T and

Qi 1= Dimomy - T- 1f we write 1,=23,T and T(x. y)=X3]_, T,(x. y)* then the following conclu-
sion can be drawn [4]: p., .., 1, /q.,.m," T, 1s a MPF of order (i, ;)

80{(fq(,,lm) —p(,,Am))Yj”} =004 p.m+tn +m +1+1+1, because of Theorem 2.1 (a).

80{(fq(,,.,,,, —p(,,m,))T,”} >y +i+j+1 because of Definition 2.1.

’

aT: aq[lj]_ 8q(n,m)< U +.] - an(n.m)_m -

Take for instance the case i =n’ + ¢. Then
an(n.m)+”,+WI'+l+1+t0>.1:]'+n’+t+j+1

which implies

4~ 2 . [ e
o2 Y — 0Oq(n.m) ]~ ’""
Also

’

8T< U— an(n.m)+j_ m.

Hence p; ;1/q;; ;1 1s of the form (4). To prove the nontriviality of T(x, y)= D,(x, »)* we take a
look at the linear systems of equations satisfied by a MPF of order (i, j): if p(, ;,/q. (X, y)=
Y oA (x, y)Y /E)_ B, (x. y)Y*! where A, and B, are homogeneous polynomials of degree
(ij +1), then

CO'Bo(xa y)”‘—-—AO(x, y)i'/~
Ci(x, ) Bolx, ¥)"+ Co- Bi(x. y)” " =4 (x, )",

(5a)
C(x. »)  By(x. y)"+ -+ +Cy-B(x, y)" " =4, (x. »)""
with B,/(x, y)/*'=0if /> jj+/, and
Coor(x3) ™ By(x 3) 4 -+ Gy, (o ) T B (x 0) T =0,
' (5b)

Cooi(xy) ™ By(x, 1)+ o+ C(x. y) - Bi(x. y) T =0

with C(x, y)'=0 if /1<0. Consider the case i=n"+r. If g, ;(x. y)=H(AS;,_ (x. y))=0
then for all (x, y) in R? the rank of the homogeneous system is less than m. So an additional
equation

C,+j+1(x- y)i+j+] 'Bo(x» y)lj+ T +C,-+1(X, Y)i+l 'Bj(xs ,V)lH/:O (5¢)

can be added and one can see (3] that the enlarged homogeneous system still has a nontrivial
solution. This enables us to construct nontrivial polynomials p;,, ;;=XiZo4,(x, y)i*rhi*land
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Qrior 1= Li-0B/(x, y)““”'“ for which the equations (5a), (5b), and (5c) can be rewritten as:

+1) NEEASY]

- o NIZa)!
Co- Bylx, y) _Ao()‘~ y) )

C(X, }")I'BO(X. y)(i+l)/+ . +CO'BI-(X, _}")(I-F”’/-H =A,(x. y)(f+l)/+l'

Coorlx. p)  By(x, p) T G )T T B ()T

i+

4 / v\(l+1)j+l+]
= A0\ )

with 4,,,(x, y)"*/**1 =0, and
(i+1)y

(CI+-,(_X, v) Z,Bo(x‘ )y) T +C,‘+2_‘/(X. .V)l = ./"Bl(x, ;v)(i+”_/+,l=0.

. (. A+ , \1+l R \(I+])/+/
L\ Crajur(xs ) “Bylx, y) + o+ Cx y) - Bi(x ) =0.
Consequently p, .y ;,/Giv1 ;y=Pu /9y = Penomy/ Qnr ey, Which contradicts the definition of
the block-size.

In case j=m’+ 1 we can prove m an analogous way that p, .\\/q, ;+1,=Pu /9. )=

v

Piwmy/ Qinmry Which is again a contradiction. Hence D, (x, y)* is nontrivial. O

The formulas (2), (3) and (4) clearly indicate that in the multivariate case it is not possible to
have unicity of the Padé forms: there is a tremendous choice for the homogeneous forms D,. In
the univariate case there’s only one homogeneous polynomial of degree k to muitiply numerator
and denominator of the PA with in order to get a PF. However, the problem of unicity of the
| & P 4 U . T A o

Padé¢ form is eliminated if we consider the table of the (py, ,../q. )X, ¥)=

{Hm+1 ,,-,,,(X V))/HM(AZ n—m(x )))} le

_H(S,) H,(S_,) Hy(S_,)
(AZS) H (A% _)) H,(AS )
_H(S,) H,(S,)
HO\A?—"I) H,(A%S,) (6)
_H(S,)
O(A S:)

Let us now try to establish five-star identities for these quantities.

. Muitivariaie five-siar identities

|7

First of all we generalize Theorem 1.3

Theorem 3.1. Two neighbouring MPF in (6) of which the MPA do not belong to the same block,
take different values for all arguments (x, y) not being the zero of a certain bivariate homogeneous
polynomial.
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Proof: Consider the Padé forms p(, .. 1/q(s, m,) a0d P, .1/ q(0. .- Because of Theorem 2.2(c)
they are well defined, i.e. the denominators are nontrivial.
Without loss of generality we can assume that n, > n, and m, > m,. Now

a0(p[n\.m,]q[n:.m:] _p[n:.m:]q[n,m]])

= aO(fq[n:.m:] _p[nz,m:])q[nl.m]] - (fq[rI,.nl]] _p[nl_ml])q[n:.m:])
=nmy+n,my,+n +m +1,
because n, + m; < n, + m, while
a( p[n,‘m,]q[nz.m:] ‘p[n:.m:]q[nl.m,])
<nymy +nyamy+ max(ny +m,y, ny+m)<nmy +n,my,+n, +my+ 1,

So
k
(p[n,.ml]q[nz.m:] —p[n:.m:]q[nl.m]])(xﬂ y) = Dk(xw }’)

with k=n,m; +nym,+n, +m +1 and D, homogeneous. Hence (p,, ..,/ q(n m NX. ¥)=
(P[n R ]/q[n s ])(X y) lmplles D (X }’)_O o

An important consequence of this theorem is that neighbouring MPF in (6) of which the MPA
do not belong to the same block, take different values on a dense set in R”.

As we already remarked, the e-algorithm remains valid for the calculatlon of the function value
of a MPA: with £/’ = §,(x, y) we have

8(2’:n_m)= HnH—](Sn—m('x’ ,V))/Hm(A~Sn m(x’ y))

Also relation (1) remains valid since the multivariate e-algorithm is performed exactly in the same
way as the univariate e-algorithm; only the starting values &’ are multivariate partial sums
instead of univariate ones. So we have the following generalization of Theorem 1.4.

Theorem 3.2. For
Pliv,. ) y):H’”(S’(x’ ‘))

X, ~
q[1+/./] H,(A'SI():, V))

the following identities hold:
(a) If the table of MPA is normal, then

_ —1
Piivy -1 Pii+; ) 1 Plivj i+ Pliv; )
——(x, ) (x.y)| | (x.y)——(x. )

ql'+./._1—1] q[:+_;',_/] diivjoj+1 9ii+j )

- -1
=(pl'+./~1-/](x y)__p(lﬂ-j](x y)) : (P[,+,+1,]( )_p[l+./~./l(x y))

q[1+_/—].j] q[1+j.j] q[l+/+l /] qll+j_j]
forj=07 1» 2s"-ni= _ja —j+ 1,... .
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(b) If the table of MPA contains a block of size t+1 with (p,., /4. ., , NX. V) in the
uppermost left corner. then

, -1 -
pl j+1. -1 plﬂ’A ‘ Py +r—1.7+ 1 p:f.
(_M(x. py = P _‘.)) +( ety Pl _V))
q[l—r/-*l*/./?l-rl] q[lv/./]

q[/+»/+/.k/~1] ’ q[l+/_/]

_ ( p[/+/——l./+/](x. "‘) _p[l"'/./](’\.. ‘)) +(p[l+/fl*l_/¢/vl](\‘. ‘.)_ pll*/./](A‘. 1))

q[1+/—]./+1] ’ q[1+/.b/] (q[l+/*l*1./+l*/] . ’ q[:+/‘/]
for [=0.....1.
Proof. The proof of (a) was given in [3]. The proof of (b) is performed in the same way as in [2].
O
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