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A RECURSIVE COMPUTATION SCHEME FOR
MULTIVARIATE RATIONAL INTERPOLANTS*

A. CUYT"

Abstract. We derive here a recursive computation scheme for the rational interpolation method intro-
duced in [7]. Explicit formulas for these multivariate rational interpolants are repeated in 2 while the
recursive algorithm is described in 3. A number of interesting special cases such as the univariate rational
interpolation problem and the multivariate Pad6 approximants introduced in [6] and 10] are dealt with in
4. For some of these rational approximants other recursive schemes were described previously. Finally 5

contains the numerical results: the multivariate rational interpolants described here are compared with
multivariate polynomial interpolants, interpolating branched continued fractions introduced by .Cuyt and
Verdonk [8], interpolating branched continued fractions introduced by Siemaszko 12] and several multivari-
ate Pad6 approximants [6], [3], [10]. Besides the fact that our multivariate rational interpolants allow a
large degree of freedom in the choice for the numerator and denominator in order to fit the function to be
approximated as well as possible, they also produce very accurate numerical results.
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1. Motivation. When we are dealing with interpolation problems, we must specify
whether we are interested in an explicit formula for the interpolant or only in its value
at some points different from the interpolation points. The former gives rise to a
"coefficient problem," while the latter is a "value problem." For univariate rational
interpolation the coefficient problem is translated into two linear systems of equations,
one specifying the numerator coefficients and another which is homogeneous and
determines the denominator coefficients. On the other hand, the values of the rational
interpolant can be computed recursively by means of a generalization .of the e-algorithm
which is a special case of the E-algorithm.

For multivariate rational interpolation the coefficient problem was solved in [7];
as in the univariate case, the unknown coefficients can be obtained from two linear
systems of equations, one of which is homogeneous. We shall present here a recursive
computation scheme for the calculation of the function values of these rational
interpolants; the reasoning is again based on the E-algorithm.

2. Determinant formulas. Let us restrict everything to the case of two variables
for the sake of simplicity. Furthermore we assume that none of the interpolation points
in {(xi, y )}(i,)2 coincide and that the finite interpolation set I {(i,j) [f is given .at
(xi, y)} is structured so that it satisfies the inclusion property. This means that if a
point belongs to the data set, then the rectangular subset of points emanating from
the origin with the given point as its furthermost corner also lies in the data set. In
[7] it was illustrated that more general problems can be treated and that the formulas
w.e give here in (3) remain valid. We could also deal with those more complicated
situations here, but they only complicate the notation.

Let us first summarize the theory that solves the coefficient problem, because its
solution will be the starting point for the construction of the recursive formulas.
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Consider the following set of basis functions for the real valued polynomials in
two variables

i--1 j--1

B,j(x, y) H (x Xk) 1-I (Y Yt).
k=0 /=0

Clearly Bo(x, y) is a bivariate polynomial of degree i+j. Given the f0, we can write
the interpolating series in a purely formal manner as

f(x, y)= E fo,.oBo(x, Y)
(i,j)N

where the foi.o are the bivariate divided differences

foi.oj =f[xo, ", xi][Yo,’’’, Y]
which are given by

f[xo,’" x,][yo,’",y]=f[x"’"xi][Y"’"Y]-f[x"’"xi-][Y"’"]
xi- Xo

or

f[xo, xi][Yo, y]=

with

f[xo, xi][y, yj]-f[xo, x,][yo,""
Yj-Yo

f[x,][y] fo"
In order to construct rational interpolants for the given set I={(i,j)lfo is given at
(xi, y)}, we choose two finite index sets N, a subset of I, and D, a subset of 12, and
put as in [7]

p(x, y)= E aoBo(x, Y),
(i,j)aN

q(x, y)= E boBo(x, Y),
(i,j)D

(1) (f q-p)(x, y)= E coBo(x, Y).
i,j).N2\

The rational interpolant (p/q)(x, y) will then be denoted by

[N/D],.

Let us introduce a numbering r(i, j) of the points in based on the enumeration

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0,2), (3, 0), (2, 1), (1,2), (0,3),..-
first diagonal second diagonal third diagonal

so that

(i+j)(i+j+l)
r( i, j) -j i.

2

If we denote

#N=n+l,

then we can write
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with

=N_ No N" "N_ N=N,

#Nl= l+ l,

N\Nt-={(il,j)}, /=0, 1,’ ..,n,

r(i,j) > r(i,,j,), I> r.

In other words, for each =0,. ., n we add to N_ the point (i,j) which is the next
in line in N fl 2 according to the enumeration given above. Denote

#D=m+l,

and proceed in the same way. Hence

D=U D,
!=0

with

D_I=, D\D,_={(d,e,)}, /=0,...,m.

Since (1) can be rewritten as

(2)
(f" q)0,,oj Poi.oj ao, (i, j) N,

(f. q)o,.o 0, (i,j) I\N,

we will assume that the interpolation set I is such that exactly rn of the homogeneous
equations (2) are linearly independent. It is obvious that this condition guarantees the
existence of a nontrivial solution of (2) given by the following determinant expressions,
because the number of unknowns in the homogeneous system is now one more than
its rank. We group the respective rn elements in I\N that supply the linearly indepen-
dent equations in the set H and number them also following the enumeration given
above,

H=U HI\N,
!=1

with

Ho , Hi\Hi-1 {(h,, kl)}, l= 1,..., m.

The polynomials p(x, y) and q(x, y) satisfying (1) are then given by [7]

(3a) p(x, y)=

(3b)

(i.j)N faoi.eojBij(x, Y)
fdohl,eokl

fdohm,eokm
Bdoeo(X,Y)

q(x, y)= fdoh,,eok,.
fdohm,eokm

(i.j)sN fd,,,i.e.,jBij(X, y)
fdmhl,emkl

fdmhm,emkm
Bcl,,,e,,,(x, y)
fdmhl,emkl

fdmhm,emkm
where

fdihj,e,kj f[xa,, Xhj ][Ye,, ", Ykj ],
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with

fa,hj,,,kj 0 if di> hj or ei > kj.

3. Reeursive algorithm. The formulas (3) can be rewritten as follows. Multiply
the (l+ 1)th row in p(x, y) and q(x, y) by Bh,k,(X, y) (1= 1,"" ", m), and then divide
the (1+ 1)th column by Bd,,,(x,y) (1=0,..., m). This results in

p(x,y)=

(id)N fdoi,eojBdoi,eoj(x’ Y)
Aohl,eok Bdoh,eok X, y)

1

q(x, y)= fht’ekBd,ht’*k(x’ y)

fdohm,eokm Bdohm,eok X y)

where for k N and Nj

X(i,j)N fdmi,emjBdmi,emj(X Y)
fdmhl,emkl Bdmhl,emkl(X, Y)

fdmh.,,*,km Bdmh,,.,k., (X, y)

1

fdmht,emkl Bdmhl,emk (X, y)

fa".*kmBd "mh.,,emk,. X, y)

Bi(X’ Y)
(x Xk) (X-- X,_ )(y-- y,) (y y_i),Bk"o(X’ Y)= Bk,(X, y)

and for k>i or l>j

fi, 0.

We can now easily construct (m + 1) series of which the successive partial sums can
be found in the columns of p(x, y). Take

/0(O) fdoio,eoJoBdoio,eoJo(X, Y),

Ato(l- 1) to(l) to(l- 1) fdo,eoBdo,.o(X, y), 1,’’’, n.

to( 1 fdoi,eoj Bdoi,eoj(X y).
(i,j)N

The next terms are given by

Ato(n + l- 1) to(n + l)- to(n + l- 1) fdohl,eoklndohl,eokl(X y), I"- 1," ", m.

Note that Ato(l- 1) 0 as long as it < do or j < eo.
In this way we obtain the first column of p(x, y). We can proceed in the same

way for the other columns. Define for r 1,..., m

t,(O) fdrio,erJoBdrio,erjo(X, y),

Atr(l- 1)= t,(1)- tr(l-- 1)=fdjt,ed,Bd,i,,edt(X, y), l= 1,..., n,

At(n + l- 1) tr( n + l) tr( n + 1) fdrht,erktBdh,,e,kt(X y), 1,’’’, m.

Hence

t(n) E fa.eBdi,e,(X, Y)
(i,j)N

Then
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and the (r+ 1)th column of p(x, y) is obtained. Again Atr(l- 1) =0 for it < dr orjt <
Consequently

(4a)

(4b)

o(n)
Ato(n)

p(x,y)=

Ato(n+ m-1)

1

q(x, y)= Ato(n).
Ato(n-m-1)

tin(n)
Atm(n)

Atm(n+m-1)

Atm(n)

Atm(n+m-1)

This quotient of determinants can easily be computed using the E-algorithm 1]"

Eo)= to(l), I=0,..., n+ m,
(l) tr(l)- tr-l(l), r 1 m, 0,. n + m,O,r

-(/). ,(/+l) (t+
(5a) E</)- "r--lr--l,r---:’r--I )gr-l,r

(l+) (l) l=O, 1,...,n, r=l,2,...,m,
gr-l,r-- gr-l,r

,v(/+l) ...(/+ 1) (I)
gr-l,rr--l,s(Sb) g,) g(rl)-l"s’Sr-’r

(/+1) (l) s r+ 1, r+ 2, .
gr-l,r-- gr-l,r

The values Et) and ..(t)
g r, are stored as in Table 1 and Table 2.

Then

[N/D],=E).

E)

TABLE

E(o1)

E(o2) ..
E

En+m-1)
E(on+m)

(o)
n+m

(l)
0,1

(2)

(n+m)
0,1

(O)
0,2

(2)
0,2

(n+m)
0,2

(L)

1,2

(O)
O,r

(l)
0,r

(2)
0,r

(n+m)
O,r

TABLE 2

(O)
l,r

l,r

l,r

(o)
gr-l,r

r-l,r

(O)
O,m

(1)
0,m

(n+m)
O,m

m--l,m

,+)
m--l,m
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Since the solution q(x, y) of (2) is unique, the value E itself does not depend upon
the numbering of the points within the sets N, D and H. But this numbering affects
the interpolation conditions satisfied by the intermediate E-values.

THEOREM. For l-0," ", n and r-0,. ., m
E N/D,]V,tt(,,/,j,/,),...,(in,jn),(h,,k,),...,(h k ,)}f

pints

Proof. The proof is obvious since we know from 1] that

E(l)

to(1) tr(l)
Ato(l) Atr(l)

Ato(/+r-1) Atr(/+r--1)

Ato(/) Atr(/)

Ato(l+r-1) Atr(l+r-1)
and from [7] that

N1/Dr]NtU{(it+t,Jt+t),’",(i.,J,,),(h,,k,),’",( k

eojBij(x, Y)

fdoit+!,eoj,+l

fdoil+l,eOJl+
Ba,er(x,Y)
fdrii erJl

If n > r then the interpolation set does not contain points of H but only the points
{(i0,j0),""", (il, jl), (i,+l,jl+l), (ir,jr)}. [’]

If N is enlarged with elements of H or if D is enlarged, then new points of N2

should be added to H. The first (m + 1) columns of the E-table remain unchanged and
only subsequent columns or diagonals must be computed.

IfN or D are completely changed, then it may be necessary to restart the algorithm.
If N and D contain the origin and satisfy the inclusion property themselves, then

the structure of the g-table simplifies since

(d+er)(dr+er+l)
t(/) O, /=0,...,

2
-er-1.

We can tell from Table 3 that we get a band structure instead of a triangular table.

(r--l)
g0,r

(n+m)
0,r

TABLE 3

1,r

g(rO)_l,r

r--l,r
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4. Special cases. This multivariate theory, in which a rational interpolant can be
obtained either explicitly by means of the formulas (3) or by its values via the algorithm
(5), includes a number of interesting special cases.

(a) Univariate rational interpolants of degree n in the numerator and rn in the
denominator can be obtained by choosing

D={(d,O)lO<=d<-_m},

N-{(i,o)lo<=i<=n},
Hc I\N={(h,O)ln+l<--h<=n+m+s with s>=0}

where the integer s is the number of linearly dependent interpolation conditions in
I\N. The E-algorithm then simplifies to an e-like algorithm. For more information
we refer the reader to [2] and [7].

(b) Consequently univariate Pad approximants can also be computed by letting
all the interpolation points coincide. In this case the E-algorithm reduces to the
e-algorithm.

(c) Multivariate general order Pad approximants, introduced in [10], can now
also be computed recursively by letting the multivariate interpolation points coincide
with the origin. The basis functions and divided differences become

Bk,.o(X, Y)= xi-kyj-l,

oi-k+j-lf
fki,O Oxi-k 0yJ- (o,o)

The fact that a recursive computation scheme now exists for this type of approximants
may result in a number of new applications, such as convergence acceleration or their

use for the solution of systems of simultaneous nonlinear equations.
(d) The multivariate Pad6 approximants of order (n, m) introduced in [6], which

prove to satisfy a large number of the classical univariate properties and which can
already be calculated recursively by means of the e-algorithm if the Atr(n + l- 1) are
homogeneous forms of degree n + l-r, can now be computed in a different way by
choosing A tr as described in the previous section. To this end we take

D {(d, e)lnm<=d+e<=nm+m},
N= {(i,j)lnm <-_ i+j<= nm+ n},

Hc{(h,k)lnm<=h+k<=nm+n+m+s with s>=0}

where the integer s is related to the block-size of this multivariate Pad6 table. For
more details see [6]. Explicit determinant formulas for these index sets, involving
near-Toeplitz matrices, are given in [4].

5. Numerical results. Suppose we have to solve the following numerical problem.
A bivariate function f(x, y) is only known by its function values in a number of distinct
points (xi, y) and we need an approximation for the value off in some other points
(u, v). This problem can be solved by calculating the function value of an interpolatory
function (polynomial or rational) with or without solving the coefficient problem. The
bivariate Beta function B(x, y) will serve as a concrete example here. It is defined by

B(x,y)=
r(x)r(y)
r(x+y)
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where F is the Gamma function. Singularities occur at x=-k and y=-k (k=
0, 1, 2,...) and zeros at y=-x-k (k-O, 1,2,...). By means of the recurrence
formulas

F(x + 1) xF(x), r(y + 1 yr(y)

for the Gamma function, we can write

l+(x-1)(y-1)f(x,y)
B(x,y)=

xy

We shall now compute several types of approximants R(x, y) for f(x, y) and compare
the exact value B(u,, v) with the expression

1 +(l/i 1)(Vj 1)R(t/i, Dj)
uivj

We shall use the following interpolation methods"
(a) Polynomial interpolation

/12

R(x, y)= 2 2 f[xo, x,][yo, yj]Bij(x, y)
i=0j=0

satisfying

(f R)(x, y) cijBo(x, y).
{(i,j)li> j> tiE}

(b) Symmetric branched continued fractions of the form [8]
n’x X , Xk,1 _t_ n Y Yk-1R(x, y) tC[Xo][Yo] + k= [O[Xo,""", Xk][Yo] k= tP[Xo][Yo, ", Yk]

(x-xt_)(y-y_)+ /=11 nix X Xk-1tp[Xo,’’’, x,][yo, y,] + Zk=/+, q[Xo, Xk][Yo Yl]

where

+klY Y--Yk-,
=/+1 [q[Xo,""", XI][Yo, Yk]

O[Xo][Yo] =f(xo, Yo),

O[Xo,""", Xk][Yo] Xk Xk-
q[Xo, ", Xk-2,"Xk][Yo]- q[Xo, ", Xk-2, Xk-,][Yo]’

q[X0][Y0,""", Yk] Yk Yk-
q[Xo][Yo, ", Yk-2, Yk]- q[X0][Y0, ", Yk-2, Yk-,]’

0[X0, ", X][y0, ", y] (X- X_,)(y- y_,)/a*),t,,
with

m(l)(/ (0[X0, ", Xl--2, XI][Yo,’" ", Y’-2, Y’] qg[X0, ", Xt-2, Xt--,][y0, ", Y’-2,

q[X0, ", X,--2, X,][y0, ", Yl--2, Y,--1]

+ q[X0,""", X--2, X,-,][yo,’’’, Y’-2,

and for k >
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O[Xo,""", Xkl[Yo,

Xk Xk-

[Xo,’’’, Xg-2, Xk][Yo, Yl]--gO[Xo, Xk-2, Xk-,][Yo, Y,]’

0[Xo,""" X,][yo, Yk]

Yk Yk-
O[Xo, ", x,][yo, ", yg-:, Yk]- O[Xo, ", X,][yo, ", Yk-2, Yk-1]’

satisfying

(f-R)(x, y)= E cB(x, y).
12\{(i,j)lOi<-n,O=j=nr
\{(j,i)[Oi n,O<=j<-nix

(c) Branched continued fractions of the form [12]
"o Y Yk-g(x, y)= [Xo][Yo] +
k=

y"
6[X0][Y0, Y]

with

-[" X--XI-1

,,, Y--Yk-,=1
6[Xo,’’’, Xl][Yo]+.,k=IIO[Xo,... X/][yo,’’’,yk]

b[Xo][Yo] =f(Xo, YO),

0[Xo][Yo,’’’, Yk
Yk Yg-

@[Xo][Yo, ", Yk-2, Yk]- @[Xo][Yo, ", Yk-2, Yk-,]’

O[XO,’’’,XI][Yo]--

and for >_- 1

Xl Xl--
[X0,’" ", Xl-2, Xl][Yo]-- O[X0,’" ", Xl-2, Xl-1][Yo]’

O[X0,""", Xl][Yo, Yk]
Yk Yk-

[Xo, ", Xl][Yo,’" ", Yk-2, Yk]- [Xo, ", X][yo, ", Yk-2, Yk-]’
satisfying

(f R)(x, y)= ., cijnij(x y).
IN2\{(i,j)10<--i<n,0j<---ni}

(d) Multivariate Pad6 approximants calculated by means of the e-algorithm [6]
(n-m)R(x,y)=em

with

ek) 0, k:0,1,’’’,
k 1 oi+feok)= E !j!i+j--O Ox

jxy, k=0,...,n+m,
(o,o)

/=0,1,’’’,

satisfying the conditions described in (d) of the previous section.
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(e) Chisholm’s Pad6 approximants [3]

E,--o Ej--o a,jx’Y
R(x, y)

E,=oE=o boxY
where ao and b0 are computed so that in the Taylor series development

(f-g)(x,y) E COX y’
(i,j)ll

we have

ci O, (i,j){(i,j)lO<--i+j<--2n},

c2,+1-,j + c,2,/1_ O, j 1, , 2n.

(f) Levin’s general order Pad6 approximants [10]

i..i)v ai.x’YR(x,y)=
-,(i,j)D bijxiyj’

which were mentioned in (c) of the previous section and which satisfy

(f-R)(x, y)=
<,),. cqxi.

Our choice for the sets N, D and I is"

2 2

D= {(i,j)10N i+jN n},

I= {(i,j)ON iN n3, ONjN n}.

(g) General order rational interpolants

(, aoB(x, y)
R(x’Y)=boB,,(x,y)’

as given by (3) here and with the next choice for the index sets N, D and I"

D= {( i,j) ON +j N n},

In order to use the same amount of data for each method, we are going to take
(a) n 5 and n 5,
(b) n=5andn=5=nfori=0,...,5,
(c) n=5 and n=5 for i=0,...,5,
(d) n=4andm=3,
(e) n 3,
(f) n=5, n=4andn=5,
(g) n 5, n 4 and n 5.

For (a), (b), (c) and (g) the interpolation points are chosen to be

xo 0.90, x -0.85, x 0.47, x -0.54, x4 0.18, x -0.23,

Yo 0.70, y -0.77, y 0.60, y -0.45, y 0.21, y -0.35,
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which amounts to 36 data points (xi, yj ). For (d), (e) and (f), respectively, 36, 34 and
36 Taylor coefficients are given in order to compute the approximant, namely

(0,0)
with (i, j) {(i, j)l0 _-< +j _-< 7} for (d),

(o,o)
with (i,j){(i,j)lO<-i+j<=6}

12 {(1, 6), (2, 5),..., (5, 2), (6, 1)} for (e),

cgX Oyj
(0,0)

with i,j) {(i,j)]0<-_ <- 5, O<-_j <-_ 5} for (f).

We take (u,,v){(-0.75,-0.75), (-0.50,-0.50), (-0.25,-0.25), (0.25,0.25),
(0.50, 0.50), (0.75, 0.75)}.

The rational interpolants in (b) and (c) are computed using a backward evaluation
algorithm while the rational interpolants from (g) are computed using the algorithm
given in 3 here. For the Pad6 approximants in (d) the well-known e-algorithm is
used while the Pad6 approximants from (e) and (f) are calculated using a similar
technique [5] as the one described in 3. Of course one can also compute the
approximants in (e) and (f) by means of older techniques used by the Canterbury-group
[9] and Levin themselves [11]. The numerical results can be found in Table 4 below.
All the computations were performed in floating point double precision arithmetic on
a VAX 11-780 with an input of 12 significant decimal digits.

TABLE 4

(-0.75,-0.75) (-0.50,-0.50) (-0.25,-0.25) (0.25, 0.25) (0.50, 0.50) (0.75, 0.75)

(a) 11. 0.06 -6.75 7.45 3.14151 1.69
(b) 9.95 -0.001 -6.7770 7.416291 3.14159276 1.694426
(c) 9.95 0.003 -6.775 7.416295 3.14159290 1.694426
(d) 8.8 -0.07 -6.786 7.416307 3.14159269 1.69442617
(e) 7. -0.14 -6.787 7.416310 3.14159269 1.69442617
( 5.3 -0.46 -6.84 7.4164 3.1415938 1.69442617
(g) 9.91 0.0002 -6.7776 7.416310 3.14159292 1.694426
B( y) 9.88839829 0. -6.77770467 7.41629871 3.14159265 1.694426166

For all types of approximants, except (c), the choice for R(x, y) was such that it
was a symmetric function. This was done because B(x, y) is symmetric. We notice that
unsymmetric approximants yield worse numerical results. The polynomial
approximants lose a number of significant digits because of the singularities of the
Beta function. The e-algorithm (d) and the other Pad6 approximants (e) and (f) get
all their information at the origin, far from the points (ui, v). This is a disadvantage
in comparison with the interpolation methods. As a conclusion we can say that the
general order rational interpolants (g) for which a computational scheme was intro-
duced here, behave quite well.
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A RECURSIVE COMPUTATION SCHEME 239

REFERENCES

1] C. BREZINSKI, A general extrapolation algorithm, Numer. Math., to appear.
[2] G. CLAESSENS, A useful identity for the rational Hermite interpolation table, Numer. Math., 29 (1978),

pp. 227-231.
[3] J. CHISHOLM, Rational approximants defined from double power series, Math. Comput., 27 (1973), pp.

841-848.
[4] A. CURT, A comparison ofsome multivariate Padd approximants, SIAM J. Math. Anal., 14 (1983), pp.

195-202.
[5], Multivariate Pad. approximants revisited, BIT, to appear.
[6] ., Padd Approximantsfor Operators: Theory and Applications, Lecture Notes in Mathematics 1065,

Springer-Verlag, Berlin, 1984.
[7] A. CUYT AND B. VERDONK, General order Newton-Padd approximants for multivariate functions,

Numer. Math., 43 (1984), pp. 293-307.
[8], Multivariate rational interpolation, Computing, 34 (1985), pp. 41-61.
[9] P. GRAVES MORRIS, R. HUGHES JONES AND G. MAKINSON, The calculation of some rational

approximants in two variables, J. Inst. Math. Appl., 13 (1974), pp. 311-320.
10] D. LEWN, General order Pad. type rational approximants definedfrom double power series, J. Inst. Math.

Appl., 18 (1976), pp. 1-8.
11 On accelerating the convergence ofinfinite double series and integrals, Math. Comput., 35 (1980),

pp. 1331-1345.
12] W. SIEMASZKO, Thiele type branched continued fractions for two-variable functions, J. Comput. Appl.

Math., 9 (1983), pp. 137-153.


