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Summary. The quotient-difference (QD) algorithm can be used to construct
univariate Padé-approximants [1]. In this paper we see that it can also be
used to construct the multivariate Padé-approximants introduced in [3],
just by reformulating the quotient-difference algorithm as in Sect. 1. The
multivariate Padé-approximants and the multivariate QD-scheme are treat-
ed in the Sects. 2 and 3 respectively. Thus for this type of multivariate Padé-
approximants a link with the theory of multivariate continued fractions is
established.

Subject Classifications: AMS(MOS): 65D 15, CR: 5.13.

0. Introduction

It is well-known that the quotient-difference algorithm can be used to compute
Padé-approximants for a univariate function [1]. They are obtained then as
convergents of a continued fraction.

Several authors already have tried to generalize the concept of Padé-
approximants to the multivariate case. We refer to [2, 6-9]. For all those
generalizations there is no link with continued fractions. Other authors have
introduced multivariate continued fractions without really obtaining Padé-
approximants [11]. But if the multivariate Padé-approximants are defined,
using a shift of the degrees of numerator and denominator [3], then one can
construct multivariate continued fractions that provide those Padé-approx-
imants and thus one can use the QD-algorithm to compute them. The shift of
the degrees is also necessary to obtain a nontrivial denominator, as will be
illustrated. For an extensive study of the properties of this type of Padé-
approximants the interested reader is referred to [4].

In the last section the newly introduced multivariate QD-scheme will be
used to calculate approximations for the poles and zeros of the two-variable
beta-function.
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1. The Quotient-Difference Scheme

Our presentation of the QD-algorithm differs slightly from the usual one. In
the one-dimensional case the two approaches are equivalent; however our
approach can be generalized to the multivariate case.

Let us consider a univariate function

1= 3 e

analytic in the origin.
We call the series f normal if

n n+ 1 n+k—1
C, X Chp1 X cor Cpp1 X
1
I xn+
1
" %0
n+k—1 n+2k—-2
Crpr—1X Conr2k_2X

for all n=0 and k=1. This determinant is a monomial of degree k{(n+k—1) in
x. The condition of nontriviality is equivalent with the condition that the same
determinant with x=1 is nonzero.

For a normal series we can construct a table with double entry of numbers
g™ and e defined as follows:

eM=0 n=0,1,...,
c xn+1
1
g =1 X n=0,1, ...,
c,x
e =g+ 4 ent D gl n=0,1,2,... k=1,2, ...,
gy =gt et e n=0,1,2,... k=1,2,....

These rules can easily be remembered by means of the following scheme (the
superscript (n) indicates a diagonal while the subscript k indicates a column):
el
4P+
/ \
N m/ gy

(2) (1
ey el

(2>/ = s

e

The QD-algorithm can now be used to construct Padé-approximants to the
function f. For a normal series the Padé-table is likewise normal [1].
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The (¢, ») Padé-approximant (numerator of degree / and denominator of
degree ) for /= is equal to the (24)"™ convergent K, of the continued
fraction

CotC x+...+c, X"

.\ C/_m+1x£'m+1|— q(lz_m+1)|_ e({_m+1)|_ q(2f4m+1)]_. e(zf_m+1)‘_m
1 b1 It [ 1 1
£—m
if Ko=) c¢,x* and the (2 + 1) convergent K, , , of the continued fraction
k=0

. f—m—1
CotCyx+. .+, X"

SO e B Gl Gl e Sl

1 T ¢ [T 1 T

£—m—1

if Ko= Y ¢ x* [11.

k=0
The terms g{” and e{” each contain a factor x now because of the definition
of ¢. We shall find this property also in the multivariate QD-scheme.

2. Multivariate Padé-Approximants

During the last ten years several ways have been tried to generalize the
concept of Padé-approximant to multivariate functions. For most of the gene-
ralizations there is no link with continued fractions. The definition of the
multivariate Padé-approximant which follows, enables one to construct multi-
variate continued fractions, the convergents of which provide the Padé-ap-

proximants.
Let
[o's]
— k
flxy, "xp)_ Z Chpkp X1 X7
ki,....kp=
If we introduce the notation
— k k
aX)= Y ey XX

we can also write for f(x,, ..., x,):

o0

fxy= Z ¢, (x)

k=0

where now x=(x,, ..., x,) is a vector.
Now find

tm+/¢ fm+ ¢

Pre,m(X)= Z Z ail...ipxill"'xifz Z a;(x)

i=fm ig+ .. tip=i i=tm
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and
fm+m . . fm+m
dm®)= Y X b= Y bix)
J=fm ji+..+jp=j j=£fm
such that
(f i, m) = Pre,mp (X) = Z dklmkyx’;‘...x’;{ n

Ki+..thkpZfm+l+m+1

If we denote by &, the order of a power series, i.e. the degree of the first
nonzero term (where a term x''...x}» is said to be of degree k, +... +k,), then
condition (1) can be reformulated as

do(f" Q[/,m]—P[z,m])gfm‘l-/—Fm-‘r 1.

In the sequel of the text & will denote the degree of a polynomial,

The shift of the degrees of py, ,(x) and iz, m(X) by £ is necessary to
obtain a nontrivial solution for the b; ;. The following simple example will
illustrate this.

Consider

oo} 2k+ 1
FO0=F (g, xp)=1+x, 4sin (e xg)=14x, 4 3 (— 1 515
k=0

Lxx
QRk+1t

Now take /=1, »=23 and calculate
DXy, Xy)=tgg+a X, +dg; X,,
g(xy, xz):b00+b10x1+b01x2+b20xf+b11x1x2+b02x§+b30xf
+b21x%x2+b12x1x§+b03x3
such that
Oo(f-q—p)2¢+m+1

i.e. without performing a shift in p, g and f-q—p.
The only solution for p(x, x,) and g(x,, x,) is

p(xy, x,)=0,

q(x,x,)=0
which is useless. v

A representation of py, ,\(x) and qy, ,,(x) satisfying 0o(f- Gy, 3= Pps, ) 2L

+l4met 1, is
) fo ) o Sl )
Pit, mi(X)= C“.I(x) ) o 1(x)’
Cz+;,,(x) ¢ (%)
1 1
dy (0)= Cl+.1(x) (X)) ooo €y, (%)
C/+;n(x) U X 9]

3

where f,(x)= ) c.(x).

k=0
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This is a direct generalization of the existing univariate formulas [10].
Observe that here the term

¢, (x)= Y ck‘“_kpx’j‘...x’l‘f

takes the place of the coefficient c,. This is precisely the difference between the

usual definition of the QD-table and the one given in Sect. 1. More about this
type of multivariate Padé-approximants can be found in [3].

3. The Multivariate QD-Scheme

We proceed exactly as in the univariate case.
We call the series f normal if

Cn(x) cn+1(x) cn+k—1(x)
cn+ l(x) : :FO
Cn+k—1(x) Cn+2k—2(x)
for all n=20 and k=1, where now
kP

aX)= 3 XX
i+ thp=k

'Es

For a normal series the irreducible form Pa (x) of Pit.m (x) satisfies
A ¢, m)

01Pa=0pa—0090=1,
019a=0qp—0oqp=m,
ao(f-qA—pA)=/m+/+m+1

and thus p—A(x) occurs only once in the Padé-table [4, pp. 61-62].
q

A
Define the table with double entry as follows:

e =0 n=01, ...,

kp

k1
Chyootey X1+ Xp

o _Cnzt l(x):k1+...+kp=n+l

ql k k n—05 la s
€, (x) 2 G, Xt Xy
ki+..+kp=n
e =qpt Vet —q n=0,1,2,... k=1,2, ...,
g =qyt Vet Ve n=0,1,2,... k=1,2, ...

and construct the following continued fractions:
(all the ¢\ and e{ exist because f is normal [5, pp. 610])



t_m (¢ - my 1) (£ _my 1) (¢ —m4 1) (£ —m 4 1)
S g+ ezt @ J—Iel |_ G
= 1 1 1 I 1

(f M)

£ m_1 (£ _ m) {t’ ) (t’ m)
ct’_m(
2, 0T FJ e SNE)

We shall now prove that these continued fractions are of the same form as in
the univariate case where ¢V and e contain a factor x, and also that the
convergents yield the multivariate Pade approximants.

+1 and

N N
Theorem 1. If we write q}{":D";"”‘ and e}c"’—De % then N, , ,=@éD,,

aNe,k,n:aDe,k,n+1 q4,k.n ek, n

Proof. The proof is by induction.
For k=1 we have

Nq,k,_n:CnJrl(x) and Dq,k,n:cn(x)9

Ne,k,n:(cn+ l(x))z —c"(x) ) Cn+2(x)’
De,k,nzcn(x) : cn+ l(x)

so that
ON, ,,=n+1 =6Dq,,m,

N, , =2n+2=0D

+1,
+1.

e k.n
Suppose the theorem holds for gy, ..., g™, ¢, ..., e™; we shall prove it then
for ¢ , and €{" |

Since g\ | =q"* Vel"tV/e™, we have

q(n) _Nq,k,n+1Ne,k,n+1De,k,n__Nq,k+1,n
k+17 - .
Ne,k,an,k,n+1De‘k,n+1 Dq,k+1,n

Thus aqu+ln aqun+1+a kn+1+aD aDqlu{~1n_+_1'

=g+ 1 1
Now e =gtV +el*V—ql
:__Nq,k+ 1,n+1De,k,n+1Dq,k+1,n+ AR :Ne,k+ 1,n
Dq,k+1,n+1De,k,n+IDq,k+1,n De,k+1,n
which proves that 6N, ., ,=0éD, ., ,+1

This already generalizes the univariate case, where only a factor x remains
in ¢ and e{” after division of numerator and denominator. Now consider the
following descending staircase of distinct multivariate Padé-approximants:

Pis_ o, 0](x)

qif - om, 0](x) ’

Ple_m+1, o](x) P, 1](x)

At i 1,01X) i1, 1y(X) ’
Pl —mr2, y(X)
At m+2, 1](x)
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Pre, m](x)

Theorem 2.
iz, m) X)

is the {2 m)'" convergent of the continued fraction (2).

i alx
Proof. Letp["-—’"ﬂJ—]Q:K,.ﬂ, i+j=0,1,....
' Q[z—fnu,j](x) ) ] )
It is possible to construct a continued fraction with convergents
Ky, K, K,,....

This continued fraction has the form

K,—K i
K0+h‘1—oj+ Zz
which can be written as
KI_KZ (Kn——l_Kn)(Kn—Z—Kn—3)
€ ¢, .1 K,—K 2 (K,-K, )X, —K,_3)
y ck(x)+|’ 1“ ‘+‘ 21 °J+2] 2 . ! 2 ‘. (4
k=0 n=3
It is easy to verify that
KI”KZ__ (C—m+1) d (KZ—K3)(K1—K0)_ (&—m+1)
=43 n =€y
Kz_Ko (K3—K1)(K2—KO)

using the representation of py, . 01(X); iz _ m, 0/(X); Pre_om, 1.01(X)s Q1z _m 1, 00(X); -
given in the previous section.
Let us denote
(Kn— 1 ——Kn)(Kn—Z - Kn— 3)
(Kn _Kn-—Z)(Kn~ 1 —KnA 3)

by AY==+1D if n is even and by BY-*V if n is odd. We write also A{~=*+!
2 7
=¢{~=*Y. If we write down the continued fraction that is the even con-

traction of (4) (i.e. a continued fraction having as convergents the K,, for n
=0,1,...), we get

ffm o o
Z C (X)+ Cf—m+1(x) ]_— A(ll +1)B(f +1) |_ 5
k=0 k ‘I—A(f_””l) tl_B(lt’—m+1)_A(24’_m+1) (5)

If we write down the continued fraction that is the odd contraction of (4) with
¢ —m replaced by £/ —m—1 (i.e. a continued fraction having as convergents the

Pit—m0l) P, 11X Pit—ms 2, 21(X)
q[{—m‘O](x), q[z_m+1,1](x)’ q[(—m+z,2](x)

on the descending staircase (7)), we get

£—m—1 ¢ (x)A(ll—m) J B(lt’—m)A(zt’—m)
¢ (x)+ [_m—m o —m oy (6)
&y T A B g B
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Because (5) and (6) have the same convergents we have
C—m+ 1) Rl —m+ 1) __ €—om {—om _
A=+ DBt D= Bif=m 4= k=1,2, ...,
BYrt Dy AU+ D=4~ + B~ k=1,2,...

if we put BY-~*1 =0,
So

(Cmmt 1) _ (lmmt 1)
Ay =4y

k=1,2,....

BY-mt V= glf-m+ 1)
This completes the proof.

Analogously we can formulate and prove the next theorem.

Pit, wa(X)

e, m\X

Theorem 3. is the (2 + 1)'* convergent of the continued fraction (3).

This can easily be seen by writing down the continued fraction (4) with £ —
replaced by £ — s —1; the convergents of this continued fraction are the multi-
variate Padé-approximants on the following descending staircase:

Py 1,01(x)

9t —m-1,01(%)

Ptz — o, 01(X) Pt — o, 11(¥)

gt - m, 01(X) Gt — . 11(X)
Pt — 1, 11(X)
/{7 1,1](3‘)

The following example both illustrates Theorems 2 and 3. Consider

@ iy \i2
- Xy X3
X1 =X, i (i +iy)!

=1+4x,+X,+3(x3+x,x,+x3)+....

X1 . X2
X et —xe

J)=f(xy, x5)=

Take #=2 and »=1. The Padé-approximant P,y

(xy,x,) 1s given by
d12, 1)

T4x, +x, 43032 +x,x,+x3)  1+x,+x,
s +xdx, tx x3+x3) 0 +xx,+x3)
=303 +x, 0, + %)+ 3(xF +3(xF x, +x, x7) +x3)

+17(x] +2(x3x, +x, X3) + 5x7x3 +x3)

P2, 1)(X15 X5)=

1 1
L3 +x3x, +x x3+x3) 3(x+x;x,+xd)

=1(x%+x,x, +x2)—1(x3 + x3x, + x, x3+x3).

92, 11(3‘1, X,)=
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According to Theorem 2, this is also the second convergent of the continued
fraction (2), i.e.
(X3 +x3x,+x, X% +x3)
%(xf+x1x2+x§)|_ 3(x%+x1x2+x§)J
1 l 1 '

1+X1 +x2+|

According to Theorem 3 it is also the third convergent of the continued
fraction (3), i.e.

(xT4x,x,+x3)  —(xF+2x3x, +5x2x2+2x, x3+x%)
1“i_xl—kle_ 2 +x,) | 6(x2+x,x,+x3)(x, +x,) |
1 1 [ 1 :

In both cases the QD-scheme is started with

iy i i i

=y XiX3 X X3

1 = . . N - .
riponet (g Hi)! o, (40!

4. Numerical Example

The beta function is defined by

_Tx)ry)
BT

where I' is the gamma function.
Singularities occur for x=—n and y=—n (n=0, 1, 2, ...) and zeros for y=
—x—n({n=0,1,2,...). We write
_Ax—=1Ly-1)
= o

B(x, y)
with
A, v)=1+uvf(u,v).

We will calculate the Padé-approximant py, (4, v)/qy, (4, v) for f(u,v) by
means of the multivariate QD-algorithm and compute

Gig, X — Ly =D+ (x—D(y—1)py gx—1,y—1)
xJ’qlz.m](x" Ly-1)

(®)

as an approximation for B(x, y).

The trajectories of the poles and zeros of the beta function are shown in
Fig. 1, while the poles of (8) for /=7 and »=1 and the zeros of (8) for /=2
and » =2 can respectively be found in Fig. 2 and Fig. 3.
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In both cases we remark that the vertical, horizontal and diagonal lines are
nicely simulated, and that the drawings are symmetric because the symmetry of
B(x, y) is preserved by the multivariate Padé-approximants [4].
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