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Summary. The quotient-difference (QD) algorithm can be used to construct 
univariate Pad6-approximants [ t] .  In this paper we see that it can also be 
used to construct the multivariate Pad6-approximants introduced in [3], 
just by reformulating the quotient-difference algorithm as in Sect. l. The 
multivariate Pad6-approximants and the multivariate QD-scheme are treat- 
ed in the Sects. 2 and 3 respectively. Thus for this type of multivariate Pad6- 
approximants a link with the theory of multivariate continued fractions is 
established. 

Subject Classifications: AMS(MOS):  65D15, CR: 5.13. 

0. Introduction 

It is well-known that the quotient-difference algorithm can be used to compute 
Pad6-approximants for a univariate function [1]. They are obtained then as 
convergents of a continued fraction. 

Several authors already have tried to generalize the concept of Pad6- 
approximants to the multivariate case. We refer to [2, 6-9]. For all those 
generalizations there is no link with continued fractions. Other authors have 
introduced multivariate continued fractions without really obtaining Pad6- 
approximants [11]. But if the multivariate Pad6-approximants are defined, 
using a shift of the degrees of numerator  and denominator  [3], then one can 
construct multivariate continued fractions that provide those Pad6-approx- 
imants and thus one can use the QD-algori thm to compute them. The shift of 
the degrees is also necessary to obtain a nontrivial denominator,  as will be 
illustrated. For an extensive study of the properties of this type of Pad6- 
approximants the interested reader is referred to [4]. 

In the last section the newly introduced multivariate QD-scheme will be 
used to calculate approximations for the poles and zeros of the two-variable 
beta-function. 
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260 A.A.M. Cuyt 

1. The Quotient-Difference Scheme 

Our  presentat ion of the QD-a lgo r i t hm differs slightly from the usual one. In 
the one-dimensional  case the two approaches  are equivalent;  however  our 
approach  can be generalized to the mul t ivar ia te  case. 

Let  us consider a univariate function 

f ( x ) =  ~, CkX k 
k=0 

analytic in the origin. 
We call the series f no rmal  if 

CnXn x n +  l - 2 
Cn+ l . . .  Cn+k_  l Xn+k  l 

1xn+ 1 c.+ ~ 0  

C n + k -  l x n + k -  t Cn+ 2 k -  2 Xn+ 2 k -  

for all n > 0  and k >  1. This de terminant  is a monomia l  of degree k ( n + k - 1 )  in 
x. The  condit ion of nontriviali ty is equivalent  with the condit ion that  the same 
de te rminant  with x = 1 is nonzero.  

For  a normal  series we can construct  a table with double  entry of numbers  
q(k ") and e(k ") defined as follows �9 

e(o")= 0 

q(n)__Cn+ 1 x n +  l 

Cn Xn 

e(.) _ .(,, + 1) + e~_+11) _ q~,,) k - -  "Ik 

q(.) (.+ ~) (.+ n/e(k.) k+ l = q k  ek 

n = 0 , 1  . . . . .  

n = 0 , 1 , . . . ,  

n = 0 , 1 , 2 , . . ,  k = l , 2  . . . .  , 

n = 0 , 1 , 2  . . . .  k = 1 , 2  . . . . .  

These rules can easily be r emembered  by means  of the following scheme (the 
superscript  (n) indicates a diagonal  while the subscript  k indicates a column): 

40) 
/ q ~ O )  . . . ~  

e(ol) " = --e(1 ~ 

~ q ( 1 ) J  q(O) 

e(o 2) e (1) 

�9 q(~'-~'~ i "'"~q(2 l) 

q~2) 

The  Q D - a l g o r i t h m  can now be used to construct  Pad6-approx imants  to the 
function f .  For  a normal  series the Pad&tab le  is likewise normal  [1]. 
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The ((, ~)  Pad6-approximant (numerator of degree ( and denominator of 
degree m) for f > m  is equal to the (2m) th convergent K2, ~ of the continued 
fraction 

Co + C l  X + . . .  + c t _ , ~  x t - ~  

CE-"~+ 1X~'-m+ 1 1-- q(( .... + ')l-- e]e-"+ ')]-- q(2E-~ + 1)1-- e{2e-~+"J - ' ' '  

+1 1 t 1 ( 1 I 1 [ 1 

if K o =  ~ Ck xk,  and the ( 2 m +  1) th convergent K z , , +  t of the continued fraction 
k=O 

CO-J~-C1X-~-. .-I-Cy_~ 1 x E - ~ n -  t 

+ . 

I 1 [ 1 1 1 I 1 [ 1  

if K 0 =  ~ c k x  k [1]. 
k=O 

The terms q~") and e~ ") each contain a factor x now because of the definition 
of q~"). We shall find this property also in the multivariate QD-scheme. 

2. Multivariate Pad6-Approximants  

During the last ten years several ways have been tried to generalize the 
concept of Pad6-approximant to multivariate functions. For most of the gene- 
ralizations there is no link with continued fractions�9 The definition of the 
multivariate Pad6-approximant which follows, enables one to construct multi- 
variate continued fractions, the convergents of which provide the Pad6-ap- 
proximants. 

Let 

�9 ~ C xkx ~kp f ( x t ,  . . , X p ) =  __ k,...k, 1 . . . .  v " 
kl, ...,kp= 0 

If we introduce the notation 

kl kp 
Ck (X) = ~ Ck l...kp X 1 . . .X p 

k l+. . .+kp~k 

we can also write for f ( x  I . . . . .  Xe): 

f(x)= c (x) 
k = 0  

where now x = (x l ,  ..., xp) is a vector. 
Now find 

dm+E 

PE ,mj(X)= Z Z 
i=gm il+. . .+ip=i 

a,(x/ a~ ~...i~ x ... xp 
i=  ~'m 
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and 

such that 

dm+m dm+m 

qte,,,l( x)= ~ Z b xi* i , =  Z b~(x) j l . . . jp  1 " " .Xp 
j=dra j l + . , . + j p = j  j=dm 

( f '  qv.ml- Pv,,,I) (x) = Z dk,...kx ~' ...x~'. (1) 
kl +... +kp>=dm+ d+m+ 1 

If we denote by ~3o the order of a power series, i.e. the degree of the first 
nonzero term (where a term X]*...Xpkp is said to be of degree k, +... + kp), then 
condition (1) can be reformulated as 

Oo(f " q[<,,l-pt<,,l)>=dm + d + m + 1. 

In the sequel of the text 3 will denote the degree of a polynomial. 
The shift of the degrees of pv,,~](x) and qv,~l(x) by f m  is necessary to 

obtain a nontrivial solution for the bj~...j/ The following simple example will 
illustrate this. 

Consider 
X2)2k+ 1 

f ( x ) = f ( X l ' X z ) = I + x I  +sin(xlx2)= 1 + X 1  + ~ (--1)k (~;k+ 1)~ 
k=0 

Now take ~ = 1, m = 3 and calculate 

P(xl' x2) =aoo +aloXt +%1 x2, 

q(x,, x2)=boo +b,ox  , +bo~ x 2 +bzox ~ +b~, x 1 x 2 +bo2x ~ +b30x ~ 

+b21x2xz+bl 2 3 2 x 1 x 2  + b o 3 x  2 

such that 

Oo(f "q-P)>=# + m+ 1 

i.e. without performing a shift in p, q and f .  q - p .  
The only solution for p(x~, x2) and q(xl, x2) is 

P ( X  1 , X2) ~ O, 

q(xl, x2) =-~ 0 
which is useless. 

A representation of pv,,,q(x) and qte,.,,](x) satisfying ~o(f" qv,,~]-Pv,.~]) > •*" 
+ f + m + l ,  is 

fr(x) fe_~(x) . . ,  ft_,~(x) l 

p[d,m](X).  ~ Cd+.I(X ) s  "'" r  , 

/ct+~(x) cAx) 

q~e, ,,1(x) = 

d 
where fe(x)= ~ ck(x ). 

k=0 

1 . . . . . .  1 

c,+.,(x) c/x) ce_,~+ ~(x) 

Ic~+.(x) c/x) 
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This is a direct general izat ion of the existing univariate  formulas  [10]. 
Observe that  here the te rm 

kl kp 
C k ( X ) =  Z Ckl . . . kpX l . . . X p  

k l + . . . + k p = k  

takes the place of the coefficient c k. This is precisely the difference between the 
usual definition of the QD- t ab l e  and the one given in Sect�9 1. More  about  this 
type of mul t ivar ia te  Pad6-approximants  can be found in [3]. 

3. The Multivariate QD-Scheme 

We proceed exactly as in the univariate case. 
We call the series f no rmal  if 

c.(x) c.+ ~ (x) 

C n + l ( X )  

C n + k - - l ( X )  

for all n > 0 and k > 1, where now 

... c . + , _ , ( x )  

c.+2~_2(x) 

Ck(X) ~" 2 "1 y k l  ~,.kp ~ k l . . . k p ~ l  . . . .  p �9 
k l + . . . + k p = k  

For  a no rma l  series the irreducible form P ~  (x) of  Pv,,-I (x) satisfies 
qA qtt,~,] 

cOxp A = c3p~x -- 0oq,a = { ,  

~ x q~x =t3q~x - - O o q  A = m ,  

O o ( f ' q A - - P z x ) = E m + # + m +  1 

and thus p"  (x) occurs only once in the Pad6-table  [-4, pp. 61-62].  
q~x 

Define the table with double  entry as follows: 

e~o") = 0 n = 0 ,  1, .. . ,  

Ck 1...kp X 1 " " 
q ] , ) _ c , +  l ( x )  _kl+.. .+kv=,+ t n = 0 ,  1 . . . . .  

c .(x) 2 c ,,~, ,~, k , . . . k p ~ l  � 9  
k l + . . . + k p = n  

e(n) _ ,'7(n + 1) ~ o(n + 1 ) _ _  a ( n )  
k - -  ~lk - -  ~k - 1 "lk 

q(.) q ~ +  1) (.+ l)/e~,,) 
k + l  ~ e k 

n = 0 , 1 , 2 , . . ,  k = l , 2 , . . . ,  

n = 0 , 1 , 2  . . . .  k = l ,  2 . . . .  

and  construct  the following cont inued fractions: 
(all the q~") and  e~ ") exist because f is no rma l  [5, pp. 610]) 
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e_,~ Ck(X)+[Ce-'~+ 1(X)1 q]e- '~+')]--e~le-*"+ 1)[ q(2e-'~+l)l e~2e-~§ (2) 

k=O 1 I 1 I 1 [ 1 [ 1 . . . .  

t_..._l C e _ m ( X ) l _ ~  e]l_..,[ q~/_..,[ e~2~m,i 
Z c~(~)+ I k=0 1 t 1 - I  1 ~ -  1 V 1 ~ - ~ - 1  - .. (3) 

W e  shall  n o w  p rove  tha t  these c o n t i n u e d  f rac t ions  are  of  the  s a m e  form as in 
the u n i v a r i a t e  case where  q~") a n d  e~ "~ c o n t a i n  a factor  x, a n d  also that  the 
c o n v e r g e n t s  yield the  m u l t i v a r i a t e  P a d 6 - a p p r o x i m a n t s .  

T h e o r e m  1. I f  we write "~(n)--Nq'k'n and e(k n)-Ne 'k 'n  then 63Nq k n=~Dq k . + 1  and 
t~Ne, k,n=ODe, k,n+ l "lk --Dq,k,n De, k,n , , , , 

Proof.  T h e  p roo f  is by i nduc t i on .  
F o r  k = 1 we have  

Nq.k , .=C.+l (X  ) a n d  Dq, k , .=C.(X) ,  

N~,u,. = (c. + 1 (x))2 __ c. (x)" c. + 2 (x), 

D~,k, .=C.(X ) �9 e.+ l(x)  

so tha t  

ONq,k , .=n+ l =ODq, k , .+  l ,  

t~Ne, k. . = 2 n  + 2 =OD e.k.. + 1. 

S uppose  the  t h e o r e m  holds  for q]"), .~.) e].~, 0(.). . . . .  nk . . . .  , ~k , we shall  p rove  it t hen  
for .,(") a n d  o~.) ~/k+ 1 ~ k +  1 �9 

Since  .,~"~ = q~k" + 1) ~ .  + 1)/o~.) "/k+ 1 ~k /~k ,  we have  

N q k n + l N e k n + l D e k n N q ,  k+ .q(n) 1 -- ~ . . . . . . . . . . . . . . .  D- ..... _ , 1,n 
"lk+ Ne, k,nDq, k,n+ 1 e,k,n+ 1 Dq k+ 1,n 

T h u s  ONq, k+ I , .  = ON,~,k,,,+ 1 +ON,.,,,,,,,+ ~ +ODe, k,,,=ODq, k+ 1,,,+1. 

N o w  .(.) = q~+t 1) + e~.+ 1) _ ~,(n) 
~ k +  1 " / k +  1 

_ Nq,k+ 1,.+ 1D~,,,.+ 1Dq,k+ 1,. + " "  - - " "  _ N~,k+ 1,. 

Dq, k+ 1 , n +  1De, k,n+ 1Dq,k+ l , n  De, k+ 1,n 

which  p roves  tha t  ONe, k+ 1 , .=OD ~,k+ 1,. + 1. 

This  a l r eady  genera l izes  the u n i v a r i a t e  case, where  o n l y  a factor  x r e m a i n s  
in q~k ") a n d  e~ ") after  d iv i s ion  of n u m e r a t o r  a n d  d e n o m i n a t o r .  Now cons ide r  the 
fo l lowing  descend ing  s ta i rcase  of  d i s t inc t  m u l t i v a r i a t e  P a d 6 - a p p r o x i m a n t s :  

pv_.,ol(X) 
qt~_,~, ol(X)' 
Pv-~+ 1,o](x) Pv-,,,+ 1,1](x) 
q v - , , , + l , o l ( x )  q v - , . + l , x j ( x )  ' 

PV- . -  + 2. ~1(x) 

q t t - . .+2 ,  xl(x) "'" 
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Theorem 2. Pv"~l(x) is the (2 Z#/) th convergent of the continued fraction (2). 
qv,~l(x) 

Proof. Let  Pv-~+~'Jl(x) -Ki+~, i + j = O ,  1, 
qv_,~+i,jl(X ) .... 

It  is possible to construct  a continued fraction with convergents  
Ko, K1,K 2 . . . . .  

This continued fraction has the form 

Kn- 1 - -  Kn 
Kt--Ko]+ ~176 K._I--Kn_2 

K ~  1 --~2 K , - K , _ :  

K. 1-K._2 

which can be writ ten as 

K 1 -K 2 (K,_ I - K.)(K.- 2 -K.- 3) 

using the representa t ion of pv_,,,,m(x), qt~-~, re(x), Pv_,,+ 1, re(x), qv-,,,+ 1,re(x), .-. 
given in the previous section. 

Let us denote  

(K,_  1 - K,) (K,_  2 - K , _  3) 

(Kn-K._2)(K._I-K._3) 

by A~. ~-"+ ') if n is even and by N(e-,~+ 1) if n is odd. We write also A% t-'~+ i) 
2 2 

=q]e-"+~) .  If we write down the continued fraction that  is the even con- 
t ract ion of (4) (i.e. a continued fraction having as convergents  the K2 ,  for n 
=0 ,  1 . . . .  ), we get 

~ q ( x ) +  Q - " + l ( x ) 1 -  A(le-"+1)B(( -"+I)  l_  (5) 
k=O I l - A ( (  - " +  1' I 1 - B ( ( - "  + t ) - Al2e-" + ') . . . .  

I f  we write down the cont inued fraction that  is the odd contract ion of (4) with 
[ - m  replaced by [ - ~ - 1  (i.e. a cont inued fraction having as convergents  the 

Pv-,,,, o1(x) Pv-~+ 1, u(x) Pv-,,,+ 2, 21(x) 

qv-,~,ol (x) '  qv-~+ t, u(X) ' q v - * +  2, 2](X) . . . .  

on the descending staircase (7)), we get 

t-,,,-1 ce-*(x)A(e-"~ I_ B((-"'A(2e-") I 
k~=O Ck(X)+[I_A~e_.,,)_B((_.~ ) [l_A~2+_=)_B~2+_., ) - . . . .  (6) 

It is easy to verify that  

K1-K2=q~(-'~+1) and (K2-K3)(KI-K~ 
K 2 - Ko ( K  3 - -  K 1) ( K 2  - Ko) 

l xtl K2-KoJ Ck(X)+ICe-~+ + [ - -  + (4) 
k=0 1 1 [ 1 n = 3  
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Because (5) and (6) have the same convergents  we have 

A<+-,~+ 1)B<+-m + 1)=B~t-,,,)A~r k k 

B(r 1) _t_ A ( / - , , , +  1) _ A(r ..t_ R(r 

if we put  B~ - " +  1)=0. 
So 

k = l ,  2 . . . . .  

k = l , 2  . . . .  

A~e-,,,+ 1) = q(kr  1) 
k = l ,  2 . . . . .  B~e-,,,+ 1) __ ek(e-,~+ 1) 

This completes  the proof. 
Analogous ly  we can formulate  and p rove  the next theorem. 

Theorem 3. Pte, x,](x) is the (2 m + 1) th convergent of the continued fraction (3). 
qte,,~l(x) 

This can easily be seen by writ ing down the cont inued fraction (4) with E - , ~  
replaced by ~ -  ~ -  1 ; the convergents  of  this cont inued fraction are the multi- 
var iate  Pad6-approx imants  on the following descending staircase: 

PE+-,-, g x )  
q[e-,n, 1[(x) 

P t e - , ~  + 1, 1] (X)  

q t e - , ~  + 1, 1](X) 

(7) 

Pt~-.-- ,, o~(X) 
qre - . ,  - l, ol (x) 

PEe-.., o1(X) 
qte- .,,, o1(x) 

The  following example  bo th  illustrates Theorems  2 and 3. Consider  

f ( x ) = f ( x t , x 2 ) _ x l e X ~ - x 2 e X ~ _  ~ x'~x~ 
X1--X 2 i1,12= 0 (it'+~2) ! 

= l + x  l + x  2+ �89  2 + x , x  2 + x 2  2)+ . . . .  

Take  • = 2 and m = 1. The  Pad6-approx iman t  P[2, tl (X t ,  X2) is given by 
q[2, 1] 

p[2,1l(Xl,X2)= l + x l + X z + � 8 9  l + x l + x 2  
1 3 2 X 2 1 2 2 I ~ ( x ~ + x ~ x ~ + x ,  ~+x~) ~ ( x , + x , x ~ + x g l  

_ ,  2 x 2 + x  2) , 3 5 2 +XlX~)+x~) - -  ~-(X 1 + X  1 + g ( X  1 "-}- ~ (X 1 X 2 

+ l ( x ~  + 2(x 3 x 2 + x 1 x 3 ) + 5 x 2 x2 2 + x2 4) 

qt2,11(XI'X2) = .~ (Xx+X1xz l+x1x2+x2) I  3 2 2 3 ~(Xll 2 ..~_X1X21 +xZ2) 

= � 8 9  2) 1 3 2 2 X 3 - -g(XI  "~- XI X2-~- XI X2-~- 2) '  
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According to Theorem 2, this is also the second convergent  of  the continued 
fraction (2), i.e. 

(x 3 + x~x2 + xlX~ + X~) 

l + x ~ + x 2 + ~ ( x ~ + x , x 2 + x ~ ) l _  3(x2+xlx2  +x2) _~ 
I l I 

According to Theorem 3 it is also the third convergent of  the continued 
fraction (3), i.e. 

(x2 + xl x2 + x 2) 

1+1 x l + x 2  2(X1+X2) I__ 
1 - 1 I 

- (x~  + 2x~x2 + 5x~xZz + 2xlx32 +x~) 
6(xZ + xx x2 + xZ)(xl + x2) ] 

In both  cases the QD-scheme is started with 

q]")= ~ x'( x22 x'll x~ 2 

i 1 + i 2 = n + 1  ( i ,+ i2)  ! i, =,  ( i~2-2)!" 

4. N u m e r i c a l  E x a m p l e  

The beta function is defined by 

, 

where F is the gamma  function. 
Singularities occur for x = - n and y = - n (n = 0, 1, 2 . . . .  ) and zeros for y = 

- x - n  (n=0 ,  1,2 . . . .  ). We write 

A ( x -  1, y -  1) 
B (x, y) -- 

x y  

with 

A(u, v ) = l  +uvf(u,  v). 

We will calculate the Pad6-approximant  pte,,,,l(u, v)/qte,,,,l(u,v ) for f (u,v)  by 
means of  the multivariate QD-a lgor i thm and compute  

q t e , . . ~ ( x  - 1,  y - 1)  + ( x  - 1)  ( y  - 1)  P t e , . . ~ ( x  - 1,  y - 1)  

xyqte.,,,l(x - 1, y - 1) 
( 8 )  

as an approximat ion  for B(x, y). 
The trajectories of  the poles and zeros of the beta function are shown in 

Fig. 1, while the poles of  (8) for E = 7 and m = 1 and the zeros of (8) for E = 2 
and m = 2 can respectively be found in Fig. 2 and Fig. 3. 
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5.0 
3.0 
1.0 ~ 0 . .  3~0 5;0 x 

",r 

Fig. 1 

F 
r 

-2.50 

-2.50 

2.00 

Fig. 2 

Y -0.50 -2.00 

-2.00 

0.50 x 

Fig. 3 

In both cases we remark that the vertical, horizontal and diagonal lines are 
nicely simulated, and that the drawings are symmetric because the symmetry of 
B(x, y) is preserved by the multivariate Pad6-approximants [4]. 
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