(C) Springer-Verlag 1983

The QD-Algorithm and Multivariate Padé-Approximants

Dedicated to Prof. Dr. P. Henrici on the occasion of his 60th birthday

Annie A.M. Cuyt ${ }^{\star}$
Department of Mathematics U.I.A., University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Abstract

Summary. The quotient-difference (QD) algorithm can be used to construct univariate Padé-approximants [1]. In this paper we see that it can also be used to construct the multivariate Padé-approximants introduced in [3], just by reformulating the quotient-difference algorithm as in Sect. 1. The multivariate Padé-approximants and the multivariate QD-scheme are treated in the Sects. 2 and 3 respectively. Thus for this type of multivariate Padéapproximants a link with the theory of multivariate continued fractions is established.

Subject Classifications: AMS(MOS): 65D15, CR: 5.13.

0. Introduction

It is well-known that the quotient-difference algorithm can be used to compute Padé-approximants for a univariate function [1]. They are obtained then as convergents of a continued fraction.

Several authors already have tried to generalize the concept of Padéapproximants to the multivariate case. We refer to [2, 6-9]. For all those generalizations there is no link with continued fractions. Other authors have introduced multivariate continued fractions without really obtaining Padéapproximants [11]. But if the multivariate Padé-approximants are defined, using a shift of the degrees of numerator and denominator [3], then one can construct multivariate continued fractions that provide those Padé-approximants and thus one can use the QD-algorithm to compute them. The shift of the degrees is also necessary to obtain a nontrivial denominator, as will be illustrated. For an extensive study of the properties of this type of Padéapproximants the interested reader is referred to [4].

In the last section the newly introduced multivariate QD-scheme will be used to calculate approximations for the poles and zeros of the two-variable beta-function.

[^0]
1. The Quotient-Difference Scheme

Our presentation of the QD-algorithm differs slightly from the usual one. In the one-dimensional case the two approaches are equivalent; however our approach can be generalized to the multivariate case.

Let us consider a univariate function

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

analytic in the origin.
We call the series f normal if

$$
\left|\begin{array}{lccc}
c_{n} x^{n} & c_{n+1} x^{n+1} & \ldots & c_{n+k-1} x^{n+k-1} \\
c_{n+1} x^{n+1} & & & \\
\quad \vdots & \vdots & & \vdots \\
c_{n+k-1} x^{n+k-1} & & & c_{n+2 k-2} x^{n+2 k-2}
\end{array}\right| \not \equiv 0
$$

for all $n \geqq 0$ and $k \geqq 1$. This determinant is a monomial of degree $k(n+k-1)$ in x. The condition of nontriviality is equivalent with the condition that the same determinant with $x=1$ is nonzero.

For a normal series we can construct a table with double entry of numbers $q_{k}^{(n)}$ and $e_{k}^{(n)}$ defined as follows:

$$
\begin{array}{rlrl}
e_{0}^{(n)} & =0 & & n=0,1, \ldots, \\
q_{1}^{(n)} & =\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}} & n=0,1, \ldots, \\
e_{k}^{(n)} & =q_{k}^{(n+1)}+e_{k-1}^{(n+1)}-q_{k}^{(n)} & n & =0,1,2, \ldots k=1,2, \ldots, \\
q_{k+1}^{(n)} & =q_{k}^{(n+1)} e_{k}^{(n+1)} / e_{k}^{(n)} & n=0,1,2, \ldots k=1,2, \ldots
\end{array}
$$

These rules can easily be remembered by means of the following scheme (the superscript (n) indicates a diagonal while the subscript k indicates a column):

The QD-algorithm can now be used to construct Padé-approximants to the function f. For a normal series the Padé-table is likewise normal [1].

The (ℓ, m) Padé-approximant (numerator of degree ℓ and denominator of degree m) for $\ell \geqq m$ is equal to the $(2 m)^{\text {th }}$ convergent $K_{2 m}$ of the continued fraction

$$
\left.\left.\begin{array}{l}
c_{0}+c_{1} x+\ldots+c_{\ell-m} x^{\ell-m} \\
\left.\left.\quad+\frac{c_{\ell-m+1} x^{\ell}-m+1}{1}-q_{1}^{(\ell-m+1)}\right\rfloor-e_{1}^{(\ell-m+1)}\right\rfloor-q_{2}^{(\ell-m+1)}-e_{2}^{(\ell-m+1)}-\ldots \\
\quad\lceil 1
\end{array} \right\rvert\, \frac{1}{1}\right)
$$

if $K_{0}=\sum_{k=0}^{\ell-m} c_{k} x^{k}$, and the $(2 m+1)^{\text {th }}$ convergent $K_{2 m+1}$ of the continued fraction

$$
\begin{aligned}
& c_{0}+c_{1} x+\ldots+c_{\ell-m-1} x^{\ell-m-1} \\
& \begin{array}{c}
+c_{\ell-m} x^{\ell-m}-q_{1}^{(\ell-m)}-e_{1}^{(\ell-m)} \\
\lceil 1 \\
\Gamma 1 \\
1
\end{array}
\end{aligned}
$$

if $K_{0}=\sum_{k=0}^{\ell-m-1} c_{k} x^{k}$ [1].
The terms $q_{k}^{(n)}$ and $e_{k}^{(n)}$ each contain a factor x now because of the definition of $q_{1}^{(n)}$. We shall find this property also in the multivariate QD-scheme.

2. Multivariate Padé-Approximants

During the last ten years several ways have been tried to generalize the concept of Padé-approximant to multivariate functions. For most of the generalizations there is no link with continued fractions. The definition of the multivariate Padé-approximant which follows, enables one to construct multivariate continued fractions, the convergents of which provide the Padé-approximants.

Let

$$
f\left(x_{1}, \ldots, x_{p}\right)=\sum_{k_{1}, \ldots, k_{p}=0}^{\infty} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

If we introduce the notation

$$
c_{k}(x)=\sum_{k_{1}+\ldots+k_{p}=k} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

we can also write for $f\left(x_{1}, \ldots, x_{p}\right)$:

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x)
$$

where now $x=\left(x_{1}, \ldots, x_{p}\right)$ is a vector.
Now find

$$
p_{[\ell, m]}(x)=\sum_{i=\ell m}^{\ell m+\ell} \sum_{i_{1}+\ldots+i_{p}=i} a_{i_{1} \ldots i_{p}} x_{1}^{i_{1}} \ldots x_{p}^{i_{p}}=\sum_{i=\ell m}^{\ell m+\ell} a_{i}(x)
$$

and

$$
q_{[\ell, m]}(x)=\sum_{j=\ell m}^{\ell m+m} \sum_{j_{1}+\ldots+j_{p}=j} b_{j_{1} \ldots j_{p}} x_{1}^{j_{1}} \ldots x_{p}^{j_{p}}=\sum_{j=\ell m}^{\ell m+m} b_{j}(x)
$$

such that

$$
\begin{equation*}
\left(f \cdot q_{[\ell, m]}-p_{[\ell, m]}\right)(x)=\sum_{k_{1}+\ldots+k_{p} \geqq \ell m+\ell+m+1} d_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}} . \tag{1}
\end{equation*}
$$

If we denote by ∂_{0} the order of a power series, i.e. the degree of the first nonzero term (where a term $x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}$ is said to be of degree $k_{1}+\ldots+k_{p}$), then condition (1) can be reformulated as

$$
\partial_{0}\left(f \cdot q_{[\ell, m]}-p_{[\ell, m]}\right) \geqq \ell m+\ell+m+1 .
$$

In the sequel of the text ∂ will denote the degree of a polynomial.
The shift of the degrees of $p_{[\ell, m]}(x)$ and $q_{[\ell, m]}(x)$ by ℓm is necessary to obtain a nontrivial solution for the $b_{j_{1} \ldots j_{p}}$. The following simple example will illustrate this.

Consider

$$
f(x)=f\left(x_{1}, x_{2}\right)=1+x_{1}+\sin \left(x_{1} x_{2}\right)=1+x_{1}+\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x_{1} x_{2}\right)^{2 k+1}}{(2 k+1)!}
$$

Now take $\ell=1, m=3$ and calculate

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right)= & a_{00}+a_{10} x_{1}+a_{01} x_{2} \\
q\left(x_{1}, x_{2}\right)= & b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{20} x_{1}^{2}+b_{11} x_{1} x_{2}+b_{02} x_{2}^{2}+b_{30} x_{1}^{3} \\
& +b_{21} x_{1}^{2} x_{2}+b_{12} x_{1} x_{2}^{2}+b_{03} x_{2}^{3}
\end{aligned}
$$

such that

$$
\partial_{0}(f \cdot q-p) \geqq \ell+m+1
$$

i.e. without performing a shift in p, q and $f \cdot q-p$.

The only solution for $p\left(x_{1}, x_{2}\right)$ and $q\left(x_{1}, x_{2}\right)$ is
which is useless.

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right) \equiv 0 \\
& q\left(x_{1}, x_{2}\right) \equiv 0
\end{aligned}
$$

A representation of $p_{[\ell, m]}(x)$ and $q_{[\ell, m]}(x)$ satisfying $\partial_{0}\left(f \cdot q_{[\ell, m]}-p_{[\ell, m]}\right) \geqq \ell m$ $+\ell+m+1$, is

$$
\begin{aligned}
& p_{[\ell, m]}(x)=\left|\begin{array}{cccc}
f_{\ell}(x) & f_{\ell-1}(x) & \ldots & f_{\ell-m}(x) \\
c_{\ell+1}(x) & c_{\ell}(x) & \ldots & c_{\ell-m+1}(x) \\
\vdots & & & \\
c_{\ell+m}(x) & & & c_{\ell}(x)
\end{array}\right|, \\
& q_{[\ell, m]}(x)=\left|\begin{array}{cccc}
1 & \ldots & \ldots & 1 \\
c_{\ell+1}(x) & c_{\ell}(x) & \ldots & c_{\ell-m+1}(x) \\
\vdots & & & \\
c_{\ell+m}(x) & \ldots & \ldots & c_{\ell}(x)
\end{array}\right|
\end{aligned}
$$

where $f_{\ell}(x)=\sum_{k=0}^{\ell} c_{k}(x)$.

This is a direct generalization of the existing univariate formulas [10]. Observe that here the term

$$
c_{k}(x)=\sum_{k_{1}+\ldots+k_{p}=k} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

takes the place of the coefficient c_{k}. This is precisely the difference between the usual definition of the QD-table and the one given in Sect. 1. More about this type of multivariate Padé-approximants can be found in [3].

3. The Multivariate QD-Scheme

We proceed exactly as in the univariate case.
We call the series f normal if

$$
\left|\begin{array}{lclc}
c_{n}(x) & c_{n+1}(x) & \ldots & c_{n+k-1}(x) \\
c_{n+1}(x) & & & \vdots \\
\vdots & & & \vdots \\
c_{n+k-1}(x) & & & \\
c_{n+2 k-2}(x)
\end{array}\right| \neq 0
$$

for all $n \geqq 0$ and $k \geqq 1$, where now

$$
c_{k}(x)=\sum_{k_{1}+\ldots+k_{p}=k} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

For a normal series the irreducible form $\frac{p_{\Delta}}{q_{\Delta}}(x)$ of $\frac{p_{[\ell, m]}}{q_{[\ell, m]}}(x)$ satisfies

$$
\begin{aligned}
& \partial_{1} p_{\Delta}=\partial p_{\Delta}-\partial_{0} q_{\Delta}=\ell, \\
& \partial_{1} q_{\Delta}=\partial q_{\Delta}-\partial_{0} q_{\Delta}=m, \\
& \partial_{0}\left(f \cdot q_{\Delta}-p_{\Delta}\right)=\ell m+\ell+m+1
\end{aligned}
$$

and thus $\frac{p_{\Delta}}{q_{\Delta}}(x)$ occurs only once in the Padé-table [4, pp. 61-62].
Define the table with double entry as follows:

$$
\begin{aligned}
& e_{0}^{(n)}=0 \\
& q_{1}^{(n)}=\frac{c_{n+1}(x)}{c_{n}(x)}=\frac{\sum_{k_{1}+\ldots+k_{p}=n+1} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}}{\sum_{k_{1}+\ldots+k_{p}=n} c_{k_{1} \ldots k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}} \\
& e_{k}^{(n)}=q_{k}^{(n+1)}+e_{k-1}^{(n+1)}-q_{k}^{(n)} \\
& q_{k+1}^{(n)}=q_{k}^{(n+1)} e_{k}^{(n+1)} / e_{k}^{(n)} \\
& n=0,1, \ldots, \\
& n=0,1, \ldots, \\
& n=0,1,2, \ldots k=1,2, \ldots, \\
& n=0,1,2, \ldots k=1,2, \ldots
\end{aligned}
$$

and construct the following continued fractions:
(all the $q_{k}^{(n)}$ and $e_{k}^{(n)}$ exist because f is normal [5, pp.610])

$$
\begin{align*}
& \sum_{k=0}^{\ell-m-1} c_{k}(x)+\frac{c_{\ell-m}(x)}{\left\lceil\frac{c_{1}}{}\right.}-\frac{q_{1}^{(\ell-m)}}{1}-\frac{e_{1}^{(\ell-m)}}{1}-\frac{q_{2}^{(\ell-m)}}{\mid 1}-\frac{e_{2}^{(\ell-m)}}{\lceil }-\ldots \tag{3}
\end{align*}
$$

We shall now prove that these continued fractions are of the same form as in the univariate case where $q_{k}^{(n)}$ and $e_{k}^{(n)}$ contain a factor x, and also that the convergents yield the multivariate Padé-approximants.
Theorem 1. If we write $q_{k}^{(n)}=\frac{N_{q, k, n}}{D_{q, k, n}}$ and $e_{k}^{(n)}=\frac{N_{e, k, n}}{D_{e, k, n}}$ then $\partial N_{q, k, n}=\partial D_{q, k, n}+1$ and
$\partial N_{e, k, n}=\partial D_{e, k, n}+1$
Proof. The proof is by induction.
For $k=1$ we have

$$
\begin{aligned}
& N_{q, k, n}=c_{n+1}(x) \quad \text { and } \quad D_{q, k, n}=c_{n}(x), \\
& N_{e, k, n}=\left(c_{n+1}(x)\right)^{2}-c_{n}(x) \cdot c_{n+2}(x), \\
& D_{e, k, n}=c_{n}(x) \cdot c_{n+1}(x)
\end{aligned}
$$

so that

$$
\begin{aligned}
& \partial N_{q, k, n}=n+1=\partial D_{q, k, n}+1 \\
& \partial N_{e, k, n}=2 n+2=\partial D_{e, k, n}+1 .
\end{aligned}
$$

Suppose the theorem holds for $q_{1}^{(n)}, \ldots, q_{k}^{(n)}, e_{1}^{(n)}, \ldots, e_{k}^{(n)}$; we shall prove it then for $q_{k+1}^{(n)}$ and $e_{k+1}^{(n)}$.

Since $q_{k+1}^{(n)}=q_{k}^{(n+1)} e_{k}^{(n+1)} / e_{k}^{(n)}$, we have

$$
q_{k+1}^{(n)}=\frac{N_{q, k, n+1} N_{e, k, n+1} D_{e, k, n}}{N_{e, k, n} D_{q, k, n+1} D_{e, k, n+1}}=\frac{N_{q, k+1, n}}{D_{q, k+1, n}} .
$$

Thus $\partial N_{q, k+1, n}=\partial N_{q, k, n+1}+\partial N_{e, k, n+1}+\partial D_{e, k, n}=\partial D_{q, k+1, n}+1$.
Now $\quad e_{k+1}^{(n)}=q_{k+1}^{(n+1)}+e_{k}^{(n+1)}-q_{k+1}^{(n)}$

$$
=\frac{N_{q, k+1, n+1} D_{e, k, n+1} D_{q, k+1, n}+\ldots-\ldots}{D_{q, k+1, n+1} D_{e, k, n+1} D_{q, k+1, n}}=\frac{N_{e, k+1, n}}{D_{e, k+1, n}}
$$

which proves that $\partial N_{e, k+1, n}=\partial D_{e, k+1, n}+1$.
This already generalizes the univariate case, where only a factor x remains in $q_{k}^{(n)}$ and $e_{k}^{(n)}$ after division of numerator and denominator. Now consider the following descending staircase of distinct multivariate Padé-approximants:

$$
\begin{array}{ll}
\frac{p_{[\ell-m, 0]}(x)}{} \\
q_{[\ell-m, 0]}(x)
\end{array}, ~ \begin{array}{ll}
\frac{p_{[\ell-m+1,0]}(x)}{q_{[\ell-m+1,0]}(x)} & \frac{p_{[\ell-m+1,1]}(x)}{q_{[\ell-m+1,1]}(x)}, \\
& \frac{p_{[\ell-m+2,1]}(x)}{q_{[\ell-m+2,1]}(x)} \cdots
\end{array}
$$

Theorem 2. $\frac{p_{[\ell, m]}(x)}{q_{[\ell, m]}(x)}$ is the $(2 m)^{\mathrm{th}}$ convergent of the continued fraction (2).
Proof. Let $\frac{p_{[\ell-m+i, j]}(x)}{q_{[\ell-m+i, j]}(x)}=K_{i+j}, i+j=0,1, \ldots$.
It is possible to construct a continued fraction with convergents $K_{0}, K_{1}, K_{2}, \ldots$

This continued fraction has the form

$$
K_{0}+\frac{K_{1}-K_{0}}{\mid 1}+\sum_{n=2}^{\infty} \frac{\frac{K_{n-1}-K_{n}}{K_{n-1}-K_{n-2}}}{\frac{K_{n}-K_{n-2}}{K_{n-1}-K_{n-2}}}
$$

which can be written as

It is easy to verify that

$$
\frac{K_{1}-K_{2}}{K_{2}-K_{0}}=q_{1}^{(\ell-m+1)} \quad \text { and } \quad \frac{\left(K_{2}-K_{3}\right)\left(K_{1}-K_{0}\right)}{\left(K_{3}-K_{1}\right)\left(K_{2}-K_{0}\right)}=e_{1}^{(\ell-m+1)}
$$

using the representation of $p_{\left\{\ell_{-m}, 0\right]}(x), q_{\left\{\ell_{-m}, 0\right]}(x), p_{\left[\ell_{-m+}+1,0\right]}(x), q_{[\ell-m+1,0]}(x), \ldots$ given in the previous section.

Let us denote

$$
\frac{\left(K_{n-1}-K_{n}\right)\left(K_{n-2}-K_{n-3}\right)}{\left(K_{n}-K_{n-2}\right)\left(K_{n-1}-K_{n-3}\right)}
$$

by $A_{\frac{n}{2}}^{(\ell-m+1)}$ if n is even and by $B_{\frac{n-1}{2}}^{(\ell-m+1)}$ if n is odd. We write also $A_{1}^{(\ell-m+1)}$ $=q_{1}^{\left(\ell^{2}-m+1\right)}$. If we write down the continued fraction that is the even contraction of (4) (i.e. a continued fraction having as convergents the $K_{2 n}$ for n $=0,1, \ldots)$, we get

$$
\begin{equation*}
\sum_{k=0}^{\ell-m} c_{k}(x)+\frac{c_{\ell-m+1}(x)}{1-A_{1}^{(\ell-m+1)}}-\frac{A_{1}^{(\ell-m+1)} B_{1}^{(\ell-m+1)}}{1-B_{1}^{\ell-m+1)}-A_{2}^{(\ell-m+1)}}-\ldots . \tag{5}
\end{equation*}
$$

If we write down the continued fraction that is the odd contraction of (4) with $\ell-m$ replaced by $\ell-m-1$ (i.e. a continued fraction having as convergents the

$$
\frac{p_{[\ell-m, 0]}(x)}{q_{[\ell-m, 0]}(x)}, \frac{p_{[\ell-m+1,1]}(x)}{q_{[\ell-m+1,1]}(x)}, \frac{p_{[\ell-m+2,2]}(x)}{q_{[\ell-m+2,2]}(x)}, \ldots
$$

on the descending staircase (7)), we get

$$
\begin{equation*}
\sum_{k=0}^{\ell-m-1} c_{k}(x)+\frac{c_{\ell-m}(x) A_{1}^{(\ell-m)}}{\sqrt{1-A_{1}^{(\ell-m)}-B_{1}^{(\ell-m)}}}-\frac{B_{1}^{(\ell-m)} A_{2}^{(\ell-m)}}{\sqrt{1-A_{2}^{(\ell-m)}-B_{2}^{\ell-m)}}}-\ldots \tag{6}
\end{equation*}
$$

Because (5) and (6) have the same convergents we have

$$
\begin{array}{cc}
A_{k}^{(\ell-m+1)} B_{k}^{(\ell-m+1)}=B_{k}^{(\ell-m)} A_{k+1}^{(\ell-m)} & k=1,2, \ldots, \\
B_{k-1}^{(\ell-m+1)}+A_{k}^{(\ell-m+1)}=A_{k}^{(\ell-m)}+B_{k}^{(\ell-m)} & k=1,2, \ldots
\end{array}
$$

if we put $B_{0}^{(\ell-m+1)}=0$.
So

$$
\begin{aligned}
& A_{k}^{(\ell-m+1)}=q_{k}^{(\ell-m+1)} \\
& B_{k}^{(\ell-m+1)}=e_{k}^{(\ell-m+1)}
\end{aligned} \quad k=1,2, \ldots .
$$

This completes the proof.
Analogously we can formulate and prove the next theorem.
Theorem 3. $\frac{p_{[\ell, m]}(x)}{q_{[\ell, m]}(x)}$ is the $(2 m+1)^{\text {th }}$ convergent of the continued fraction (3).
This can easily be seen by writing down the continued fraction (4) with $\ell-m$ replaced by $\ell-m-1$; the convergents of this continued fraction are the multivariate Padé-approximants on the following descending staircase:

$$
\begin{array}{lll}
\frac{p_{[\ell-m-1,0]}(x)}{q_{[\ell-m-1,0]}(x)} & \\
\frac{p_{[\ell-m, 0]}(x)}{q_{[\ell-m, 0]}(x)} & \frac{p_{[\ell-m, 1]}(x)}{q_{[\ell-m, 1]}(x)} & \tag{7}\\
& \frac{p_{[\ell-m+1,1]}(x)}{q_{[\ell-m+1,1]}(x)} & \cdots
\end{array}
$$

The following example both illustrates Theorems 2 and 3. Consider

$$
\begin{aligned}
f(x)=f\left(x_{1}, x_{2}\right) & =\frac{x_{1} e^{x_{1}}-x_{2} e^{x_{2}}}{x_{1}-x_{2}}=\sum_{i_{1}, i_{2}=0}^{\infty} \frac{x_{1}^{i_{1}} x_{2}^{i_{2}}}{\left(i_{1}+i_{2}\right)!} \\
& =1+x_{1}+x_{2}+\frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)+\ldots
\end{aligned}
$$

Take $\ell=2$ and $m=1$. The Padé-approximant $\frac{p_{[2,1]}}{q_{[2,1]}}\left(x_{1}, x_{2}\right)$ is given by

$$
\begin{aligned}
p_{[2,1]}\left(x_{1}, x_{2}\right)= & \left|\begin{array}{cc}
1+x_{1}+x_{2}+\frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right) & 1+x_{1}+x_{2} \\
\frac{1}{6}\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right) & \frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)
\end{array}\right| \\
= & \frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)+\frac{1}{3}\left(x_{1}^{3}+\frac{5}{2}\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)+x_{2}^{3}\right) \\
& +\frac{1}{12}\left(x_{1}^{4}+2\left(x_{1}^{3} x_{2}+x_{1} x_{2}^{3}\right)+5 x_{1}^{2} x_{2}^{2}+x_{2}^{4}\right) \\
q_{[2,1]}\left(x_{1}, x_{2}\right)= & \left|\begin{array}{cc}
1 & 1 \\
\frac{1}{6}\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right) & \frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)
\end{array}\right| \\
= & \frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)-\frac{1}{6}\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right) .
\end{aligned}
$$

According to Theorem 2, this is also the second convergent of the continued fraction (2), i.e.

$$
1+x_{1}+x_{2}+\frac{\frac{1}{2}\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)}{1}-\frac{\frac{\left(x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3}\right)}{3\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)}}{1}
$$

According to Theorem 3 it is also the third convergent of the continued fraction (3), i.e.

In both cases the QD-scheme is started with

$$
q_{1}^{(n)}=\sum_{i_{1}+i_{2}=n+1} \frac{x_{1}^{i_{1}} x_{2}^{i_{2}}}{\left(i_{1}+i_{2}\right)!} / \sum_{i_{1}+i_{2}=n} \frac{x_{1}^{i_{1}} x_{2}^{i_{2}}}{\left(i_{1}+i_{2}\right)!} .
$$

4. Numerical Example

The beta function is defined by

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

where Γ is the gamma function.
Singularities occur for $x=-n$ and $y=-n(n=0,1,2, \ldots)$ and zeros for $y=$ $-x-n(n=0,1,2, \ldots)$. We write

$$
B(x, y)=\frac{A(x-1, y-1)}{x y}
$$

with

$$
A(u, v)=1+u v f(u, v)
$$

We will calculate the Padé-approximant $p_{[\ell, m]}(u, v) / q_{[\ell, m]}(u, v)$ for $f(u, v)$ by means of the multivariate QD-algorithm and compute

$$
\begin{equation*}
\frac{q_{[\ell, m]}(x-1, y-1)+(x-1)(y-1) p_{[\ell, m]}(x-1, y-1)}{x y q_{[\ell, m]}(x-1, y-1)} \tag{8}
\end{equation*}
$$

as an approximation for $B(x, y)$.
The trajectories of the poles and zeros of the beta function are shown in Fig. 1, while the poles of (8) for $\ell=7$ and $m=1$ and the zeros of (8) for $\ell=2$ and $m=2$ can respectively be found in Fig. 2 and Fig. 3.

Fig. 1

Fig. 2

Fig. 3

In both cases we remark that the vertical, horizontal and diagonal lines are nicely simulated, and that the drawings are symmetric because the symmetry of $B(x, y)$ is preserved by the multivariate Padé-approximants [4].

References

1. Brezinski, C.: Padé-type approximation and general orthogonal polynomials. ISNM 50. Basel: Birkhäuser Verlag 1980
2. Chisholm, J.S.R.: N-variable rational approximants. Padé and rational approximation: theory and applications. Saff, E.B., Varga, R.S. (eds.). London: Academic Press, pp. 23-42, 1977
3. Cuyt, A.A.M.: Multivariate Padé-approximants. (to appear in J. Math. Anal. Appl.)
4. Cuyt, A.A.M.: Abstract Padé Approximants for operators: theory and applications. Ph. D., Universitaire Instelling Antwerpen, 1982
5. Henrici, P.: Applied and computational complex analysis I. New York: John Wiley 1974
6. Hughes Jones, R.: General rational approximants in n variables. J. Approximation Theory 16, 201-233 (1976)
7. Karlsson, J., Wallin, H.: Rational approximants by an interpolation procedure in several variables. Padé and rational approximation: theory and applications. Saff, E.B., Varga, R.S. (eds.). London: Academic Press, pp.83-100, 1977
8. Lutterodt, C.H.: A two-dimensional analogue of Padé approximant theory. J. Phys. A: Math. 7 (9), 1027-1037 (1974)
9. Lutterodt, C.H.: Rational approximants to holomorphic functions in n dimensions. J. Math. Anal. Appl. 53, 89-98 (1976)
10. Perron, O.: Die Lehre von den Kettenbrüchen. Stuttgart: Teubner, 1977
11. Siemaszko, W.: Thiele-type branched continued fractions for two-variable functions. (to appear in J. Comp. Appl. Maths.)

[^0]: * Aspirant M.F.W.O. (Belgium)

