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SUMMARY

In chapter I the concept of Padé approximants is generalized for nonlinear operators
F: X > Y where X is a Banach space and Y is a commutative Banach algebra, starting
from analyticity as is done in the classical theory. The generalization is such that
the classical univariate Padé approximant (X = R = Y) is a special case of the theory.
We discuss the existence and unicity of a solution of the Padé-approximation problem
of order (n,m) for F and prove that a lot of the properties for univariate Padé appro-
ximants remain valid: several covariance properties, recurrence relations, the epsi-
lon algorithm , the qd-algorithm, the structure of the Padé table, criteria for regu-
larity and normality of an entry of the Padé table. We are also able to prove a pro-
jection property and a product property.

In chapter IT the multivariate Padé approximants (X = ]Qp, Y = R) are studied more
extensively. We prove for instance the nontriviality of a solution of the Padé-appro-
ximation problem and the near-Toeplitz structure of the homogeneous system of equations.
Also an extra covariance property and more recurrence relations are formulated. The
multivariate Padé approximants introduced here are compared with other definitions of
Padé approximants for multivariate functions given by different authors in the last
few years. Our definition turns out to be an interesting generalization too.

Most of the applications are discussed in chapter III, except the acceleration of con-
vergence of a table with multiple entry which is done by means of multivariate Padé
approximants and therefore added to chapter II.

As far as the nonlinear operator equations are concerned, we treat the solution of
nonlinear systems of equations, initial value problems, boundary value problems,
partial differential equations and integral equations. An interesting procedure, espe-
cially in the neighbourhood of singularities, is the Halley-iteration which is newly
introduced here. Its numerical stability for the solution of a system of nonlinear
equations is formulated at the end of chapter III.



§ 1.
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2.1.

CHAPTER I: ABSTRACT PADE APPROXIMANTS IN OPERATOR THEORY

MOTIVATION

Padé approximants are a frequently used tool for the solution of mathematical problems:
the solution of a nonlinear equation, the acceleration of convergence, numerical inte-
gration by means of nonlinear techniques, the solution of ordinary and partial diffe-
rential equations. In the neighbourhood of singularities the use of Padé approximants
can be very interesting.

Many attempts have been made to generalize the concept of Padé approximants in some
sense; we refer to definitions of multivariate Padé approximants by Bose [ 7], Chisholm
[11, 12, 13, 14], Karlsson and Wallin [ 32], Levin [ 34] and Lutterodt [37], to quadratic
approximants and their generalizations [ 45, 21], to operator Padé approximants for
formal power series in a parameter with non-commuting elements of a certain algebra

as coefficients [ 4], to matrix-valued Padé approximants [3, 46], to Padé approximants
for the operator exponential [17] and so on.

It would be important to generalize the concept of Padé approximants for nonlinear
operators, following the ideas of the classical theory, for this would enable us to
prove a lot of the classical properties for the generalizations as well and it would
also enable us to use those generalizations for the solution of nonlinear operator
equations. these are more general problems than the ones we solved with the aid of
univariate Padé approximants; we mention nonlinear systems of equations, nonlinear
initial value and boundary value problems, nonlinear partial differential equations
and nonlinear integral equations.

Such a generalization is treated here.

INTRODUCTION

Banach spaces and Banach algebras

In ordinary analysis we work with the real or complex number system. Here we shall
work in complete normed spaces which are generalizations of these number systems.
Since linear spaces may consist of such interesting mathematical objects as vectors
with a finite or infinite number of components or functions that satisfy given con-
ditions, we shall be able to deal with a wide variety of problems.

In abstract terms, a linear vector space X over the scalar field A (where A i1s R or
L) is a set of elements with two operations, called addition and scalar multiplica-

tion, which satisfy certain conditions:



2.2.

a) the set X is a commutative group with respect to the operation of addition ( we
shall denote the unit for the addition by O)

b) for any scalars A, uin A and any elements x, y in X, the following rules hold:

ax € X
T.x = x
o.x =0

(A+u)x = axX+px

Xy} = axtay
The algebraic structure of a linear space is similar to that of the real or complex
mumber system. However, to deal with other concepts of theoretical and computational
importance, such as accuracy of approximation, convergence of sequences, and so on,
it is necessary to introduce additional structure into such spaces.
X is called a normed linear space if for each element x in X, a finite non-negative
real number [xl, called the norm of x, is defined and the following conditions are
satisfied:
a) Ixl = o if and only if x = O
by daxdl = 1Al U=l
c) lxeyll = dIxl + Uyl

In the solution of many problems the basic issue is the existence of a limit X of an
infinite sequence {xi} of elements of X. A normed linear space X is said to be complete
if every Cauchy sequence of elements of X converges to a limit which is an element of
X. Such a complete normed linear space is called a Banach space.

Some Banach spaces have the property that the product xy of two elements of the space
is defined and is also an element of the space. Such a Banach space is called a Banach

algebra if
Ixyll < ix iyl

A Banach algebra is said to be commutative if
Xy = yx

and we say that it has a unit for the multiplication, which we shall denote by I, if
x.I=x=1x
The spaces RP and ©P for example are Banach algebras with unit if the multiplication

is defined component-wise.

Linear and muliilinear operators

Many mathematical operations which transform one vector or function into another have
certain simple algebraic properties. We shall now discuss such operators.

An operator L which maps a linear space X into a linear space Y over the same scalar
field A so that for each x in X there is a uniquely defined element Lx in Y, is called

linear if it is



1}

Lx] + sz

b) homogeneous: L{Ax) = ilx

a) additive: L(x1+x2)

1f X=RP and Y=R? then a linear operator L has a unique representation as a gqxp matrix.
Another example of a linear operator is furnished by differentiation; the operator
D=§? maps X=C'{{0,1]) into Y=C([0,1]) with
Dx(t) = = y(®)
If X and Y are linear spaces over a common scalar field A , then the set of all linear
operators from X into Y becomes a linear space over A if addition is defined by
(L1+L2)x = L1X+sz
and scalar multiplication by
(Lyx = a(lx)
The norm of a linear operator L is defined by

L = sup  HLx
Il =1
and the operator L is called bounded if LIl < e.

We know that a continuous linear operator L from a Banach space X into a Banach space
Y is bounded [ 471 pp. 38] and also that
TIxl = ILi.Uxi
Clearly the set L(X,Y) of all bounded linear operators from a Banach space X into a
Banach space Y is a Banach space itself. So we may consider linear operators which map
X into L(X,Y). For such an operator B and for X, and x
Bx, = L

1
a linear operator from X into Y, and

7 in X, we would have

Bx1x2 = (Bx1)x2
an element of Y.

The operator B is called a bilinear operator from X into Y. Since the bounded linear
operators from X into L(X,Y) form themselves a linear space L{X,L{X,Y)) which we shall
denote by L(Xz,Y), the foregoing process could be repeated, leading to a whole hierarchy
of linear operators and spaces. These classes of operators play a fundamental role in
the differential calculus in Banach spaces.

A k-linear operator L on X is an operator L:Xk - Y which is linear and homogeneous in

each of its arguments separately, If XqZee FX =X, We shall use the notation
ka = LXT"‘Xk
We write L(Xk,Y) for the set of all bounded k-linear operators from X into Y.
We define a o-linear operator on X to be a constant function, i.e. for y fixed in Y,
we have

Lx = y for all x in X

The set L(X°,Y) is identified with Y.

If L € L(X™,Y) and XyserarX, ¢ X with k= £ = 1 then
Lx cenXy

1
is a bounded (k-{)-linear operator.



2.3.

In general the elements LXI"'Xk and in ce Xy with (xl,...,xk)in Xk and (ii""’ik)
a permutation of (1,...,k) are differentzso tﬁ%t actually k! k-linear operators are
associated with a given k-linear operator L.
But if

L Xy Xy =L Xi1"'xik
for all (x1,...,xk) in Xk and for all permutations (11,...,ik) of (1,...,k) [41 pp.
103~104] then the k-linear bounded operator L is called symmetric.
If Y is a Banach algebra, multilinear operators can also be obtained by forming tensor-

products.

Definition I.2.1.:
Let F : X>Y and G : X~ Y be operators.
The product F.G is defined by (F.G)(x) = F{x).G(x) in Y.

Definition I.2.2.:

Let X], . Xb, 21, ceay Zq be vector spaces and let
FooXy oo x Xp - Y be bounded and p-linear and

G : Zi X ae. % Zq - Y be bounded and g-linear.

The tensorproduct F® G : X% voe x Xb x Zyx eew % Zq - Y

is bounded and (p+q)-linear when defined by

@®G)M-~X Zye002 =F X, ... X .m1“.z

q 1 P q

{23 pp. 318].

Fréchet—-derivatives

An operator F from X into Y is called nonlinear if it is not a linear operator.
Now suppose that F is an operator that maps a Banach space X into a Banach space Y.
If L in L(X,Y) exists such that

A - -
HF(XO+ x) F(xo) Laxi

lim
I1Axil~o Il Axd
then F is said to be Fréchet-differentiable at X and the bounded linear operator
= v
L=F (xo)

is called the first Fréchet-derivative of F at X, -
Note that the classical rules for differentiation, like the chain rule still hold
for Fréchet differentiation. In practice, to differentiate a given nonlinear operator
F, we attempt to write the difference F(XO+AX) - P(xo} in the form
- = AxA Ja$
F(xo+Ax) F(xo) L{xo, x)hx + n(xo, x)



where L(xo,Ax) is a bounded linear operator for given L and ax with

1lim L(x ,ax) = L € L(X,Y)
fexfo  ©
and
I (x s 22}l

lim —T= =0

Il ax]l~o

To illustrate this process, consider the operator F in C({0,1}) defined by

F(x) = x(t) f s+t x(s) ds 0=t=<1

The difference F(x +AX) - F(x ) equals

X t) f ey 4x(s) ds + ax(t) f —:? xo(s) ds + ax(t) f s+t 2x(s) ds
So the operator L(x ,4X) equals
1
xo(t) (f);# Jds + [ ] f s+t 0(s) ds + [ ] j S+t px(s) ds

where [ 1 is a place holder and is used to indicate the position of the argument of
the operator L(x LAX) .
Now L(x ,0X) 1s a contlnuous function of Ax, so we may set Ax = 0 to obtain F'(xo) =

Frix) = x(8) f—t[ 1ds + [ ] f 5 %, (8) ds

where now [ ] indicates the position of the argument of the linear operator F‘(xo)-

Suppose that an operator F from X into Y is differentiable at X, and also at every
point of the open ball B(xo,r) with centre X, and radius r »o. For each x in B(xo,r)
P'(xo) will be an element of the space L(X,Y). Consequently F' may be considered to
be an operator defined in a neighbourhood of X, - We know that F' will be differentiable
at X, if a bounded linear operator B from X into L(X,Y) exists such that

1im HF'(xO+Ax) - F'(xo) - BAXIl
1 Axll~o

= 0

il Axil
Such a bounded linear operator B is known to be a bilinear operator and if it exists,

it is called the second derivative of F at X, and denoted by F"(xo) = B. Thus the
second derivative of an operator F is obtained by differentiating its first derivative
F'. Now it is possible to give an inductive definition of higher derivatives of an

operator F.

. Abstract polynomials

If L is a k-linear operator from a Banach space X into a Banach algebra Y, then the
operator P from X into Y defined by



k .
P(x) = Lx~ for x in X
is a nonlinear operator. In this way we can define abstract polynomials.

Definition I1.2.3.:

An abstract polynomial is a nonlinear operator P : X - Y such that

P(x) = A & + A 1xn—1 * ...+ A with

A, € L(X , Y) and Ai symmetric { 41 p. 107].

The degree of P(x) is n. We also introduce the following notations.
If there exists a positive integer j1 such that for all o = k < j1: Akxk z O and

J
A‘ X ! £ 0 then 3, P = j1 is called the order of the abstract polynomial P.
1
If there exists a positive integer Jz such that for all 32 < k =n: Akxk = 0 and
]
2
A. X
3y T2
Abstract polynomials are differentiated as in elementary calculus: if P(x) =

Anxn + Aﬁqxn_1 toees v AL then the Fréchet-derivatives of P at x, are

£ 0 then 3P = is called the exact degree of the abstract polynomial P.

P' (x) =nA x“1 et 2Ay X+ A €L, V)

n-2 2
n{n-1 An Xg Tt e # 2 A2 e L(X5, Y)

P )

P(n)(x) =nl A eLOP, V)
We emphasis the fact that for an operator F: X » Y, the k Fréchet-derivative at X»
F (k) (x ), is a symmetric k-linear and bounded operator {41 pp. 110]. Examples of ab~
stract polynomials and k th Fréchet~derivatives of a nonlinear operator can be found
in § 3. of this chapter.

We can easily prove the following important lemmas for abstract polynomials.

Lemma I.2.1.:
Let the abstract polynomial P be given by P(x) = 32 Aix .
If P(x) = O then Ai =0 for i = 0,...,n.

Lemma I.2.2.:
Let V be an abstract polynomial and U a continuous operator with D{U) # @.

If Ux).V(x) = O then V(x) =

Proof:
Since D{U) # @, we can find X, in X such that U(xo) is regular.



For the abstract polynomial V{(x) we can write

n
Vi{x) = kz E%-V(k} (xo) (x - xo)k {41 pp. 111
=0

with-a%-v(o) (xo) (x - xo)o= V(xo)

Now U(xo).v(xo) =0 and s0 M(xo) = 0.
Since U is continuous, D(U) is an open set. Thus there is an

open ball B(xo, r} with centre X, and radius r » o, such that

B(xo, r) < D(U), in other words such that for all x in B(xo, r):

U(x) is regular.
This implies that for all x in B(xo, r) @ V(x) =0,
For V'(xo) we can write

VG ) = V(x)) - V' (x)hl

1lim =0
fihfl~o fihii

Or equivalently for Jhll < r

v (x_nl
lim ————fgl—— =0

fihilbo Hnll

So Ve » 0, 36 > o: [lhil < v = min(5,1) = HV'(Xo)hH = glhll

Take x in X\{0}. Then H%Y Ixl™! xll < v and so

IV Ge) G x50 = eligy ™ x

v
or equivalently, sincg-iniw-> o
HV'(xo) xlh = elixlf

For x = 0 also HV'(xO) xlb = ellxd
Now Iiv'(xo) I = infiMz o | i!v'{xoy x = Mixd for all x in X}

and thus (I.2.1) implies HV’(XO)H = o.

(1.2.1



For every x in X we have now }IV'(XO] xfl = NV’(XO) fixjl = o
and so V' (xo) x =0 or V’(xo) = 0 as operator X - Y.
To proceed, take x in B(xo,r). A radius T, >0 exists such that

for every y in B(x, ro) d B(xo,r) V() =0

So we can prove that for all x in B(xo, r) :V'(x) = 0.
Repeating the previous procedure,
we can now prove that V(Z) (XO) = 0.
And so on till we have V(n) (xo) = 0 and thus V(x) = O.
~
Lerma I.2.3.:
vy )
Let the nontrivial abstract polynomials V and W be given by V(x) = z Vixl
W, i=\/1
- 3 i - = = _—
and W(x) i ij with aOV vy and aV Vys 3, T Wy and aW W,
1

If D(V) # @ and Y is a commutative Banach algebra without nilpotent elements,

then aW = a(V.W) - vy

Proof:
If V(x) or W(x) are monomials, the proof is trivial.

Write aO(V.W) = pq and 3(V.W) = py; we always have that

VitWy S Py E P, TV, W,

Suppose aWZa(V.W)—V1+T.
v W
Then {V x2.% x%:0
v W
2 2
v Wy~ 1 v,-1 w
v,oxPow oxtoev o xP W xfe0
47 V2 2 \: 2
pytl-w w v potl-v
\ Vp,+1- x2 ! W x}+.+\/ x1 14 XZ 15
AR Y Vi Pp* 1Yy

with p2+1 T Wty

This implies



T+v,~v
\ 1 s

\_ VX (Ww X 2) 21
2

n
o

W

]+VZ'VT
and thus V(x) . (W x
Y2

2)

m
o

Since Y contains no nilpotent elements: WW x " =0.
2

This contradicts aW = W

The following example will illustrate that for lemma 1.2.3 we really need a commutative
Banach algebra Y without nilpotent elements.

ay 0 0
Consider Y = a, a, 0 aq, 8y, ag € R normed by
ag a, ay
a4 0 0
a8, a, 0 =3 mx(ia]l: ,azfs 133?)
aq a, a,

It is easy to verify that Y is a commutative Banach algebra.

Llet X = R.
-1 0 0 0 0 0
Take V(x) = 0 -1 ¢] + X [e] 4]
0 0 -1 0 X 0
0 0 0 0 a 0
and W(x) = 1 0 0 + o o 0 .
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X are nilpotent elements.

So aov =g = aow, ¥ =1=3W, O¢ DV} and V1x and W1

0 0 0
Now (V.W)(x) = -1 0 0
0 -1 0

Clearly aW = 1> a(V.W) - aOV = 0.

3. DEFINITION

1.

Univariate Padé approximant

Let us first briefly repeat the definition of Padé approximant for a real-valued func-
tion F of one real variable, given by its Taylor series development in the origin:

)

F) =z o
k=o
with
-1 p®
G PO N
First choose n and m in IN. Then find two polynomials P(x} = z aix]' and
i=o

m .
Qx) = 2 ijJ satisfying
o

80 (P.Q—P) > et}

In other words the ao""’an’bo""bm satisfy the following systems of equations:
c b =a
o o

s
c1bo+cob1=a1
tn:be*cobnzan

] b0+... Cn+1—mbm 0
Cnimb.o ot b =0

with bj=o for j > m and e for k < o.

It is obvious that the homogeneous system always has a nontrivial solution since one
of the b, can be chosen freely; the solution for the b, can then be substituted in
the system of equations that gives the coefficients a.



3.2.

11

After calculation of the polynomials P{x) and Q{(x) the (n,m) Padé approximant is defi-
ned as the irreducible form of the rational function (;(). The long history of Padé
approximants has extensively been studied by Brezinski and their properties have very
nicely been formulated and discussed by Baker [ 2]. The interested reader is referred
to their books. We will treat here the generalization to the operator case of the
definition and all the properties.

From now on, let X be a Banach space and Y a commutative Banach algebra with unit I
for the multiplication.

Abstract aralyticity

To generalize the notion of Padé approximant we start from analyticity, as in elemen-
tary calculus.

Definition I.3.1.:

The operator F : X > Y is abstract analytic in X, if there

exists B(xo, r) with r > o such that

Fixg) = 7 7r P () ¥ for jhp < (41 pp. 113)
k=0 ™° °

with B—}-F(O) (x,) h° = F(x).

We give some examples of such series.
a) C(10,1]) with the supremum-norm is a commutative Banach algebra
if addition and multiplication are performed pointwise.
Consider the Nemyckii-operator G : C{I0,1) - CI0,1) : x> g(s, x(s))
with g ¢ ¢ (10,1 x C(10,1)). Let I_: CUO,1) » CAO, 1) : x + x.
Then clearl G(kJ (x) = ak
y X, ——ﬁ—(s, xo(s)). IX ® e ® Ix

3X R
k times

o k
and so G(x) = 3 -k—}--a—%(s, xo(s)) .(x—xo)k in a neighbourhood
k=0 7 ax
of X [41 pp. 95].
b} Consider the Urysohn integral operator U : C([0,11) -~ C(0,1):

X - % £(s, t, x()) dt with £ ¢ ') (10,1 =[0,1] x CA0,1)).

Let [ ] indicate a place-holder for x(t) ¢ c({0,1).
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k

(k) 1 3%t
Then we write U (xo) = fo ;k-(s, t, Xo(t)) {1 ... [1 dat

k times

1 o5

- 1 . ok .
and so U(x) = . T fo;‘k‘ (s, t, xo(t))(x xo) (t)\dt in a

ke
Nt~ og

neighbourhoud of X, [41 pp. 971.

¢ qo,m), nomed by |x(0)l, = max(ix) (0 | 5 =0, ..vy 1)

bS . .
or Ix(t)); = = Ix3) (0 where jx1 (1)) is the norm chosen in
j=o

C({0,T}, is a Banach space.

Consider the operator V : C'({0,T}) -~ C({0O,T}) : ¥ 4%{—- £(t,y)

in the initial value problem V(y) = O with y(0) = a ¢ R.
Let I : C'((0,T1) »CA0,T) : y ~y.

We see that V'(y) = 55 - 2Lyl (¢, y). 1, and

3y b4
x) ak £(t,y)
v ()’o)=-“~(t,yo).1y®...®1yfork32.
3y k times
X
® 109 £(t,y)
SoV(y) = - £(t, y) + Lo 3 d—e ty ) . ey K (1)
[¢) dt k=1 ki ayk o [¢]

in a neighbourhood of y,.

RP and ¢ with componentwise addition and multiplication are commu~
tative Banach algebras.
Finally let this nonlinear system of 2 real variables be given

Tx+sin(xy)
X
F(}’) = ( 2 2 >
X"ty ~dxy

2k+1
K (xy)

(2k+1) 1

For X, = (8) we can write

F(X} = ((]}) + (3) + o + ;
y eyb-rgy) ke 0
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3.3. Abstract Padé approximant

We call an element y of Y regular if there exists y_1 in Y such that y.y_] = 1= yﬁ].y

and we write D(F) = {x ¢ X|F(x) is regular in Y}. The set D(F} is an open set in X if
F is continuous [33 pp. 31}. If the operator G maps X into Y, we can define the ope-
rator % th?t maps D(G) _i?to Y, by

g0 = 16601
Let now X, in definition 1.3.71 equal O without loss of generality and let F: X > Y be
a nonlinear operator abstract analytic in O:

F() = 2 I]Ez rB () K

k=0

Definition 1.3.2.:

The operator F(x) = O(XJ) (j € N) if there exist nonnegative numbers

s < 1 and J such that [[F(x}|| = J‘I{x!tj for all x in B(0,s).

Definition I1.3.3.:

The couple of abstract polynomials (P(x), QX)) =

nm+n nm nm+m nm

(A an X ...t A X’B+m +...+Bnmx)3
. nm+n+m+

such that the abstract power series (F.Q-P)(x) = O(X ) (I.3.1)

is called a solution of the Padé-approximation problem of order (n,mj.

The shift of degrees in P(x) and Q(x) by n.m will be justified in § 4. and § 7. of
this chapter. We shall restrict ourselves now to those n and m for which a solution
(P(x),Q(x)) with D(P) U D(Q) # @ can be found.

Definition I1.3.4.:
The abstract rational operator —é—.P, the quotient of two abstract
polynomials, is reducible if there exist abstract polynomials
1.
T, P, and Q, such that P = P,.T, Q = Q,.T, aT = 1 andrl: is not an

abstract polynomial (i.e. T is not a unit in the ring of abstract

polynomials) .

Since D(P) U D(Q # @, we know that D(T) # @ and D(P,) U D(Q,) # &.
For the solutions (P,Q) of the Padé-approximation problem and for the reduced rational
operators —(i— P, we will prove the following equivalence-property.



Theorem 1.3.1.:
Let (P,Q) and (R,S) satisfy definition 1.3.3, with D(P} U D(Q # @ and
D(R) UD(S) # @. Let —é*—.P* be a reduced form of the rational operator JQ.P
and —;—.R* be a reduced form of the rational operator JéR
Then ;or all x in X: P(x).5(x) = Q(x).R(x)
P (x).5(x) = Q (x).R(x)
P, (x).5, (x) = Q (X).R, ()

Proof:
Consider

P(x).S(x)-R(x).Q(x) = [F(x)-S(x)-R(x)].Q(X)~[ F(x}.Q(x)~P(x)] .5(x)
Now (F.Q-P)(x) = OG™ ™™y ang (F.S-R) (x) = O(mmely

The series [ (F.S-R).Q-(F.Q-P).Sj (x) = O(xZHI*M 1,

while 3(P.5-R.Q) = Znm+n+m.

So (P.S-R.Q(x) = O.

IfP=P .Tand Q= Q,-T with P, Q, and T abstract polynomials
then (P.5-R.Q) (x) = [T.(P,.S-R.Q)] (X)

Since D(T) # @, lemma 1.2.2 says that (P -S-R.Q. ) (X) = O.

If R=R,.Uand S = §, .Uwith R, S, and U abstract polynomials
then (P,.5-R.Q)(x) = {U. (P, -S,-R, Q1 ().
Since D(U) # @, lemma 1.2.2 says that (P -5,7R, - Q) (x} = 0.

We write A = A1 U A, with

2

#

A1 {(P,Q | (P,Q satisfies definition 1.3.3 for a certain

n and m and D{P) U D(Q) # @}

Ay = {(PesQ) | é.P* is a reduced form of the rational
L
T
Clearly the relation (PI’Q1) ~ (PZ’QZ) if and only if P1 (x).QZ(x) = Q] (x).Pz(x) for
all x in X, is an equivalence-relation in A which divides A in disjoint equivalence-

operator — P for (P,Q} in A1}

classes.



Definition I1.3.5.:
The equivalence-class of A containing a solution of (I.3.1) for n

and m chosen, will be called the (n,m) abstract Padé-approximant for F.

This equivalence-class does not always contain a couple of abstract polynomials
(P,»Q,) with Q, (0) = I. An example will illustrate this. Consider the operator

. T+x+sin{xy) Xy
2 1
F:R»RZ:(;)‘*(Zz >=(OJ+(§)+<22 >+-
X"y -dxy xT+y"-dxy

Take n = 1 = m. The couple of abstract polynomials

T+x-y -y’ )
(Pp(x,y), Q, (X,y))=< s ! > belongs to the (n,m) Padé-approximant for F.

Here Q, () = ().

Take n = 1 and m = 2. The couple of abstract polynomials

x-}’+x2—2xy x-y-xy*xyz
P x,¥), Q (x,7)) =

, > is numerator and
1

denominator of the irreducible form of g(i Y where (P(x,y), Q(x,¥))

is any nontrivial solution of (I.3.1).

Here Q‘(g) = (?) because the order of the first component in Q. (x,¥) is 1 and no
further reduction can be performed to lower this order.

. EXISTENCE OF A SOLUTION

We will now discuss the existence and calculation of a solution of (I.3.1).
write 1, B 0 = C,» @ symetric k-linear bounded operator. The condition (I.3.1)
is equivalent with (1.4.1) and (1.4.2):
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o B o X yx € X
nm nm+l nm+ 1 .
a1 C]x.Bnm X+ CO.Bnm” X = Anm+1 X yx € X
n nm nmn _ nm+n
Cnx ‘Bnm X+ a.. Co'Bnmm X Anmm b'e vx € X
with Bnm+j ™I .0 for j>m
n+1 nm n+1-m nm+m _
el ¥ .Bnm X+ L+ Cn”‘m X ‘Bnm+m =0 yx ¢X
(1.4.2) .
T+ nm n mHm
Cn+mx .Bnmx +...+Cnx.}3nm+mx =0 v¥x € X

witthxkeO for k < o.

A solution of (I.4.2) can be computed by means of the following determinants in Y;
these formulas are direct generalizations of the classical formulas for the solution
of a homogeneous system.

nm _ n n+l-m
B XM= (GE Coutap X L™, v)
n+1 n+2-m
Car1 X “hez-m X
n+m-1 n
Cn+m—1 X . Cn x
mmtj n _ n+1 n+1-m Tim+j
Bnm+j X X .. Coet X coe Copqop X ¢ L(X , Y3
. for 1 =j=m
n+m- 1 n+m n
Cn+m-1 _Cn+mx Cnx
.th

i colum in Bnm e replaced by this column

For every solution of (I1.4.2} a solution of {I.4.1) can be calculated by substitution
of the B, X™3 (5=0,...,m) in the left hand side of (I.4.1).

So, using the classical formulas, we get immediately the shift of degrees by n.m in
P(x) and Q(x). A second argument for the choice of (P(x),Q(x)) will be given at the
end of this paragraph. For the moment we want to give some more determinant represen-
tations. When we calculate a solution of (I.4.2) and (1.4.1) by means of the deter-

minants above, we will denote it by (P[n,m] [x),Q{ n,ml x)). So
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Q[n,nﬂ(x) = I... I
n+1 n + T-m
Ce X X --e Cn+1—m X"
Cup XF : (1.4.3)
n+m n
Cn+m X e Cn X
p[n,nﬁ (x) = Fn (x) Fn-! x) ... Fn-m (x)
n+l n+ 1-m
X ae C X
n+1 n+1-m (1.4.4)
n+m n
Cn+m X Cn x
(F'Q[n,m] B nem 8 Fpapoq &0 - Fy 00
P{n’m])(x) = c xn+] c Xn+1_m
n+1 N+ 1-m (1.4.5)
n+m n
Coom ¥ e Cn X

i
k ) P
where F x) = kio Ck x and F {(xX) =0 fori <o and F} x) = F(x) - E x).

These formulas are also direct generalizations of the classical formulas for univariate
Padé approximants.

Remark also the fact that if we calculate the (n,0) abstract Padé approximant for F,

we find the nth partial sum of the abstract Taylor series. For if B .= I then

AiX1 = Cixl, i=0,...,n is a solution of system (I1.4.1).

Let's again take a look at the nonlinear operator

1+x+sin{xy} 1 Xy
F: RZ - RZI ();) *( 7 2 >= (Oj + (g) +< 5 2 L
Xy -dxy xTey T -4xy

Take n = 1T and m = 2. Using (1.4.3) and {1.4.4) we {find



§ s.

5.7.

i,z oY) = 8 & & = (X(X-y) + xzy(y-ﬂ)
(Xy ) ) & )
Peyary) O 0
0 xy x
) )
° < X2+Y2-4xy> 0
T+x
P,y G0 = ( 0 > © @ |- (xzmx-y) - xy(wx))
0
Xy
G ‘
<x2+y2—4xy> o ©
0 xy x
09 3
° <x2+yz—4xy> o

which is clearly a nontrivial solution of (I.4.1) and (I.4.2).

When we would try for n=1 and m=2 to find a couple of abstract polynomials
= X X, 2
(P(ny) sQ(X)y)) - (A1 (y) + AO 3 BZ (y)

O((x)mmﬂ) = O((X)d), not working with the shift of degrees by n.m=2, we would
remark that this problem has only the solution Q(x,y} = 0 = P{x,y), which is not

+ B1 (;) + BO) such that (F.Q-P) (x,y) =

very useful. The reason is that we have now an overdetermined homogeneous system.

More about multivariate Padé approximants can be found in chapter II.

RELATIONS BETWEEN (P,Q) and (P 20

Order and degree of P, @, P, and g,

n . m .
From now on we will use the notations P(x) = = Anm+i KL ang Qxy = = B__.. xPJ
i=o j=o T
: 3P, 1 a0, j
for solutions of (I1.3.1), Px)= 2 AL X and Qk{x) = z B, . x) for the
i=s P 1 = Q
o * ¢ oT
numerator and denominator of a reduced rational form of %.P and T(x) = 5 Tk xk
k=t
0

for the polynomial such that P = P,.T and Q = Q,.T where to = aOT.
We will now give a few simple theorems about solutions (P,Q) of (I.3.1) and about

the (P,,Q,). Similar theorems exist for the univariate Padé approximants.
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Theorem 1.5.1.:

a) Let (P,Q) satisfy (I1.3.1). Then aOP = aOQ.

b) Let —é—;.P* be a reduced form of %.P. If D(Ttg) # 3 or aonO then aOP* > aoQ*‘

Proof:

The proof of a) is very simple because of the equivalence of (I.3.1)
with the systems (I.4.1) and (I.4.2).

The proof of b) is similar.

If aOQ* = 0 then b) is automatically satisfied.

Suppose aOP* < 3.Q, when aOQ* > O.

Then aOP < aOQ because of lemma I.2.2 which we can apply to the

first nontrivial temm in P since B(Tt } # ¢. This is a contra-

o
diction with a).

L]
We introduce the notion of pseudo-degree for polynomials without tail like the ones
considered in definition I.3.3 if n » o and m > o and like Py and Qu ifaOQ,, > 0 and

DT, ) # 0.
[}

Definition I.5.1.:

a) a]P 3P - aOQ is called the pseudo-degree of P and
alQ = 3Q - aOQ the pseudo-degree of Q; theorem I.5.1 a)
justifies the term - aOQ.

b) 611?’* = 3P, - aOQ,r is called the pseudo-degree of P, and

*
31Q, = 3Q, - 3 Q, the pseudo-degree of Q,, if
D(Tt ) # @or 3,Q =9 theorem 1.5.7 b) justifies the

o
term - aoQ*.

When aOQ=o or aOQ =0 the pseudo-degrees of P and Q or P* and Q* equal the exact
degrees.

Theorem 1.5.2.:

a) a]P =n and a1Q < m.
b} Let Y be a commutative Banach algebra without nilpotent elements.

Py = n and alQ* = m.

If D(Tt )} # @ or Q{0) is regular in Y, then 34
o
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Proof:
aj 8P =3P -3 Q= nmn - 3,Q = n since 3 Q = nm.
3,Q=2Q- 3.Q < nmem - 3,Q = m since 3.Q z nm.
) 34Q =3Q - 3Q = (3Q - 8, TN - 3 Q, since D(T) # ¢
= 3Q - nm since aOT + aOQ* =23.Qzmm
=m
a1P* = 3P, - aOQ* = (3P - 50T) - aOQ* since D(T) # @
= 3P -~ nm since aOT + aoQ* = aOQ > nm
=n

If Q* {0} is regular, the proof is similar because now

%Q* = o and aOT = aoQ.

The following example proves the need of D(T ' } # O to conclude that

o
a]P* = n and a]Qk <m.
2 2 x cos (a-x+y)
Take F : R™ - R": () - X with a # ko and take n = 1 = m,
Y Xe —Xey
Xy

The couple of abstract polynomials (P*.T,Q*.T) with

cosa+(x-y) (sina+0. 5cotgacosa)
x+y+0.5{x2+3xy+y2} > ’

1+0.5(x-y) cotga
Xy .
Q,,(y) = ( >

x+y-0.5 (x2+xy+y2)

and T()) = © +(09, satisfies (.3.7). Here 5.Q, = o, b, = 2,

3Q, = 2 and TtO (;) = (?). So 8P, = 2> 1<2=0gQ,.

Order of F. 2

The following theorem is frequently used in the proofs of further properties.
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Theorem I.5.3.:

a) If D(Tto) # @, then t, = nm—aoQﬁr with T > o and (P*.TtO,Q*‘TtO}
satisfies (1.3.1)

b) If Y contains no nilpotent elements then also o =1 < mi‘n(n—a1P*,m—a1Q*).

Proof:

a) Because D(Tto) £ 9, Tt aoQ* = ao Q 2 mm.

We write to =mm - 3.Q, + 1 withr = o.

( nm+n+m+1) .

Now F(x).Q(x)-P(x) = T(x) I F(x).Q, (x)~P, (x)} O(x

t
I£T0) = T, x © 4 ... with D(T, ) # @ then also
O o]

t

Tt X O.[F(x).Q* (x)~P, ()1 = O(an+n+m+1) because of the
s}

equivalence of (1.3.1) with {1.4.1) and (1.4.2).
b} Because D(T) # @, we have according to lemma I1.2.3:

[ 0Py = 3(P,.T) = 3T = nmn - (nm - 3 Q + T)

BQ* = a(Q*'T) - aOT = nm+m - (mn - aoQ* + 1)

1 *

and so: { 8, P, =0pP, - BOQ* = n-r
a] Q* = aQ* - aOQ* = m-r
n
When we compare this theorem with the similar one for the classical univariate Padé
approximant, we remark that the term nm in t, is due to the choice of the order of
the couple of polynomials (P,Q) in definition I.3.3 and that the term -aOQik is due
to the fact that not always a{}Q,t = 0.

We give some illustrative examples.

1
L RE LR Ky L 1mx _ _
let F: R R™: (y) <eX+y> and take n = 1, m = 2.

The couple of abstract polynomials F,-T, Q,.T) with

p, 1 q b a
= 3 = an
* <1 + %(xw)) Y < 1= S0ey) + %(xw)Z)
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L, 9%+, &3
T - < LYy B

2 where LZ € L(XZ,]R), L3 ¢ LIX7,R),
()(*))
B B

satisfies (1.3.1). So if D(Lz) # @ theorem 1.5.3 is satisfied with t = 2,

[o]

L, (9%

T2©2=<2y2 > and T = o.
(x+y)©®/2

Let F: R° -~ R*: (X =

1+ sin{x+xy)
y

x and taken = 1, m = 2.
]+m+sin(xy)

The couple of abstract polynomials (P*.T, Q,.T) with

x x-y+%x2—2xy
P*(y)= 2 2 ’
x =101y + 10y" + 10 x" - 20.2 xy
2 3
Q*(y)= 2 2 and
X~ 1.0y +10y” - 10.1 xy + 2.01 xy

TG) = (10 ) Satisfies (I.3.1).
So theorem 1.5.3. is satisfied with t, = tand r = o.
_L::_zz_
2 2 by

Let F: R~ R*: () - and taken = 2, m = 1.
Y 1 - ¢cos x

The couple of abstract polynomials (P,.T, Q,.T) with

SARYY

satisfies {I.3.1), but with t, = Z, D(Tt ) = §. It is easy to see that
o

i

P, ( 1; y) ,Q & = (D) and 19
Y x°/2 b4 1 Yy

@

*.Tto, Q*'Tto) does not satisfy (1.3.1}.

Let F: C'((1,11) ~ C(1,7) @ x(t) » X X0 (140) with ¢ a small
nonnegative number. Take n = 1 = m. The couple of abstract polynomials

(BT, Q1) with B, (x) = £ - (1) (1-x(1)), Q) = 1-x(t) and

T(x) =§§—satisﬁes (1.3.1). Theorem 1.5.3 is satisfied with t_ = 1and r

0.
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Theorem 1.5.4.:

nm+n+m+1—t0

a) If D(T ) # @ then (F.Q*—P 1(X) = 0(x )
b) If Y conta:ms no nilpotent elements and D(T ) # @ then

3 Q. +3,P +a +3 %
(F.Q-P,)(x) = O(x oW

Proof:
a) Suppose aO(F.Q*—P*) = j with j < nm+n+m+1—to.

Now since D(Tt ) # @: (P‘t.Tt R Qt'Tt )} satisfies (I.3.1).
o © ©
{ {F.Q'(-P’*).T,C 1x) = O(Xnm+n+m+1) and consequently
0

nm+nEm+l < j *t, which is a contradiction.

b

Qo)

Supposea(FQkP) ~3w1th3<aQ*+aP +a]Q*+1.
Then for every integer r with o < r < min(n 81 s M- 1Q‘r},

fort0=nm-aoQk+r:

aOQk+a1P*+a1Q~+1+(nm—aOQ‘+r)

\
.

+ nm - aOQk + r
> nmtn+mt+l,

which is in contradiction with theorem 1.5.3 b) since

a]P* < n and a]Q* s m and

aoQ* +a1* + a1Q* + 1+ (nm - aOQ* + 1) < nm+n+m+]

It is also easy to see that if D{Tt ) # @, then every couple of abstract polynomials

o
{P,-1,Q,-1), with L a bounded t,-linear operator such that D(L) n (O(R,) LD #D,
satisfies (I.3.1).

The fact that (F.Q*-P*) (x) = O(Xj) with j given by theorem I.5.4 implies that
(7.q-2) ™ (0) 0 for i =0, ..., j-1 at least

For polynomials P and Q with aOP = aOQ* we know that always

Oy vvny aOQ‘r -1

]

(F.q-P) W (0) = 0 for i

So the meaningful relations are

[

¢.q-2) () =0 for i 3,Q» ---» j1 at least (1.5.1)
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When 0 ¢ D(Q,) and thus aoQ* = 0, the relations (I.5.7) can be rewritten as

Q

So (I.5.1) clearly has an interpolatory meaning in O.

. 1 (1)
r() © = <-——.P* ) (0) for i = o, ..., j-1 at least.

COVARIANCE PROPERTIES

Since the (n,m) abstract Padé approximant is an equivalence-class containing couples
of abstract polynomials, we are going to represent it by one of its elements; for the
sake of simplicity we will denote this representant also by (P Q*)

Let the operator P (for n and m chosen) associate with the operator F the squiva-
lence-class of the (P ,Q,). We are looking for operators ¢ working on F that commute
more or less with the Padé operator Pn n

AP n @] = Py g (2]

with g and my depending on the considered ¢.
The first property we are going to prove is the reciprocal covariance of abstract
Padé approximants.

Theorem 1.6.1.:

Suppose O ¢ D(F). If (F,,Q) is the (n,m) abstract Padé approximant for F,

then (Q,,P,) is the (m,n) abstract Padé approximant for %.

Proof:
Since O ¢ D{(F), an open ball B(0,r) exists where %»is defined.
It (P, Q) 1is the (n,m) abstract Padé-approximant for F, an
abstract polynomial T exists such that
P,Q) = (P*.T, Q,-T) satisfies (1.3.1) for F and D(P) U D(Q) # ?.
In other words (E.Q-P)(x) = 0™ MM,
This implies that GRP-Q)(x) = O™ ™™ since 4-is abstract
analytic in a neighbourhood of 0.

So (,P) = (Q,.T, P, .T) satisfies (I1.3.1} for %-and D(Q) U D(P) # 2.
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Theorem 1.6.2.:

Suppose a, b, ¢, d € Y and O ¢ D(c.F+d). If (P*,Q*) is the (n,n) abstract
Padé approximant for F and D(c.P+d.Q) U D(a.P+b.Q) # @, then the (n,n) abstract

- . 1 .
Padé approximant for c.F+d'(a'F+b) is (a.P*+b.Q*,c.P*+d.Q*).

Proof:
Since O ¢ D(c.F+d), an open ball B(O,r) exists where

. (a.F+b) is defined.
c.F+d

If (®,,Q,) is the (n,n) abstract Padé-approximant for F, an
abstract polynomial T exists such that (P,Q) = (P*.T, Q-1
satisfies (I.3.1) for F and D(P) U D(Q) # 9.

2
In other words (F.Q-P}(x) = O(Xn +2n+]}.

Now ao(a.P+b.Q) > n? since aOP = nz and aOQ = n2
and a(a.P+b.Q) = n2 + I since 3P = nz +n and 3Q = nz + 1.

Also ao(c.P+d.Q) > nZ and a{c.P+d.qQ) = n2 + 1.

#

O(Xn2+2n+1

Since (F.Q-P)}(x) )} and O ¢ D{c.F+d), also

2
[ (a.d-b.c). L (F.Q-P)] (x) = O T0* Ty,

c.F+d

Now —1_ .(a.F+b).(c.P+d.Q) - (2.P+b.Q) = —L—.(F.Q-P)(a.d-b.c)
c.F+d c.F+d

and consequently

2
! 4&Pmy(gwdgj_(&pbﬂ}=0&n+m+3‘
c.F+d

We already know that D(c.P+d.Q) U D(a.P+b.Q) # @.
-
We remark that if (P,,Q,) were the (n,m) abstract Padé approximant for F withn >m
for instance, then a.P+b.Q was indeed an abstract polynomial of order at least mm
and degree at most mm+n but ¢.P+d.Q not necessarily an abstract polynomial of degree
at most nm+m. This explains the condition in theorem I.6.2 that (P*,Q*) is the (n,n)
abstract Padé approximant for F.
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Theorem 1.6.3.:

Suppose A € L(X,X) and A™' exists. If (P,,Q,) is the (n,m) abstract Padé
approximant for F and if R*(x):=P*(Ax), S*(x):=Q*(Ax) , G(x):=F(Ax),

then (R,,S,) is the (n,m) abstract Padé approximant for G.

Proof: . )
If L ¢ L(X',Y), then Lo A ¢ L{X*,Y) when defined by

(Lc,A)xi:L(Ax)i [6 pp- 289].
Because (P*,Q*) is the (n,m) abstract Padé-approximant for F,
an abstract polynomial T exists such that (P,Q) = (P*.T, Q*.T)
satisfies (I.3.1) for F and D(P) U D(Q) # 9.
In other words, there exist nonnegative constants r < 1 and K
such that || (F.Q-P) (x}]| = K.”x“nm+n+m+1 for ixll < r.
Let S(x) = T(AX).S,(x) and R(x) = T(Ax).R,(x).
Then [[(G.S-R) ()| = II(F.Q-P) (Ax)]| < K. [JaxyPmn+m1

< (K.IIAIJM+n+m+]) ||X”r1m+n+m+1
for (x|l < r.
Thus (G.S-R) (x) = O™ IHmTy

Since D(R) = {x ¢ X | R(x) is regular in Y}

{x € X | P(Ax) is regular in Y}

a1 x | x € D(P)}

AT oen
and D(S) = A" (D(Q)

we can conclude that D(R) U D(S) = A" [D(P) U D(Q)] # @.

This theorem has two important consequences: the scale covariance of abstract Padé
approximants formulated in corollary I.6.1 and the conservation of symmetry formulated

in corollary I.6.2.
Corollary I.6.1.:

Let » € A\ {o}. If (P*,Q*) is the {(n,m) abstract Padé approximant for F and

R, (x):=P, (), S, (x):=Q, (\x), G(x):=F(xx), then (R

e 39, ) 1s the (n,m) abstract

Padé approximant for G.
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Corollary 1.6.2.:

Let X = X] X )(2 and F(x1,xz) = F(xz,x1). If (B,,Q) is the (n,m) abstract Padé

approximant for F, then (P*(x1,x2),Q*(x1,x2)) ~ (P* (xz,x]),Qk(xz,x])).

RECURRENCE RELATIONS
Two-term identities
Frobenius [ 20] supplied most of the identities for the classical Padé approximants.
We will now discuss their generalizations. The first group of identities we will con-
sider are the two-term identities. By definition I.3.3 we can write
- - nmnsm+ 1
F-Qn,m ™ Frnm) 00 = O )
- , {(n+ 1m+n+m+2
(F'Q[ n+1,n P[ n+1,m])(x) = Ox )
_ _ n{m+1)+n+m+2
(F'Q[n,m_,,_” p[ n,m+1])(x) - O(X )
_ _ (n+1) (m+ 1) +n+m+3
F-Qnermey ™ Praet,mery) 00 = O )
Thus
Crmet,m Qn,m ™ Pngmy Qe t,m) 0 =
= | {F. - P . -(F. - .
EQam ™ Pingm? Qe t,m " FQnetm  Pnerm) Qa,m &
_ O(xnm+(n+1)m+n+m+1}
While

a(P Q[n+1,m]) < nm+ (n+ 1) m+n+m+ )

tn+1,m p,m " Fn,m
and analogously

_ _ am+n (m+ 1) +n+m+ 1
{P{n,mﬂ} Q[n,m] P[n,m] Qm,m‘[_n)(x) = Olx 1) )

a(P[n,mﬂ] Q[n,m] - P[n,m] Q[n’m”]) < nm+n (m+1) +n+m+ 1

+ 1)+ +1)+n+m+2
Crnme1 Unet,m ™ Pinet,m U, me1y) X = o w2,
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a(% n,m ] Q[n+3,m} - P!h+?,m§ Qin,m+1l) S n(m+1)+(n+1)men+m+2

@®

. il
[ n+1,m+ g Q[n,m] - P{ n,m} Qinﬂ,mﬂ} X)) = O +(n+1) (m+1)+n+m+1)

a{% 1] Q[n,m] - % nm] Q{n+?,m+ﬂ ) = mm+(n+1) {m+ 1) +neme 1

Let us introduce the notation

H} (Sl) = Sl e SI”J“"1
Si+j-1 R Si
for these determinants where the Si (i=0,1,...) are elements in the commutative Banach
algebra Y. Then because of the formulas (I1.4.3), (1.4.4) and (I.4.5) we have
_ o o1y n+1 n+1
Fnetum Unymt ™ Fnym) Qnet,mp? 0 = 17 B (G x LB (G ) (1.7.1)

(P[n,m+1] Q[n,m] - E)[n,m] Q[n,m*1])(X) SO Hm+1(cn+1xn+1)‘Hm+1(Cnxn) (1.7.2)

m

®rnomet1 QUnetomd ~ Proetm) Um0 = 1) [HHM(an)(“"T)]2 (1.7.3)

+1,, 2
G inet,mi11 Qnym) ™ Prnym) Unet mer ) 0 = CDT TH L (€ x™ ) (1.7.4)

Fo (I.7.3) we have used Silvester's identity {2, pp.15] which is also

valid in Y and states that

1

n+2 n n+1 n+
Hm*] (Cn+2x )‘Hm+l (Cnx )+Hm+2(c +1% }.Hm (Cn+]x

n

) =

+1

2

- n
B [Hm+1 (Cn+1 )

These two-term identities will be used to prove other recursion relations in § 5. of
chapter II. The second group of identities we will consider are the five-term identi-
ties,

7.2. The e—algorithm

The e-algorithm of Wynn is closely related to the Padé approximants of a univariate
function in the following sense: if we apply the e-algorithm to the partial sums of
the power series
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o

F{x} = Z ckxk
k=0

then aZ(;_m) is the (n,m) Padé approximant for F(x} where n is the degree of the nume.
rator and m is the degree of the denominator {9 pp. 66-68}.
We shall now see that the (n,m) abstract Padé approximant satisfies the same property,
but first of all we briefly repeat the nonlinear g-algorithm. Input are the elements
of a sequence {Si | i=0,1,... } let us take the sequence in Y.
The following computations are performed:

ef? =0 di=o,1, ...

e es. dis=0,1,

egj'” <0j=0,1, ...
NSNS j

(1) - G+,

[ o, 1, «.-
f3+1 7 Fj-1 j j i

~j, =3+ 1, ...

[

The ej(l) can be ordered in a table where (i) indicates a diagonal and j a column:

ec(;}) =0 55-2) =0
SE‘:?} =0 51(_])
(o) -1
o S €2
SO )
(1) (
g =5 es®
e_(%) =0 51(1)
(2 (1
o S2 £2 )
Do o

We introduce the notations
88 = Sinm 7 54
and
2 = -
878, = 85, ASi -
to prove the following property for theeg 7.
The proof is very technical and similar to the proof in[8 pp. 44-46] for X = R = Y.
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Lemma I.7.1.:

2 2 .
1f Hj—l (2 Si+j-—1) and Hj (4 Si-rj-}) are regular in Y, then

Si+j Si
ASl+j . ASi,'1 ASi
ASi+2j_1 ASi+j ASi+j_]
(1) |
523
I . I
ASi+j ASi
E‘Si+2j-1 ASi+j_1

and if Hj (Asi+j) and Hj+1 (AS§+j) are regular in Y, then

I . 1
2 2
A Si+j & Si
2 2
8845425-1 8854541
E(i) =
Zj+1
ASl+j en ASl
2 2
& si+j e A S1
2 2
87842507 -+ 8°845-1
with Si =0 for i < o.

Of course we restrict ourselves to the case that the e(l) are finite; since the

e-algorithm is a nonlinear algorithm, it can always happen that e(i% does not exist
CEI N cO ar i .
(when ej ej is not regular in Y).
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i
It is easy to see now that for Si = Fi(x) = I Ckxk we get the following theorem.
k=0

Theorem 1.7.1.:

I£ DH_( (o8 B 1 # 0 and DI (62 F_)1 # 9,

then
F -
0 Fon (9
n+1 n-m+1
Cout X Chome1
n+m n
Cn+m X ‘e Cn X
J-m)
2m
I e I
n+1 n-m+1
Cpaq X o n-mel X
n+m n
Cn+m X e C x

Numerator and denominator of E£3~m) are the determinantal formulas (I.4.4) and (1.4.3)
for P(x) and Q(x), a solution of the Padé approximation problem of order (m,m).
Let us illustrate this by calculating part of the e-table for the following nonlinear

operator
FiCrI1,T1) » CE1LT: x(n) » e Ko s

with ¢ 2 small nonnegative constant.
The Taylor series expansion is

Fo) =X 2 Lix@n® - (o)
k=0 ™’

For the e-table we get
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0 o]
-1
0 T+c 2
-+0) - (1+c)
] 1*”8?
0 dx
dt
dx
x HE—(1+C)(1—x(t))
a0 (0o 1-x(t)
1
0]
x(t)%xt—
dx 1 1
22 (1+5x (1)) - (1+2) (1-5x(t))
X (fax(t))- (1+c) —_ :
—Ex(t)
1
6] dx
FF

Eax 0+ (0)- (1+0)

It is easy to see that the odd columns are only intermediate results,
By eliminating the odd columns, the e-algorithm for the even columns can be rewritten

as follows:

D ee G- 1=0,0,

séi) = Si i=o0, 1,

5770 =0 j=o, 1,
D g

g; P_f( (1*’1) (1)) 653)1 (1) (1 1)) 1 -1

=1 (e §1+1) (1)) (;-1) (1)) (1+1) (1))-1 -1

2j-
and thus
i _ . iy L i iy L j=0,1,...
Lefap e T e e iD=l 7T e e ()T e ()

1=-j,-j+1,...
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So we have the following relation between abstract Padé approximants.
Theorem 1.7.2.:
If H, (8%, . ), H
j~2 i+j~1/?

2 2 2
i+j 51 (8785590 Hy g (07855 905 Hy 1 (8755,5),

2 2
i+j~1)’ Hj(A Si+j) and Hj+1(A S

2 2
Hj (a sm._z), Hj(A s i+j_1) are

regular in Y then

{Pli*j,j”] 3 P{i“fj,jllq . & Plasdi-n

P{ i+9,4]

Yieg,i+n Yie3,3 Yiei,i-n Yisg, 3

[P[i*‘jﬂ,jl ) Priﬂ‘,j}}“‘ X Fiw’-h;ﬂ C R |
Yirir1,51 Yied, i) Yirj-1,51  Yisd, i !

We are going to illustrate this by means of the e-table we just calculated for the
nonlinear operator F. Take j=1 and i=o and calculate

cn  EHEO Cax () (v (1) (1-3x(0)
NCH
i

1
Frex ()3 (1) - (1+0)x(1) (-3 (1)
We have then the following cross of abstract Padé approximants

-(1+¢)*
dx

1+C+E

E- (1+0) (1-x(1)
1-x(t)

i - _3%) Z%’i‘.(uc) (~2x{t)+ 1)+ (1+c) Ze (1) (1-%X(t))
T (1+0)

B rex () - (0) - (1+Q)x () (1-3x (1)

FO(©)-(1+0) (1-3x(0)
1-%}((1:}

In the chapters II and III the e-algorithm is frequently used in numerical calculations.
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7.3. The gqd-algorithm

It is well-known that the quotient-difference algorithm can be used to construct

univariate Padé approximants. We will first repeat it in an equivalent but slightly

different way than usual. Only, this approach can be generalized when F is a nonlinear

operator from a Banach space X into a commutative Banach algebra Y.

Let us consider a nonlinear real-valued function F of one real variable analytic in

the origin: -
RO = 2z e with o = 4, FP @

k=0
Let the series F be normal:

£ £+1 -
€ pxX Cpsp¥ v c£+k-]xf+k ] 49
241
CZ"’ 1 X
£+k-1
¢ x £+2k-2
L+k-1 Ce+2k-2%

for £ = 0,1,2,... and k=1,2,...

This determinant is a monomial of degree k(g+k-1) 1in the variable x. Demanding that
this monomial is nontrivial is equivalent with demanding that this determinant evalua-
ted at x = 1 is nonzero. For a normal series we can construct a table with double
entry of numbers qéz) and eﬁl) defined as follows:

e£‘)=o £=01,...
241

c X
o{® - £ £=01,...

CKX
B = ot eff1 4 £=01,2,... k=1,2,.
8 _ 1y (@) £3) - =
Gy T A el U /ey 2= a1,2,... k=1.2,.

From this gd-algorithm we can obtain Padé approximants to the function F in the follo-
wing way. The (n,m) Padé approximant for n = m is equal to the (2m)th convergent
KZm of the continued fraction

-1+ 1 ~m+ -m+
n-m+ ;’ qgn m T)l ) e%n m I)I _

c
€ +C X +...+ ¢ X', n-m+1 X
o 1 n-m
1 ' 1 l 1
qz(]’1—m+1) ez(n-m+1)

M e
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n-m
if KO = Z Cka, and it is also equal to the (2m+1)th convergent KZmH of the conti-
k=0
nued fraction

n-m {(n-m) (n-m)
C HC. X ... C AL oo ¥ _a A l -
o 1 n-m-1 ] I 1 l ]
qgn-m) egn—m)
= - ... F]
R
n-m-1 X
if K = 2 o, X7 [8,9].
o] k
K0 s o0 @ ' (&)
Both the terms 9 and ) contain a factor x now because of the definition of ay -

Let us now turn to the operator

Fe) = 5 ocxf

ko L+k-1,
We call the series F normal if there exists x in X such that Hk(C£+k—1x ) is

regular in Y for £ = 0,1,2,... and k=1,2,...
When the series
S k k-1

CO + ki (Ckx - Ck—lx )
is normal, then a representation of (P(x),Q(x)) satisfying (I.3.1) is given by (I.4.3)
and (I1.4.4). Normality of the series C,* 51 (Ckx - CqX ") is equivalent with

a k=1

Hk(ACK+k-1X£+k 1) being regular in Y for some x in X. So normality of the series

2 k . . . B n )
Co ¥ kio 4G, x" implies regularity of Q{n,m] x) = Hm(ACnx )} and thus existence of

1
I .p )
S n,m {n,nl

For a nommal series F we can define the abstract qd -scheme as follows:

4 .

Eo =0 £=01,...

U - e ST e,

E}gz) - Q}gzm . Eg;l}_ Q}Eﬁj L= 91,... k=1,2,.

Let us construct the following continued fractions in the Banach algebra Y:
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n-m k n-m+1
kio G x Cn-mﬂ X
7 - Q§n~m+l}
1 - ploemtd)
1
-+ 1
1 ~Q§“ m+1) (I.7.5)
_ pnemrly
1 EZ
I - ...
and
n-m-1 K nem
kéo Ckx Cn_nlx
I - Q1(n—m)
I - Egn-m)
1.7.6)
_ o(n-m) (
I QZ
_ p(n-m)
1 .E2
1 -

where dividing means multiplying by the inverse element for the multiplication in Y.
We shall now prove that these continued fracticns are of the same form as in the uni-
variate case where only a factor x remains in cAlge) and eg) after division of nume-
rator and denominator and we shall also prove that the convergents of these continued

fractions yield our abstract Padé approximants.

Theorem 1.7.3.:

N N
If we write Q(O = Dﬂ...lé’k and E(@ = KL then Ay = o + 1
k q,k,ﬁ De’}(’e Q&kt‘e q,k,f-
aNe,k,Z - aDe,k,P. + 1

Proof:
The proof is by induction.

For k = 1 we have

Nq,k,£ = ng ijH and Dq,k,K = szz
Ne,k,ﬁ = (C£+1x’€+1)2 - C‘,'xz.CE‘yzx£+2
De,k,ﬂ = Cﬁxz.Czﬂxzﬂ

so that
aNq,k,£ = L1 = aDq,k’£ + 1
aNe,k,Z = 242 = aDe,k,f 1
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Suppose the theorem holds for Q}(Q feae ,Q}EQ ,E’(Z) yee ,E}EZ) ;

we shall prove it then for Q‘Ef% and Eﬁf% .

Since Qg% = QIEEH).E}EZH).(E}E&)-], we have

0@ o M Ne e e e Ny
K+ 1 5 A
ek, 0 gk, 041 0 k001 Dg et g

+

Thus aN aNe,k,lﬂH + aD 1

q,kﬂ,( = aNq’k’£+1 e k.2 = aDq,k+1,£+

For Ek(ﬁ) the proof is analogous.

Consider now the following descending staircase:

1

P (X} e
[ "msO}
n Q[n_m,o }(X)

1 1
P (%) i e— P __ (x)
[n-m+1,0] [n-m+1,1]
Q[n-mﬂ,o](x)

Theorem 1.7.4.:

1 . th . .

P . the (2 rgent of the continued fraction {I1.7.5).

[n,ml x) m is the (Zm) — converg
¥

Proof:

. 1 o
Let K = B 5 () ——————  i+j = o,1,...

Q{ n4m+i,j ](x)

Regularity of the Hk(cﬁ) and the Hk(ACJZ) and the use of the formulas

(1.7.1-4) imply that K X

21417 %550 KZi_KZi-V Ki+j~Ki+j-2 are regular.

So it is possible to construct the continued fraction
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n-m k n~m+1
kio Ck o Cn—m+1
ik
KK, (1.7.7)

= K - K Ky 27Kp-3)
=3 - KB (g 7Ry

I

with convergents Ko’KPKZ"" where dividing again means multiplying

by the inverse element for the multiplication defined in Y.
it is easy to verify that

K. Q@) g ¥y - K9 - ]fo) - g
5% K5 - K&Ky - K)

using the representation of P{ n-m, ol x), Q[n-m,o] x), }in— m 1,00 ),

Y neme1,o) K)ser- given in § 4.
Let us denote

K1 ~ K9 Een ~ )
Ky = Ky ) Ky = Kye3)

{n-m+1)

by A%EWU if kis even and by Bry_yy /5 if k is odd. We write also

Agn-mﬂ) _ Q](n—mﬂj .

If we write down the continued fraction that is the even contraction
of (I.7.7) (i.e. a continued fraction having as convergents the KZk for
k= 0,1,2,-..) we get

n-m k
Z Ckx + Cn-mﬂ

n-m+1
k=0

1 - Al oo plnomeh) (1.7.8)

T - Bgn-mﬂ) R Agn-mﬂ) -

If we write down the continued fraction that is the odd contraction of

(1.7.7) with n-m replaced by n-m-1 (i.e. a continued fraction having as
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1

. 1

convergents the P, (x}. P (x). P G L
[n-m,o0] ziin—m,olzxi‘ [n-m+1,1] Q[n—m+1,1]x

on the descending staircase (1.7.10)), we get

n-m , {n-m)
Ko o7 Cn~mx A]

I- A1(n—m) _B](nﬂn} _ B](mm) Aén—m) (1.7.9)

A lne-m) {(n-m)
I AZ - B2

Because (1.7.8) and (1.7.9) have the same convergents, we have

(n-m+1} L(n-m+1) _ (n-m) , (n-m)
Ay By = BTV A k=1,2,.
n=m+1 -+ 1 - -
BT alr ) L plnem) (em) ke=1,2,...
{; )
),fmput}i"YYM = 0.
So
A}En-m+ 1) _ Q (n~m+1)
k=1,2,...
(n-m+1) _ _(n-m+1)
By = B
This completes the proof.
-
Analogously we can formulate and prove the next theorem.
Theorem I.7.5.:
P[n,m m is the (2m+1) gonvergem; of the continued fraction (I.7.6)}.

This can easily be seen by writing down the continued fraction (I.7.7) with n-m repla-
ced by n-m-1; the convergents of this continued fraction are the abstract rational

operators on the following descending staircase:

1

fnem-1,01 ® T o
n-m-1,0

1 1
P (5.3 PO P 163 I (1.7.10)
{n-m,o0] [n-m,1]
Q{n-m,o}()(} Q{nwmﬂ J )
P 1
fn-me,1] (X0

n-m+1,17] (x)
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We illustrate the two preceding theorems by means of a simple example.
Again consider
F: C'1,T1) » CQ1,T1): x(t) » &0 g% - (+0)
The unit in the Banach algebra C{{1,T]) is the constant function x{t)=1; so we shall
write I = 1. A representant of the (1,1) abstract Padé approximant is the second.

convergent of the continued fraction (I.7.5):
-(1+c) + F
1
ot

TR A—

1

where QP) = x(t); it is also the third convergent of the continued fraction (I.7.6):

= (1+c)
1 - Lo
1 - el
1
where ng) = - % / (1+c} and E][O) = Q1(U - ng). Indeed these convergents equal Eéo).

EXISTENCE OF AN IRREDUCIBLE FORM

Let the couple of abstract polynomials (P{x),Q(x)) satisfy definition I.3.3.
For some spaces X and Y a unique irreducible form L‘P,, of the abstract rational ope-

rator l.P exists. We give some examples of such spaces X and Y.

: a) For instance X = RPor £Pand Y = R? orr? with a componentwise
multiplication in Y, for every abstract polynomial V : X - Y
with D(V) # @ has a unique prime factorization in the ring of
abstract polynomials and thus an irreducible form --].P of %—.P
can be found by cancelling as many terms as possible in the unique
prime factorization of P or Q. What's more, this irreducible form

is unique now and all equivalent solutions (R, S) have the same

irreducible form -Q-:- P* .

b) Consider a Bapach algebra Z with unit I, not necessarily commutative.

Take a, a regular element in Z.
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Now X = {xa | % € A} is a Banach space and

{ 2N at | A, € A} is a commutative Banach algebra with unit I.
i=o

Every nonzero element of Y is regular, for

y= T N a* can be written as ah

at with M # 0 and
i=o0 i

oM og

A
"
01h

for every element z )\ a1 with 7\ # 0, the inverse element for
i=o

the multiplication is 2 o5 & with

j=o . )

i .11 lk
A GoksD! Ny S
( 1) J+1+kz (- 1) 3 e +(-17
3 1 7 .1 3.1 -
"11(-)611( iteeqyt xo )\o

where Ik = {{1],...,1}(}(]\1 | 1]+...+1k=3—k+"£ and 1}.1+...+1k.k=3}
The ring of abstract polynomials is Y[ N, the set of all polynomials

in x with coefficients in Y. Since Y is a field, Y[ 3] is a principal
ideal domain [5 pp. 1521 and thus every element in Y[ 3] has a unique
prime factorization [5 pp. 155]; also every abstract polynomial V with
D(V) = 9 is identically O.

Because of the unique prime factorization, an irreducible fomm Q-*l.?*

of %‘.P can be found and because there are no nontrivial abstract
polynomials V with D(V) = @, this irreducible form = Q* F, is unique
and is also the irreducible form of —%.R where (R, S) is an equivalent
solution of (I1.3.1).

In the case of these two examples it is even true that the Banach algebra Y does not
contain nilpotent elements. Then the only units V in the ring of abstract polynomials
are the o-linear operators y with y a regular element in Y, because for a unit V we
know that —1\7 is also an abstract polynomial and aV = a(V.%) = 0 because of lemma I.2.3.
For the sequel of this chapter we will restrict ourselves to Banach spaces X and
Banach algebras Y without nilpotent elements such that a unique irreducible form of
all solutions of (I.3.1) exists. Then 81 e ? a}Q* and 3 Q,t do not depend anymore on
the reduced rational fomrm -1-—— P, we consider. We can now redefine the (n,m) abstract

Padé approximant for an operator F.
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Definition I.8.1.:
Let {P(x), Q{x)) satisfy definition 1.3.3 and let
D(P) UDWQ) # 0.
let 5:—.1’* be the irreducible form of—QL.P.

a) If Q (0) =1, we call -@}-.P* the normalized {(n,m)} abstract

Padé-approximant for F {(normalized (n,m) APA).

b) If 0 ¢ D(Q,), we call —l.P* the (n,m) abstract Padé-approximant

Qe

for F ((n,m) APA).

In definition I1.8.71 a) the units are fixed by the normalization Q*(O) = [ and in
definition I.8.1 b) the (n,m) APA is only unique up to units.
If for all the solutions (P,Q) of (1.3.1), D(P) UD(Q) = @, then we shall call the
(n,m) APA undefined.
When a unigue irreducible form of the solutions of (1.3.1) exists, more detailed
information about the covariance of abstract Padé approximants can be given.
Let us take a loock at the reciprocal covariance. If O ¢ D(F) and if in addition
D(Tt ) # @, then

°©  0eDEQ)=0¢eDP) .
because aOQ*=o and (CO'B*0>'T1: X O:A*O'Tt x 9, and also

o ¢}
0 £D(Q) =0 £D(P,)
because if aOQ* > 0 also aoP"r > 0 (theorem I.5.1 b)) and if B*o is not regular in Y
also A,(O is not regular in Y (CO.B*O=A*O). So the normalized (n,m) APA for F is trans-
formed into the normalized (n,m) APA for = and the (n,m) APA for F is transformed into

F
the (n,m) APA for %, if D(Tt ) # Q.
0

Let us take a look at the covariance property 1.6.2. If O ¢ D(c.F+d) and if in addi-
1 . . .
————s——. {a.P,+b.Q )} 1s the irreducible form
Of o " (a.P+b.Q). If D(T, ) # Q(Cél;’égd'w s
{c.P+d.Q) : t, ’

0 €D(Q) =0 ¢ D(c.P+d.Q)
because (c.P+d.Q)(0) = (C'Co+d)'B*o’ and

0 £D(Q) =0 £ D{c.P,+d.Q)
because for aoQk > 0 also aOP* > 0 (theorem I.5.1 b)) and if B*o is not regular in Y
also (c.P,+d.Q,) [O>=C'A*O+d'B*O=(C‘CO+d)'B*O is not regular in Y. So the normalized

(n,m) APA for F is transformed into the normalized (n,m) APA for EMJFTJ (a.F+b) and

tion {a.d-b.c) is regular in Y, then

the (n,m) APA for F is transformed into the (n,m) APA for =y (a.F+b), if D(T, ) # @
and (a.d-b.c) is regular in Y. ©
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Let us take a look at the covariance property I.6.3. Because here S*(O) = Qk(O),
automatically the normalized (n,m) APA is transformed into the normalized (n,m) APA
and the (n,m) APA is transformed into the (n,m) APA.

From now on we shall often consider the normalized (n,m) APA to be a special case of
the (n,m) APA and not mention the specification normalized.

FINITE DIMENSIONAL SPACES

a) When X = R =Y (A = R), then the definition of abstract Padé approximant is pre-
cisely the classical definition of univariate Padé approximant. F is now a real-valued

function of one real variable, with a Taylor series development 3 Cka where

¢ = %IF(R) (0) is a real number. k=0
The k-linear and bounded operators Ck are Ckxk = X e X
k
The j-linear and bounded operators Bjxj = bj Xe X for j=nm,...,nmtm such that

.b =0 J

C +,,.4C .b
n+1° nm n+1-m" nm+m

R 1 =0

Qem’ bnm+ n’ bnm+m
are a solution of (I.4.2).
The i-linear and bounded operators Aix1 = 3;.X...X for i=nm,...nmtn such that

i

Co'bnm " %m

C1'br1m+co’bnm+1 ~ fnme 1

Cn.bnm*r...+c:0.bnmm =a
are a solution of (I.4.1).
The irreducible form

| p (0 of s P = ——1— . 3 ax such that q, (0) = 1
Qx) Q(x) m“;mb. o i=mm 1
J=rm J nm*zrn a. Xi—nm
L i

is also the irreducible form Q-j]ﬁ'})*(x) of rlu_nzﬁ with Q (0) = 1.

7 b,
j=nm J
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by If X = RPand Y= R {(# = R), then F is a real-valued function of p real varia-
bles. Now L(Xk,Y) is isomorphic with RP . More about multivariate Padé approximants
can be found in chapter II.

c}y If X = RP and Y = RS {A = R), then F is a system of q real-valued functions in
p real variables. Now L(X,Y) is isomorphic with R¥P ang L(Xk,Y} isomorphic with
RPP | an element of R¥P s represented by a row of pk_1 matrices (blocks), each
containing q rows and p columns [ 41]. For a k-linear and bounded operator Ck =

(c. . ) we have
iyeeedygg
i1 = row-index in the block
iy+-.1) = number of the block (the most right index grows the

fastest)

i

ik+1 column-index in the block.

So = {c . ) looks like
G- (5,

quz,..ikT U9l e qyp
X

and an evaluation (c; ) M s performed like
SRRSO

*p

[+ . &
7 112...1k] b]

[ k]

3

B

g
3 sos X
j=]cq12...lk_‘l j

Thus the result of one evaluation is a hypermatrix containing q rows of pk-] numbers,
i.e. a row of pk-z matrices (blocks) each contaning q rows and p columns; in other
words the result of one evaluation is a (k-1)-linear and bounded operator.

The abstract polynomials (P,Q) satisfying definition I.3.3 now have for each of the
q components the form of the multivariate polynomials in b). More about the solution
of a system of nonlinear equations in p real variables by means of abstract Padé

approximants, can be found in chapter III.
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§ 10. THE ABSTRACT PADE TABLE

Let R denote the (normalized) (n,m) APA for F if it is not undefined. The R n,m can

be ordered for different values of n and m in a table:

Rqo Rq1 RQZ
Ri,o Rip Ry,
Rpo  Rog

Rs o :

Gaps can occur in this table because of undefined elements.
We will now prove that the abstract Padé table consists of squares of equal elements
under the following condition, numbered (I.70.71).

aT
Let (P,Q) be a solution of (I.3.1). Let R_ = J@("p* and T(x) = 3 Tkxk.
We need a solution (P,Q) where ’ k=to
DT, ) # 0 (1.10.1)
to

to be able to prove the block-structure of the Padé table. For every {(n,m) where
this condition is not satisfied the block-structure may be disturbed. An example of
this phenomenon will be given after theorem 1.10.1 . First of all we shall prove

the following lemma which we shall frequently use in the next proofs.
Lemma 1.70.1.:

Take X, in X, X, # O. Forevery n in N, there exists Dn in L(Xn,Y) such
that D x0 = 1,
n ©
Proof:
letn=1.
Take X, in X, X, # 0 and define the linear functional [ 41 pp. 34]

f:M={>\xo|>\eA}»A:xxo»x.

x|
Now |f()\xo)] = || =W.
0
: fi x|
Define the norm p{x} = EN on X. So lf{x}] = p(x} for every x in M.
X

By the functional analysis theorem of Hahn-Banach [43 pp. 57]

this linear functional f can be extended to a linear functional
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f : X~ p such that ;:’(x) = f(x) for every x in M and such that
ljf(x)] = p(x) for every x in X.

We now define D1 XY X - Nf(x).I.

Clearly D} ¢ L{X,Y) and D1 X, = I since :f(xo) = f(xo) = 1.
ng = I then we can define for

-1 .
If D, ¢ LOX,Y) with D,

x in X : Dn X = f(x)'Dn-I and so Dn € L(Xn,Y).

1% = I.

n o~

Now ang = f()(o).Dn
This lemma implies that for X, # 0 and n given, we can always find Dn in L(XH,Y}
with X, € D(Dn).

Theorem 1.10.1.:

Let Q—: P, = Rn,m for F. Let (I1.10.1) be satisfied,
Then a) ao(F.Q.—P*) = aOQ*+a1P*+a1Qk+t+1 with t = o

b)n =<3 P*+t and m < a]Q‘+t

1
c) if aOQ,'r = 3, P. a1Qk then for all integers i,j satisfying

3.P, =1 =3

1F% P*+t and a1Q‘r =i = a1Qk+t: Ri,j = R

1 n,m.

Proof:
a) In theorem I.5.4 b) we proved that

+ + 1
(F. Q,, p )(x) oQ* 81Q« ),

in other words that 3 (F.Q*-P*) > aOQ,l + a]P* + a]Q* + 1.

Write aO(F.Q;P*) = oQir *ay P, o+ a1Q* +t+ 1witht =o.

b) Suppose n>aiP* torms> a1Q* + t.

Then for every r, o = r < min(n -~ 34P,, m = 3,Q) and for

) nm—aOQ*w
every T S Q*+r in L{X LYY with
D{Tnm-aoQ*-Pr} # @ we have

CA| Tmn—aDQ*-t-r'(F'QfP*M = (-3 Q+1)+ (3, Q*+3 P, +3,Q +t+1) < nmn+m+1

This is in contradiction with theorem 1.5.3.
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c) Let s = min(i - a1P*, j - 51Q*)'
Since aOQ < a]P*.a]Q, we know that i.j - aOQ,r +s2 0.

1.§-3_Q,+s
Take D in L(X o ,Y) with

D(D) 0 (D(P,) UDQ)) # @
which is possible because of lemma I.10.1.
For P, = Pt’Ds and Q= Q«'Ds we have
i 3P 2 3P * (i.j ~ aOQ* +8) 2 1.3
aoQ1 > aOQ* + (1.3 - aOQ* +5) 2 1.3
{ ab, = (a,P, + aOQ‘,) + (i.j - 3,Q *+s) =i.j+i
3Q, = (a1Q* +a Q)+ (1] - 3,Q *s) =15+ ]
1.3+3,P + 3.Q, +s+t+1
and (F.Q-P))() = O(x ' * % )
Since 1 = 3P, + tand j = 3,Q, + t we know that
ij+ri+j+1s 1.3 + a1p* + BTQ* + 5+t + 1.
So (F.Q=Py) () = o(xt-T*1*3*Ty
[ ]
Remark the fact that if one element of a square in the abstract Padé table is defined,
all the elements of the same square are because of the constructive proof of theorem
1.10.1 ¢). Also if one element of a square is a normalized APA, then all the elements
of the same square are.

We now give an example where the block-structure is disturbed because (I1.10.1) is
not satisfied.

y e
14 > 1e 3 (-1}k Y2k+1
Take F: R - R%: () R
1 - cos x P ) M

ki

#
b

(Zk)!

Now for all h> o : Rh,? = Rh,o‘ We shall explain this.

For h even:



48

h
h h SR
X\no_ X h+1
Ah (y) =0 B Ah“’] (y) =
0
and
h+f+2
h+g oo S
X, ht+
Aug (y) = hetr2 for £ even and 2 = £ < h
2 X
D hiel
h
Ay Q=0 for toddand 3 =2 <h
are a solution of (I1.4.1) and (I.4.2).
For h odd:
h-1
) Gnd oyt h 0
1
B, ()" = . B, (O -
b4 h+1 ‘y ’
o he3 h+1
-1 A SR
(h+1)!
bl A1
h+1
) S . (2o
X _ X, h+ _
Ah (y) - 0 ] Ah“"? {y} 0
and
Ah+£ (;)h+£ =0 forfevenand 2 <2 <h
h+f-2
-1 3 yh+K
A (X)h+£ - for £ odd and 3 <& <h
h+l ‘y - hte 4.0
2 X "

S ey T (D) !

are a solution of (I.4.1) and (1.4.2).
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For all h numerator and denominator of the solution have been devided by
x.h X, ht1 . . _ -
Bh(y) + Bh+1(y) to get the irreducible form Rh,1' Now D(B,) = @ and D(Bhﬂ) @

and we cannot find Th in L(Xh,Y) or Th+ in L(Xh+1,Y) such that:

1
(p*'Th’Q*’Th) satisfies (I.4.1)and §.4.2) and D(Th) # 0

or

(P*'Thﬂ’Q*'Thﬂ) satisfies (1.4.1) and (1.4.2) and D(Thﬂ) 79

So (I.10.1) is not satisfied for the normalized (h,1) APA. Other examples where (I.10.1)
is not satisfied will be discussed in the next paragraph.

. REGULARITY AND NORMALITY

. Definitions

Regularity and normality are also defined exactly as in the case of univariate Padé

approximants.

Definition I.11.1.:

The (n,m) APA -Q-]-.P* for F is called regular if
*
3 Qu+n+mt+1
(F.Q-P)(x) = 0(x ° ) with t = o.
Definition I.11.2.:
The (n,m) APAQS'P* for F is called nommal if it

occurs only once in the abstract Padé-table.

Clearly the elements in the first column of the Padé table are regular because the
(n,0) APA is the nth partial sum of the Taylor series development of F and
F.¢-P)(x) = O(xm]). If CO = F{0) is regular in Y then also the first row of the
Padé table consists of regular abstract Padé approximants.

Normality

The following theorem makes clear that, under the assumption of (I.10.1), normality
is stronger than regularity.



Theorem I.11.1.

Proof:

Let (I.10.1) be satisfied and let BOQ* < a}P*.a1Q‘. The (n,m) APA =-.P, for F

Q* *

is normal if and only if a1P* = 1 and a1Q~ = m and aO(F.O*—P*) = aOQ*+n+m+1.

=
Since Rn,m is normal, t = o in theorem I1.10.1 ¢).
According to theorem I.10.1 b) we have n=3.P, and m = 34Q -
Because of theorem I1.5.2 b) we also have 3P, =1 and 34Q, = m.
Son=3P andm= 3R
According to theorem I.10.1 a) we then have
BO(F-Q*-P*) = 8 _Q,tn#m]
-
The proof goes by contraposition.
Suppose we can find i,j with i > n or j » m and such that
Ri,j = Rn,m (because of theorem I.10.1 ¢) we have in any case
that n =i and m = j). For every integer s and for every
) i.j+s-2 Q,
Dy in L(X ,Y) with D(DS) n (P, UDWQ)) # P and with
[(F-Q-P,).DJ () = 0x**T*1I*Ty | yie have
1.j+i+3+1 = i, j4ntmis+]
because 3, ['(F.Q*-P*).Ds} = . j+n+mes+l.
So s > i-nor s > j-m. This is in contradiction with

theorem I.5,3,

Because of the formulas (I.4.3) and (I.4.4) we have for P{n,ml and Q{n,m]

n.mm _ —m+2
B mem ¥ = D7 Hy (C -m+2 X )
N n-m
An mn X - Hm+1 (Cn-m )
B RIS « Xn—mﬂj

+

n-m+1
(F’Qn,m} - P[n’m])(X) -n"H e 1 Cpopat X )
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The following theorem is also a generalization of a well-known classical result which
states that normality is equivalent with the non-triviality of 4 determinants.

Theorem I.11.2.:

Let 3G, = 3,B,-3,Q,+ I DB ) UDQ, ) 78 and if T() = Tnm—aOQ,Xm-aOQ"

then the (n,m) APA -]-—.P* for F is normal if and only if

Q

By (G, ™™ 40

n+7T-m

+2-
By Chpep X 0™ £ 0

n-m
Ho G ,x D #0

ntl-m

H Y £ 0

mt 1 (Cn+1 -m
Proof: =

Since Q{n m = Q,.T we have

_ _ _ n+1-m
aOQ—aOQ*+tO—aOQ~+ (m—aOQ) = mm and son (Cn”_mx ) # 0.
Suppose H (C ., = Xn+2~m) = 0.

Then 3,Q, = 8Q, - 80(}*

= aQ[n,m] - to - aOQ* because of lemma 1.2.3
< nm+m- to - aOQ*
= m because to = nm - aoQk.

n-m
Suppose Hm+1 (Cn—m x ) =0

Then a]P* =P, - aOQ

< aP[n’m] - to - aoQk because of lemma 1.2.3

< nmtn- to - aOQ*

n

n becaus = - .
eto nm aoQk

These conclusions contradict the normality of -J-P*

T

Because D(T) # @ we have aO(F'Q[n,m] _P[n,m]) = aO(F.Q*—P*%(mn-aoQ*)

nm+ni-+Hm+ 1

and so H . (C ey,

n+l-m
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=

Since aP{n’m] = nmn and P[n,m] = P_.T we have 3P, = nmn- (nm—aoQ*)

1P* = n.

Since aQ[n m = nm+m and Q[n )
’ »

and so a1Q* = m,

and so 3

Q*.T we have aQ* = mm+m- (nm-3 OQ*)

Because D(T) # @ we have ao(F.Q*-P*} = ao(F'Q{n,m] —P[n m})-(nm—aoQk}

i

3 Q mHms 1.

So %.P* is normal.

11.3. Regularity

The following theorem is a criterion for regularity.
Theorem I.11.3.:

The {(n,m) APA }—.P* for F is regular if (I1.10.1) is satisfied with t0=nm—aoQk.

%

Proof:
Since (P,Q} = (P,.T, Q,.T) satisfies (I.4.1) and (1.4.2), we

have aO(F.Q-P) > n.min+m+T .
Because D(Tnm—aoQ*) # @, we can conclude that
aO(F.Q*-P*) = aO(F.Q*P} - (nm~aOQ*} > aOQ,+n+m+?.
]

The following example illustrates that if the (n,m) APA is regular, we do not neces-
sarily have that D(TtO) # @ or to=nm—aoQ*.

Consider
b y "
xe - ye P i
2 2 x x-y i,j=o (i+j)! *7
F:R°-R™: () - = . (,)Zkﬂ
Y x . k+1 K KU
1+ +sin(xy) 1+ 2 (107 xy +{-1)
0.1-y k=0 (Zk+1) !

2 2
The (1,1) APA is [/ 22¥*0-50C +3xy+y7)
x+y=0.5 (x“+xy+y”)
1+10x-10. 1y
1-10. 1y
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The(1,1) APA is regular since aO(F.Q*—P*) =3 = aOQ*+n+m+1 with aOQ* =

n
o

t
Xy _ 1 xy o _ 1 .
Now T(y) = (10x)' So Tto(y) = (O) with t0

. Numertcal examples

Let us now illustrate these results by some numerical examples. Take

. 2 LX X .
F: R > R: (y) -1+ 0Ty + sin(xy) } )
k. k-1 (xy)
= 1+10x+101xy+ 2 10°xy '+ 2 (-1)
k=3 k=1 (Zk+1)1

n,m

. 1+10x-10. 1 .
The (1,1) APA is T=10. Ty with
aOQ* =0, a]P* =1, a1Q* =1, aO(F.Q*—P*) =3

S0 it is a normal element in the abstract Padé-table.

Clearly D(Tt ) # @ for all R .
o

2
The (3,1) APA is 1”0";1%;”'10” with

3,Q = 0, 3P, =3, 3;Q, = 1, 3 (F.Q,-P,) = 6 and t_ = 3.

So it is a regular element in the abstract Padé-table and we have the

following square of equal elements: }23,1 = R3’2 = R4’1 = R4,2‘
The (1,2) APA is X1 O”’”Oy +10x°-20. 2y 5 with
x-1 O1y+10y ~10.1xy+2.01xy

aOQ* =1, a1P* =1, aTQ* =2, ao(F.Q*-P*) =5
So it is also a normal element.
The (3,3) APA is

201 447> L 1.0301
y +=£-.10 X +10>'(xy)+xy(1 1Oy)+ X(201xy)+3—xy( x-y)

201 . -5 2 _122
v+ B0 8 -0y - gy - gy

with 3,Q = 1, 3P, =3, 9,Q, =3, aO(F.Q*—P*) = 8 and thus 1t is also

a normal element in the abstract Padé-table.

. PROJECTION PROPERTY AND PRODUCT PROPERTY

Consider Banach spaces Xi’ i=1,...,p < =.



P
The space X = 1I Xi’ normed by one of the following Minkowski-norms
i=1
P
= q 1/
Il = €2 Wity
lixli : sl
ix zox
1 1= 17 (1)

Il = maxClixgl gy -een X))

where “xi”(i) is the norm of X, in Xi and x = (x1,...,xp), is also a Banach space.
We introduce the following notations

j"’ =
X (x1, ey xj_1, 0, xj+1’ e Xy

X'j’ = (x’, R xj-l’ Xj+1’ cevy X

Theorem 1.12.1.:

p

Let X = 1 X, and —é:.P* be the (n,m) APA for F: X » Y and j ¢ {1,...,p}.
i=1

Let (I.10.1) be satisfied.

If S(xij0) = Q, (%)

R(x,;.) := B, (%)
N F%)
D(S) UD(R) # 9

then the irreducible form -é-—.R* of 3§.R is the (n,m) APA for G;.

*
Proof:
First we remark that for a bounded k-linear operator L of L(Xk,Y),

if the operator M is defined by

k_ k . j ~k
Mx.j. —M(x1, ey Xj—1’ Xj+1’ e, xp) = LIX , then

X P

M is a bounded k-linear operator of L (( 1 Xi)k,Y).
i=1
i#j

Because (I.10.1) is satisfied, we have t > o such that

3,(F.Q-P) = 3.Q * 3P, v 3 Q +t+1
aTP* =n = aip* +t

BTQt smfa1Q.+t
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Using one &f the Minkowski-norms | Hq (1 =q = «),

: p
J = i
I ?(Hq Ixgs «-ny X5 0, X5ppr vees Xp)“q in I X; equals
. P
“X’j'”q = H(x1, v, Xj—]’ Xj+1’ cee, xp)llq in 1131 Xi‘
i#j

j 3 Q+3.P +3.Q + t + 1
Thus (F-Q,B) 050 = (6;-5-R) (x,5) = Ok, R )

Now aP* = a]P* + aOQ,r < a(P*.T) - to < nmn

and 3Q, = 51Q. + aoQ* =3(Q,.T) - t, = nmm

and 50 s = nm - 3 Q + min(n - 3,P,, m- 3,Q,) = o.

p
Take Dy in L(( T X%, Y) with D) N (D(S) U DR)) # 2.
i=
i#]

Then 3, (R.Ds) > mm, ao(S.DS) > nm
a(R.DS) = aoQ*+a1P* + m - aoQ* + min{n - a1P*, m - a]Q*) <nm+ n
a(S.DS) < aoQ*+a1Q* + mm - aOQ* + min(n - a1P*, m - a1Q‘) <nm+m

[ (GJ -S"R) 'DS ](xlj l)

B aOQk+a1P*+a1Q‘+t+min(n—a1P*,m—a1Q~)+nm-aOQ*+1
=0 (x,j‘ )
0 (X'j ’n.m+n+m+l

#

} because m = a1Qk~rt and
n s aiP*ﬂ:
The irreducible form of %.(R.DS) is also the irreducible
s

form of %.R and this terminates the proof.

We now return to the situation where the (n,m) abstract Padé approximant is an
equivalence class.

First we searched for a product property of the following kind. Let X1 ,
spaces and Y a commutative Banach algebra. If (PM (x1) ,,Q‘(1 (x1)) is the (n,m) abstract
1 )(1 -~ Y and (P*Z(XZ)’QkZ(XZ” is the (n,m) ab-

stract Padé approximant for the operator FZ: )(2 - Y, is then (P* (x1,x2),Q‘((x1 ,xz)) =
(Pﬂ(xaj.P*Z(xz),Q”(x1).ka(x2)) the (n,m) abstract Padé approximant for

F: X? x )(2 - Y (xl,xz} - FI(X1)'F2(XZ} ?

In fact it is not at all natural to have a property like this; the following simple

counter-example proves it.

Let F1: Co,1) -~ Co,1): x(t) » ex(t) and FE: CEo,11) » CYOo,1): vyt » ey(t),
then F: C(0,1]1) x CU0,1]) ~ CCO,11): (x(t),y(©)) - OV are n=1 and m=2.

XZ be Banach

Padé approximant for the operator F
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The couple of abstract polynomials (T+%x(t) s 3~%x{t}t%x2(t)} belongs to the (1,2)
abstract Padé approximant for F], {T+%y{t] s 1~gy(tj+1y2(t}} to the (1,2) abstract

Padé approximant for F2 and (1+%(x+y)(t) s 1—~(x+y)(t}+ (x+y) (t}) to the {1,2) ab-
stract Padé approximant for F. It is easy to see that

[ (14—;x(t)). (1+%y(t)) , (1—§x(t)+16xz(t)). (1—%—y[t)+1€y2 (t))] does not belong to the

(1,2) abstract Padé approximant for F.
Now let X be a Banach space and Yi commutative Banach algebras. Consider nonlinear

operators F.: X » Yi’ i=l,ii,q < = and F: X » 11 Y X - (Fi(x}, i=7,...,9)
9 i=1

where II Y is a commutative Banach algebra with component-wise multiplication
i=1

and normed by one of the Minkowski-norms u(y],..«,y M. (1 <p = =),

We can obtain, by renorming, that H(I],...,Iq)ﬁp = 1 where I, is the unit for the

multiplication in Yj.
Theorem I1.12.2.:

q q

Let (N D(Q nu ( n D(P )) # @ for the considered solution (P ,Q } of
i=1 =1

(1.4.1) and (1.4.2) for F . Then (P, oy Q*i) is the {n,m) abstract Padé

approximant for Fi’ i=1,...,q if and only if

Pay Qey
(P,,Q) = Py Q,(2 is the (n,m) abstract Padé approximant for F.
Peg Qg

Proof:
Since (P*i’ Q*i) is the {n,m} abstract Padé-approximant for Fi,
abstract polynomials Ti exist such that (Pi,Qi) = (P*i'Ti’ Q*j.Tj)
satisfies (1.3.1) for Fi’ in other words nonnegative constants
. nm+n+m+ 1
Ki exist such that ”[(Fi'Q*i - p*i)'Ti](X)“ < Ki i)
in a neighbourhood of the origin, and this for i = 1,...,q.
q q q
Because (N D(QJ) U (n D(Py)) # @also n D(T,) # 2.
1=1 i=1 i=1
R q
We use the Minkowski-norm | H in 11 Y for some p with

i=1
T=2p s
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Then for p =1 let X = 3 Ki’ for p = = let K = max Ki’
i i

for T<p<e=let K= (g ](ip)Vp and we find
i

ICF QR )T G0, 1= 1, @)y 5 Ko™ ]

in a neighbourhood of the origin.
Pey-Ty QT

Thus (P, Q) = . . . satisfies (1.3.1) for

P T .T
*q'Tq Yxq'Tq

F and D(P) U D(Q) # 2.
Since (P*, Q*) is the (n,m) abstract Padé-approximant for F,
an abstract polynomial T exists with D(T) # § such that
[(F.Q-P,).TI (x) = OGPy,
We write (T); for the i th operator-component of T.
We know that || [(F{-Q ;P )+ (1,1 (X) '&5 [ 1(F.Q-P,).TI (x) ”p
: o q
for i = 1, ..., q and for whatever Minkowski-norm used in I Yi‘

i=1
So (Pi’ Qi) = (P*i‘(T)i’ Qti'(T)i) satisfies (I.3.1) for Fi and

q q
D(Pi) U D(Qi) # @ since D(Pi) > ‘ﬂ1 D(Pi) and D(Qi) > ‘ﬂ1 D(Qi)'
i= i=

q q
Remark the fact that if ( n D(Pi)) uln D(Qi)) = @, we cannot find
i=] i=1

x in X where the q solutions (Pi, Qi) of (1.3.1) for Fi can be used simultaneously.

P
It is useless then to consider (P, Q) ={ ., : since D(P) U D(Q) = @.
Pq Qq

We illustrate the theorems 1.12.71 and 1.12.2 with an example-

X y
2 xe” - ye
Take G : R" - R : (x, y) ~
x -y

X +y+0.56% + 3y +yH)
The (1,1) APA for G is )

x4y - 0.5+ xy +y9)
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For j=1t: x =0 and for i=2: y = 0
GI:]R-»IR:y»ey GZ:]R+]R:X~>eX
1+%y ]‘*’%X
Indeed the (1,1) APA for G1 equals L and for G2 equals }—ifjg;
2 2

Speaking again in terms of equivalence-classes, the couple of abstract polynomials
(x+y+0.5(x2+3xy+y2) , x+y—0.5(x2+xy+yz)) belongs to the (1,1) abstract Padé approximant
for G. We already verified that (1+10x-10.1y , 1-10.1y) belonged to the (1,1} abstract

Padé approximant for F: }Rz - R: {x,y) ~ 1+@-—;—:Tsin(xy)‘

1+ 10x - 10.7y 1-10.1y

x+y+0.5(xz+3xy+y2) x+y—o.5(x2+xy+y2)
belongs to the (1,1) abstract Padé-approximant for (E).
We have to remark that the restrictive conditions formulated in all the theorems given

in this chapter, are always fulfilled in the classical theory of Padé approximants
for a univariate function.
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CHAPTER II: MULTIVARIATE PADE APPROXIMANTS

MOTIVATION

We will now study the multivariate Padé approximants (X = ]Rp, Y = R) more in detail.
This is interesting because of several facts:

a) the irreducible form —1—— P, is unique, Y contains no nilpotent elements and condi-
tion (I.10.1) is always satisfied, so all the theorems mentioned in chapter I are
valid;

b) more similarities with the univariate Padé approximants can be proved, more proper-
ties can be formulated.

Besides those theoretical conclusions we will also compare our multivariate Padé appro-
ximant with other generalizations of the classical Padé approximant to multivariate
functiens, by means of many numerical examples.

Most of the times we will still use the notations

F(x) = 2 Ck xk with x ¢ RP
k=0
n
_ nm+1
P(x) = 2 Anm+i X
i=o
m .
nm+j
Q) = = B_ .. X
j=o ™M
P, P
—Q-;(x) for the irreducible form of —Q(x)
where for the multivariate function F and the multilinear operators A__ . and B .:
nm+ 1 Tt j
k k
x = z Xy oe.X
Ck k1+...+k =X Ck1"'kp 1 s)
p
1 ak F(x1,...,xj)
with Ckrnkp = ' T kp
|
k]....kp. 3xXy ...axp
. i i
A z a. . x X P
nm+i ipr = i 11 '1p 1 P
3 j
nm+j _ 1
an+J X b b Xy eeeX P
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§ 2. EXISTENCE OF A NONTRIVIAL SOLUTION

We already mentioned that the Padé-approximation problem (I.3.1) is equivalent with
the solution of 2 linear systems of equations (I.4.1) and (I.4.2)

nm _ nm P
Co'Bnm X Anm X vXx € R
n nm nm+n nm+n ol
Cn X .Bnm X+ L.+ CO.Bnm+n X = Anm+r1 X vx € R
with B o X" 20 for j - m.
n+1 nm n+1-m nmHn _ P
Che1 X BLx Coe1om X B mem =0 wx ¢ R
n+m nm n nm+m _ p
Crl+m .Bnm X+ L+ Cn X .Bnm+m X =0 yx ¢ R
with Ck xk = O for k < o.
. j j +j~1
Each term B.x) = . 2 . _. b, . X 1...x P contains p*] coefficients
j SPRPERRS NS B FRPRS j _
p p m+m - fp+j-1
b. . .« So the homogeneous system (I.4.2) contains in total N = z . )
J1...Jp u j=nm ]
unknown coefficients b, . of the B . (J=0,...,m).
. nm+ j

The kth equation in (I.4.2) equates an (nm+n+k)-linear operator in p variables to zero.

p+nm+n+k-1

So it equates (

coefficients in that operator to zero. Thus in total we
nm+n+k

have N_ = ; (p+nm+n+k—1
e

G ) homogeneous equations.

nm+n+k

It is easy to show that

p+rmm+n+m p+mm+n
v ) -G

nm+n +m nmm + n
and
S B
N, = -
Vu nm + m nm - 1

ptm
if )m > 0 and N = if nm = o.
u m

a) For p=2: Nu - Ne = 1 and so one unknown can certainly be chosen and a nontrivial
solution always exists.

b) If p > Z the nontriviality of the solution is proved as follows.
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Suppose that the matrix

n+1 n+1-m
Cn+1 X Cr1+1—m
o c K"
T+m n

of the homogeneous system (I1.4.2} has rank k, in other words that a vector x exists
in RP such that the determinant of a kxk submatrix is nonzero. In any case o < k =m.

The homogeneous system (I.4.2) can now be reduced to a homogeneous system of k equa-

. . nm+j .
tions in k+1 of the unknown an+jx J (j=0,...,m):
( k n+h.-j. nm+j
5 Cn+h—' X ! 1Bnm+' X -0
i=o 174 o
£ - (I1.2.1)
k n+hy -3, o .
2 Clpoy. X __ =0
i=0 %73 Ji
\
with1§hi§m fori=1, ..., k
and (0 <j. =m 1=o0, ...,k

1

Jo < v <y

In fact we have removed (m-k)} rows and (m-k) columns in the coefficient matrix of

system (I.4.2) to obtain the coefficient matrix of system (II.2.1). We will number

the rows that we have removed 51 yeen ’Hm—k and the columns that we have removed
71+1 sas ’—er—kﬂ (notice that the rows that we have retained, are numbered h1 yene ,hk
and the columns jo+1 yons ,jk+1).
m-k
Write £ = n(m-k) + = (Ei——j'i). The determinant
i=1
n+h,-j h.-3
C - = x 1J1 oo C = = xn+h1 Jm—k
n+h1—J1 n+h1—3m_k
n+H -k_31 n+E —?
C.y, 3 x " . Cx T ox mkoomk
RS R A N

is then a bounded £-linear operator; it is easy to see that o = £ < nm+j0.
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Let szz be a nontrivial £-linear bounded operator in L((]Rp)[’,]R). Then

c I‘H-h1-j1 n+h1—jk
. X ... C s X
]’1+]’)1—_]‘l n+h “Jx
nm+j 1
B . °_ g xﬂ
nm+_7O ya ’
C . xmhk.J ! C xm-hk‘Jk
n+hk—J1 n+hk—jk
and for i = 1, yk
Wji ~
nrﬂ+ji -
C . xn+h1_J1 -C - xn+h]-Jo C xn+h1_jk
n+h1-_-|1 n+h1—3o n+h1—jk
£ :
E£ X . : :
C . )(rw}l](_J1 oo | -C . xmhk-Jo C xmhk_jk
n+hy -j, n+hk-_]o h n+hy -y
l
nm+j
i‘Ch column in B .OX o
nmj

replaced by this colum

is a nontrivial solution of LII.Z.U because one of the kxk determinants is nontrivial.
nm+j .
If we choose the Bnm+7 X -0 (i=1,...,m-k) we have a nontrivial solution of the
i

original homogeneous svstem (I.4.2).

COVARIANCE PROPERTIES

Besides the properties mentioned in § 6. of chapter I, we can also prove the following

theorems for multivariate Padé approximants.

Theorem II.3.1.:

a.x.
_iTi e _
Let yi_1+b1x1+...+ px for 1—1},)...,p and let y = (YT""’yp)'

Let Rn n for F(x) be given by i—(x) and let G(x) := F(y), R, (x) = P, (¥)»
S, ) := Q. (y), then Rn n(x) for G(x) is given by

k
R x)(1+b + ...+ b
(R G 15 p )] where k = max(aP,, 2Q,) -

[S,(x(1 + b1 Xyt ooe ¥ bp xp)k]
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Proof:
Because of theorem I.5.3, there exists a positive integer tys

2 2 .
n" - aoQﬁ sty= 0 - aoq* +min (n - aiP*, n - a1C;) and

a non-trivial symmetric to—linear bounded operator L, such that
o]

(P*.Lto, Q*.Lto) satisfies (I.3.1) for the operator F.
Lto (31 Xy ey ap xp) Lto (x)
We write Lt (y) = = T
¢} (s (o]
(1+b1x1+...+bpxp) (?+b1x1+...+bpxp)

Let k = max(aP*, aQ*).

v
v
=]

- k
Then ao(R*.Lto.(1+b1x]+...+bpxp) ) = aO(P*.LtO)

v
=}

- k
ao(S*.Lto.(1+b1x1+...+bpxp) ) > aO(Q*.LtO) >

— - k
and max[a(R*.LtO.(1+b]x]+...+bpxp)k), a(S*.LtO.(1+b1x]+...+bpxp) )}

k —
Also (1+b]x1+...+bpxp) {{G’S*'R*)'Ltol x) =

k+t
QR L ] 0)- (g sbpxy) °

k+t

n2+2n+1 o

=0y ).(1+b1x1+...+bpxp)

- O(xn2+2n+1)

- k - k
.Lto.(1+b]x7+...+bpxp) s S*’Lto'(1+b1x]+“'+bpxp) )

Thus (R, S) = (R*

satisfies (I1.3.1) for the operator G.

We will now show that the irreducible form of (%.R) (x) is
1

k

IR (x). (T+byx +. 4D x )7 .

* ™
[S*(x).(1+b1x1+...+prp)k] PP
The factors (1+b1x1+...+bpxp)k are necessary because R, (x) and
S, (x) are rational functions of the X;is not polynomial.
Suppose R*(x)(]+b1x1+...+bpxp)k = U(X).V(x) and
S*(x)(l+b]x]+...+bpxp)k = U(x).W(x) with aU > 1.

) axy  ax, a x P
Since —— = 4=%= ., =.BP =14+ 3 bixi we know that
ir% D i=1



ap.yi
X, = x_ fori=1,...,p.
i ai.yp P
P p ay, ax
Consequently 1+ 2 b.x, =1+x_ 2 b, P-_LP
i=1 + 3 Pi=1 TEY, Yy
a p~-1 avy.
orx=1/(_3~b— I b, pl).
p yp Py 2 ypai
P p ay. a p- ay.
So we can write 3 b. x. = (2 b‘pl)/[p—b-zb‘p)
=1 TR sy TRV Tp P g 1Y
p P Y5 Y;
and1+zb.x.=1/<1-zb.—i)andx.= : .
i=1 +1 i=1 t 3 Yoaa- s b Oy
ooa=t M
Thus R, (x) = P, (y) and S, (x) = Q,(y} implies that
b b
- 1 ) k
P, y) = Ux).V(x). (1 STV e Y )" and
1 P P
b1 b
Qe () = U(x). W, (1 - s -2y ) and thus that
a, a, P
Pe() = U .T0) and Q () = U(y).W(y) with
— y b4 b b
= 1 p o -
Uly) = U¢ 5 5 5 ) (1=, .5Pyp)
31{1-;-1y]~...—-9y ) a (1—;})’1—' -gfy ) ! P
a4 &P P 1 p P
X =aU
V) = V( ) (1oaly By e ®+aVsk
y XpseeesX)e 5—])11 "'apyp <
b b b
W - Ao p, (kK - .
Wly) = W{xl,...,xp).(l é—]y1 apyp) (k + aW < k)

This contradicts the fact that -

&
Remark also that if Q, (0) = 1 then §, (0) = 1.

.P, 1s irreducible,
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Theorem 11.3.2.:

n - .
I F) = 200 with G(x) = 2 d.x' and H(X) = 3 e.x) where e # o and
H(x) 1 e J o
i=o j=0
: i, i
where di X = z d. . Xy eeeX P
11+...+i =i v 'lp p
; 3 J
ej XJ = . z . €. . X11...Xp
RIS REITE p

then for F(x) irreducible we have Rn . F{x).

>

Proof:
For F(x) = -%8% we can write (F.H-G)(x) = O(xnm+n+m+1)'
if Rn n =—1-(x) then there exists a multivariate polynomial
’ e

T(x) # O such that (P*.T, Q.T) satisfies (I.3.1) for the rational
funtion F(x), in other words such that

(F.Q.T-P,.T) (x) = O(XM+U+W1). Because of the equivalence-property
of solutions of the Padé-approximation problem we can conclude

that (Q,.T.G)(x) = (P,.T.H)(x) for all x in RP, and hence

that (Q,.G) (x) = (P,.H)(x) for all x in RP. Using the unique
factorisation of multivariate polynomials we can immediately write

thatP*=GandQ‘=H.

This property will be referred to as the consistency property.

§ 4. NEAR-TOEPLITZ STRUCTURE OF THE HOMOGENEOUS SYSTEM

4.1. Displacement rank

For the sake of simplicity we restrict ourselves now to the case of two variables.
To examine the special structure of the matrix of the homogeneous system, which we
shall denote by H, we introduce the following notations:

nm+m

for Q(x,y) = 2 bi' x*y? we write
itj=nm
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- — ~— p— -
m, o F bnm+1,o bnm+m-,o

Bnm B bnm—1,1 Bnm+1 - bnm,1 Bnm+m - bnm+m—1,1
bo,nm bo,nm+1 bo,nrn+m

L . L - - -

When we write down the equations equivalent with condition (I.3.1), the set of homo-

geneous equations in the unknown bi' is

r B
nm
H . =0
L %mﬁm
with
F n+1,nm Hn,nm+1 T Hn+1—m,nm+m
Hn+2,nm
H =
n+fm,nm °°° H
, n, m+m J
where H. . is a matrix with (i+j+1) rows and (j+1) columns and the first column equal

1,
to th . . . .
o‘ e transpose of (Cl,O C1—1,1 c1’1_1 co’1
to their previous column but with all the elements shifted down one place and a zero
(nm+g+m+2) - (nm+2+2) rows and one more columns
than rows. To calculate the displacement rank a(H) of H, we have to construct the

lower shifted difference

0 ... 0) and the next columns equal

added on top. The matrix H has Ne =

- — — [~ —
Byt By EX ° B Ponan
e e
_ hy by N
H-H= €
- : - sH
h

“as (o] - -

_hNe,1 hNe'Ne” | N-1,1 hNe AN hNe,T |

Now a(H) = rank(8H) + 2 [31]. The concept of displacement rank serves as a measure of
how close to toeplitz a given matrix is, since rank(sH) = o if H is actually a toep-
litz matrix.
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Theorem 11.4.1.:

The displacement rank of the matrix H is at most m+Z.

Proof:
Let us write down the matrix H more explicitly:
. c o
Cn+1,0 © °© Cn,o ° ° n+1-m,0 °
0
o,n+1 ° Co,n © Co,n+1—m
o c
e Cn+T,o © Cn,o n+1-m,o
. “es C
° ° Co,n+1 ° ° Co,n ° o,n+1-m
H = .
tm, 0 0 0
Co,n+m ° .
° T1+m, 0
o ° 0,n+m
\
Then &H has the following structure:
8H = (AT by -n. Am+1)’ where
by has (b%~1) rows and nm colums,
a4 has (bg—W) rows and (nm+i) colums for i = 2,...,m+1

and only the first colum in i with i > 2 contains nonzero
elements; all the other elements in s# equal zero.

So rank (8H) = m and this proves our theorem.
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It is easy to see that in the multivariate case the coefficient matrix of the homo-
geneous system is also a matrix with low displacement rank. Consequently algorithms
can be used where the solution of the linear system in the Padé-approximation problem
is given in less operations than usual [ 19], i.e. in O(a(H)NZ) operations instead of

3 .
¢} (Ne) operations.

4.2. Numerical examples

We will illustrate the preceding theorems with some simple examples.

Consider F(x,y)} = 1 + O.}?(-y + sin(xy)

so 1H10x-10.0y .
a) The (1,1) APA is 0.1y with

0 0 10 0 0

H = 101 O O 10 0 and a(H) = 3.

2
b) The (4,2) APA is JH1OX-10y+xy-10xy" .oy
1-10y

4,9 310 and o () = 4,

5

where HS,S =10 (6i,j+4) a 14 x 9 matrix
H = 104 (5 ) a 14 x 10 matrix
4,9 1,j+3
H =1O3 (5. ..,) a 14 x 11 matrix
3,10 i,j+2
H, o= 10% (6. ..0) - 26 :.0) @ 15 x 9 matrix
6,8 i,j+5 6 9i,j+3
_ .5 .
35’9 = 10 (‘Si,j+4) a 15 x 10 matrix

o _
Hy 107107 (6 ) a 15 x 11 matrix

1,3+%

and 61,j is the Kronecker symbol (here used in rectangular matrices).
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§ 5. THREE-TERM IDENTITIES

5.1. Cross ratios
A cross ratio is a ratio of the form

(rymry) (xpm1y) .

T, TE,77,)

(ryr5) T,y
Each of the four T, appears in the numerator as well
If we compute (II.5.1) when the T, are the values of
Padé table for a given value X = (;1,...
(I.7.1)-(1.7.4) to simplify R. Consider for instance
table given in figure IT1.5.1

(11.5.1)

as in the denominator.

four adjacent entries in the

,?p), then we can use the two-term identities

the four entries in the Padé

P P

Al 5 - T, U[L’M—(i)z T,
[n,m] [n,m+1] -

P P
[0+, e [n+T,me1] = _

i (X) = T X =r
[n+1,m S 4

Figure II.S5.1.

Then

+2)

—n+ ] . et
X ).HerZ((Jon )

—n R 1
(R

Hm (Cnﬂ

For the entries given in the figures 11.5.2 and II.5.3 we find respectively

1] -q+ 1]
=Hm(cnﬂx )‘Hnm(cnﬂx 3

-=I1 =N+2
HW1(Cnx }.Hm(cmzx )

and
=1, ~T14 ]
M GF ) H (G XD

=n+] sy
Hm(cnﬂx ) .Hm+2(cnx )

P
=l -

{n,mi

P
[n)m'*}} (@ = r4
[n,m+1]

P[n+1,m—1] &) =r
[n+1,m-1] !

p[n+1sm] X =

[n+1,m) 2

Figure 1I.5.2.
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P
Aot o T,

fn-1,m+1]
P P
(0l (5 - ry In,m ]z - r,
{n,mj n,m+1]
[n+1,m (%) = r
{n+1,m} 4
Figure II.5.3.

Many more cross ratios can be calculated by means of the given two-term identities,
but we give these examples because we shall use them now to derive some three-term
identities.

2. Three—term identities

The cross ratio {II.5.1) can be solved for one of the ri, say T, interms of the other
three T, and R. We get
rs(rz—rT) - R rz(rs—r1)

T, =

4 (rz—‘rp - R Cr3~r1)
If we use again figure I11.5.7 we find
- =n+1 =n+2
Fne1,me) ) = Lotl (D H Ly Gy X0 = By ey @ (G X079
- =n+T = —n+Z
Q{n+1,m+1] Q{n+1,m] (m'Hm+2 (Cn+1 X - Q{n,m+1] () 'Hmﬂ (cn+2 x7)

P,
[n+1,m+1] —
S0 b d b £ P P
0 ol ) (x)can be calculated by means o {n+1,m] X, Q{nﬂ,m} x), A 69

and Q{n,mﬂ] (x); we shall indicate this by

N x

For the figures I1I.5.2 and II.5.3 we get respectively
] — x and

!
X X



*3STX3 3Byl S9r3TTIqrssod oyl jnoqe vepr ue oArd soydurexs mey

95911 NG ‘819Y PSIBDTPUT SSUC SYI UBYL PBISPTSUOD 9q UBD $2InSTJ SJ0W YdMul 3SIN0D 3O

*9*§*I1 eanfryg

2 :Eﬁt:d N [ vu
* = O, B e
[Lsuful futu
Yy = < o
1= Qui I = &:ﬁ.l_mw

*§*§UI1 PanBry

. {1+ ?EW

:xﬁ::f

fLewtu fu‘u
€1 2 ANVL (29 @Y?}ICWP
d

() c_m

L E.TEG

I =
& ey T
‘§°5'11 eandry
[+t 4u} [y +ul
LA i o 15 K
1= vaﬁr+s._*aua = T
d
fur‘u . {} 2wul
1= (X) 1= (x) 7
ur€u B [ -ua R
X X —
|
7
X o X] X

AT9AT3d0dsex puty prnom am
9°¢ 11 pPUB §°S°*II ‘p°S'II $0and1F oyl 10F SOTIBL SSOID SY] SIB[NOTED PINOM OM USYH

173



72

§ 6. ACCELERATING THE CONVERGENCE OF A TABLE WITH MULTIPLE ENTRY

6.1. Table with double entry

The e-algorithm has frequently been used to accelerate the convergence of a sequence
(Ti) ?=0 in R [49], which can in fact be considered as a table with single entry:

construct the univariate function
o

F{(x) = 2 cix1

where =0
c. =T, - T, (T,=o0 for i <« q)
i i i-1 i
and calculate the classical Padé approximants for F.
Since
F(1) = lim T,
e

one evaluates these Padé approximants at x = 1.

Let us now first consider a table (T..). with double entry. To accelerate the con-

- ij7i,j=0
vergence of (Ti')i i=o to lim T.. we introduce
U S
F(x,y) = b CijxlyJ
i,j=o

with

Cij = Tij - Ti,j-1 - ri~1,j * Ti-l,j—] (Tij=o for i < oor j < o)
Clearly

F(1,1) = 1im T,
a,n 3, joo ij
Using the generalization of the e-algorithm given in § 7. of chapter I, we can calcu-
late multivariate Padé approximants for F(x,y) and evaluate them at (x,y) = (1,1).

If we denote by

L B L L T T
i+j:n J ’ 3 3 s
then the partial sums
n
Fn[1,3} = ‘ZA_ Cij = Tn - Tn'] N=0,...,®
i+j=0
m

are the £, to start the e-algorithm with.
An application to accelerate the convergence in quadrature problems will be given at
the end of this paragraph, but first we will generalize the idea for a table with

multiple entry.

6.2. Table with multiple entry

Let us denote by (Ti 0 @ table with multiple entry.

We define
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- i1 ip
F(X ye00,X ) = 2 C. Xy ..l X
L Pl i o Byt TR
with P
> T
C . =T, . 3 . - .
i, .1p 1yee-1 j=1 11"'(1j 1)...1p
5 T
+ z . 1 . . s o . i
3, k=1 11"'1j'1(1j 1)1j+1"'1k~1(1k RIS lp
j#k
s DR T .
(11 l)...(lp 1
It is easy to prove that
B = im0 T
}""’ p p

Again multivariate Pad@ approximants for F(x?,...gp) can be calculated and evaluated
at (x],...,xp) = {1,...,1) via the ¢-algorithm.

Since P
- j P
b c. o= 2 -0 G T
i1+...+ip=n 11"'1p j=o ;o
where
T = z T. ;
n R ety
the Egn) are now given by
-] .
n -1
FE (1o, = 2 c =z ) EHT .
n igterizo M =0 b

Applications

Suppose one wants to calculate the integral of a function F(xj,...,x ) on a bounded
closed domain @ of RP. Let @ = [0, x ... x[(0,11 ¢ H{p for the sake of simplicity.
The table (Ti

)Y .
1"'lp 1],...,1p o]

i,
interval { 0,1 in the jth direction (j=1,...,p) into 2 3 intervals of equal length

can be obtained for instance by subdividing the

hj = (1j=o,1,...).
23
Using the midpoint-rule one can then substitute approximations

h] h

h
2 D
fO iy . )

h
P - 1 2
“.&) F{xp..”xp)dxr..¢¥ hﬂb"Jb Fbj, R
to calculate the Ti

(n)
o

1 ..ip‘
The column ¢ (n=0,1,2,...) in the ¢-table given by
p-1 .
n
e e

-1
2o 57 To-j
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was also used by Genz [22] to start the e-algorithm for the approximate calculation

of multidimensional integrals by means of extrapolation methods. He preferred this
method to six other methods because of its simplicity and general use of fewer inte-
grand evaluations [22]. But when he was using it he did regret that there was no link
for the multidimensional problems with Padé approximants as there is in one dimension.
Genz remarked that the construction and theory of the multivariate generalization of
Padé approximants had only recently been developed by Chisholm and his staff, but that
the Canterbury approximants were not particularly suitable for the problem of the
extrapolation of sequences of approximations to multiple integrals. This paragraph has
now put things together: the €£n} are the partial sums of the multivariate function

i i
F(Xyyeneyx ) = B c. LOX X
1 P 11,...,ip=o Bpeeddy 1 P
with the ¢, 5 defined above, and the g(n—m] are the (n,m) APA for that multivariate
13
function, all evaluated in (x1,...,xp) = (1,...,7). We will illustrate everything with

some numerical results.

Let us now take p=2, h,=2"%, h,=27). Then

2
1 2b g
oo 2k=1 2¢-1
T.. = —— F(&2 ¢
557 (8 & T )

For the first example we are going to comsider, we have
2z
Flx,y) = (xty)

~J

T
Tg Jo Fy) dx dy = % = 1.766666666666. . .

T =1
00

In table II.6.1 one can find some Tij and some values of the (n,m) APA in (x,y)=(1,1).
For the calculation of the (n,m) APA we need Tj’ J=0,...,+m, It is easy to see that
the convergence is indeed improved,

=17 8.
Ty = T& = 1.0625 (0,1) APA = 5 = 1.142857142857....
1, - % = 1.125 (1,1) APA =-g= 1. 166666666666. . .
T, =13 = 1.140625 (2,1) APA =L = 1.166666666666
2176 7 o 6
T, ==L = 1.15625 3,1) APA =L = 1.166666666666
2 % (3,1) APA =5 = 1.
Table 11.6.1.

What’s more: substituting the explicit formula for the Tij in the calculation of eén}
one can easily check, using the expressions
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2 _ S 2 L
p k=L @yt ey and 1z k- 2R
k=1 k=1
that Eén) = % - %Q% " for n = o which implies {9 pp. 451 that the value of the
(n+1,1) APA = Egn) = % for n = o.

As a second example we will approximate
T - _
fO o ¥ dx dy = 24n2 = 1.386294361119891

In table I1.6.2 one can again find the Tij’ slowly converging to the exact value of
the integral because of the singularity of the integrand in (0,0). The function-
values of the (n,m) APA converge much faster.

T13 = 1. 166666666667 (1,1) APA = 1.330294906166
TZI = 1.208102009102 {Z,1) APA = 1.361763927710
TZZ = 1.269047619048 (2,2) APA = 1.396395820203
T23 = 1.292977663088 (2,3) APA = 1.386056820469
T33 = 1.325743700744 (3,3) APA = 1.386872037696
T34 = 1,338426108120 (3,4) APA = 1,386481238969
T44 = 1.355532404415 (4,4) APA = 1.386308917778
Tgy = 1.362055745711 (5,4) APA = 1.386298323641

Table 11.6.2.

§ 7. COMPARISON WITH SOME OTHER TYPES OF MULTIVARIATE PADE APPROXIMANTS

We will restrict ourselves to the case of two variables because the generalization to

more than two variables is straightforward. Many definitions exist that try to genera-

lize the concept of Padé approximant to multivariate functions. However, the calcula-

tion of each type of multivariate Padé approximant P_(x,y) /Q, (x,y) is based on:
(F.QPGoy) = 2 dy xMy) with 4y = 0 for (i,5) ¢ Ec N,

We call E the interpolatiéﬁéei; the choice of E, P(x,y) and Q(x,y) determines the type

of approximant.

If one wants the multivariate Padé approximant to satisfy the covariance properties

1.6.1 and I1.6.2, E must satisfy the inclusion property, i.e. if (i,]j) € E then

(o,il xT0,j1) n N cE.

We shall now briefly repeat the definition of some types of approximants and compare

them theoretically and mumerically with our abstract Padé approximants in the case

X=RPand vy = R,
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7.1. General order Padé~type rational approximante introduced by Levin [ 34]

We briefly repeat some notations and definitions given by Levin.
Given a subset D of Z 2 we define:
2\ p

b) the (i,j)-translation of D as Dij N
c) the non-negative part of D as D
To any subset D such that p*

a) the complement T = 72

= {(k,n} | (k+i,n*j) € D}

=DN ]NZ

is a finite set we associate polynomials
2z N bi.x1

(i,jyep’
We call D the rank of the polynomials.
Given the double power series

o - .
xty

Flx,y) = 2 c.

e 13
i,j=o .
we will choose three subsets N, D and E of ZZ. and construct an [N/D] approximation
to F(x,v) as follows
P(x,y) = I, a s x* yJ (N from "numerator'’)
e Y
Qx,y) = o, bi. x* yj (D from "denominator''}
G,Hey M
(F.Q~P) (x,y) = L, di' x* yj (E from "equations') (11.7.1)
(i,j)eg”

We select N, D and E such that

a) D C ]N2 has m elements, numbered (11,j1),...,(im,jm)

b) NCE and H= E\ N has m~1 elements in ]NZ, numbered (hZ’kZ)"' .y (hm,km)
(H from 'homogeneous equations')

Then P(x,y) and Q(x,y) defined by equations (II.7.1), are given by

iy 3 i, j i j
1 1 2 72 m _-m
Xy N (%y) xSy IN Ly ... x Ty TN L (XY
I3 77 1,33 i
“hymipkoiy “hy-ipikyo3, " Shyminko iy
P(x,y) =
c . i . cee & s .
hymiysksmd, “hyeiyksod, a1 ksiy
cp s . c, s . _:
by li’km 79 hm 12’km Iz hm S
where N. . (x,y) = b c.. xi yj (£ =1,...,m) and
gars (i,5) eN? B

1p3g
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i, i j i j
x1y1 Xzyz “‘xmym
c, . . c . . c, .
| hpripkymi Thyminkoog, hy-1p.K"3g
Q) =|
c,. . . c, . R .
hm ll’km_JT hm—lz’km—JZ hmhlm’kmﬂm

When we make the following choices for the sets N, D and E:

N={(i,5) | 1,j ¢ N, nm = i+j = nmn}

D={(i,j) | 1,7 ¢ N, nm = i+j < nmem}
E={(i,3) | 1,j € N, nm = i+j < nown+m}
mAnAm
E
nm \
nm nm+n+m

we get precisely the (n,m) abstract Padé approximant; the set H = E\ N has one element

less than the set D, as required.

. Canterbury approximants, Lutteredt approximgnts and Karlsson—Wallin approximants

We are going to compare abstract Padé approximants (APA) for F(x,y) with Chisholm
diagonal [ 13] approximants (CA), Hughes Jones off-diagonal [ 29,30] approximants (HJA),
Lutterodt [ 37] approximants (LA), Lutterodt approximants of type B1 [ 36] (LAB1) and
Karlsson-Wallin [ 32] approximants (KWA).
For the Canterbury approximants (i.e. CA and HJA) we have
R )
Plx,y) = 2 IoaL Xy
i=so j=o J
m, ;
Q[Xsy} = 7 z bl Xy
i=o j=o J



E={{(i,j) |o=1l

U{(i,3 |o

iA
(A

i

i
IA

U {,5 max(nz,mz) <]

U i,5) | max(ng,m) < i

ny*my
n4t+1
2
iy

max(nvm}} , ©

rnin(n1,m1) , O

<

<

tA
1A

3

iA

=]

ny+im,, max(nz,mz) < i+j

ngtm, ma.x(nl,ml} < i+j
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min (nz ,m2) }

max(nz,mz)}

<

nyHmy, ©

1

nyemy, 0

m1+1 \

d..
1]

G omyr1-g, ¢ de,nzﬂnzﬂ—z:

o for {i,j) ¢ E

For the Lutterodt approximants we have

n n
1 M i s
Pi,y) = 2 3 a5 Xy
i=0 j=o0 J
B i
Qx,y) = 2 2 bij X"y
i=o j=o

E5lon) xlo,n) n N?

ofor £ =1,...

Ryt

,min (n1 STy 5T, ,mz)

E satisfies the inclusion-property and contains exactly

(n’-ﬂ) (n2+1) + (mTH)(mZH) -~ 1 elements

iy

+ (m1+1}(m2+1)—1 points

i= min(n1,m1)}

js min(nz,mz)}
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and for the Lutterodt approximants of type B1
E={{(i,}) IoSiSnP 0 £j =my}
U {{,3) | n+l =i = nytmy, ny*l oS j o< n2+m2}

U {(i,o) | n+l s is ny+mg}
U {(o,3) | nytl =g < nytm,}
E

n,+m, - -
n2+1 .
1

nz ; i

m i I

l i

:n1+1 :

nyom ny*my

For the Karlsson-Wallin approximants we have
n

P(x,y) = 2 a. x y
i+j=o Y
m . .
Qx,y) = = bi' X yJ
i+j=o
ED> {{i,§) | i*] =n}
E satisfies the inclusion-property and contains at least

T (+1) (n+2) + 5 (1) (me2) - 1 elements

+ 2(m+1) (m+2) - 1 points

The following scheme summarizes the properties satisfied by each type of approximant.
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Py Py

We call an approximant symmetric if for B{x,y) = E{y,x) also Q*(x,y) = Q*(y,x}.

In the last row but one, one can find the variable changes X and y for which, if
P, P -
={x,y) is the desired approximant for F(x,y) then —:{x,@ is the one for F(X,y).

& %

The HIA, LA and LAB7 are denoted by (nl,mz)/(m1 ,mz); for the CA ny=0,=m,
The KWA are denoted by n/m. We remark also that the APA can be calculated recursively

=1_,~n,=M,~N.
L

by means of the e~algorithm and that they satisfy the consistency-property formulated

in § 3. of this chapter, two properties which are for instance not satisfied by the

Canterbury approximants,

Numerical examples

Let N. be the mumber of unknown coefficients in the numerator and denominator of the
approximant. For rational approximants 1 coefficient can always be determined by a
normalization. We consider NC*T to be a measure for the operator-fitting ability of
the calculated rational approximant.

For CA, HJA and IA: Nc = (n1+‘l)(nz+1}+(m}+1}(mzﬂ).

For KWA and normalized APA: Nc: = (D) (ne2)+ (e 1) (e 2)) /2.

a) Let us consider

F: RP- R : (ﬁ»M: ; _l«xiyj
’ Yy S 4 i,j=0 (1+J)‘ :

In the Taylor series expansion of F we have a term in every power xjyj.

For KWA we have used the diagonal enumeration of points in ]Nz, i.e. {0,0),{1,0),(0,1),
(2,0}, (1,1),(0,2),...

We compare the function values in some points. We see that the APA is good as well for
x >y as for x < y (on a not too large neighbourhood of the origin), while other appro-
ximations, except CA(1,1)/(1,1), are not. The reason is simple: (1,1)/{1,0) fits the
behaviour of F if x > y and (1,1)/(0,1) fits the behaviour of F if y » x. The success
of the (1,1) APA and the CA(1,1)/(1,1) partially lies in their conservation of the
symmetry of F.
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N
C
x 0.05] 0.25] 0.25| 0.65] 0.65
y 0.25] 0.05} 0.45} 0.45} 0.85
Xy
F(x,y) % 1.34211.34211.9241{2.697]3.718
1
1 Taxry
LAB'(1,1)/(1,0) 7 6 11.30811.34311.800}2.6303.222
==X
3

1 1
T3 (x+y) =%y
wme' (1,170, == 4 8 |1.328|1.328]2.032|2.109{4.153

] 1
1-3 (x+y) +3xy

(1, 1)APA —— 10 11.34411.344/1.95812.8874.455
xHy-3 (X *xy+y ")
ey

CA(1,1)/(7, 1) S 8 11.344(1.344(1.936(2.742]3.819
T-5{x+y) +3xXy
1+x+%y

HIA(1, 1)/, 1) 3 6 11.343]1.308/1.903/2.419|3.609
1-7y
1+%x+y

KWA 1/1 —— 6 11.308{1.343[1.800{2.630{3.222
T-=X

2

b} Now consider

3

- ~3)11
F: DQZ + R : (;) - \/1+x+y = +-5%1L+ s (—1)k T2k Zkl. (x+y)k
k=2 27 k!

where (2k-3)!! = (2k-3).(2k-5)...5.3.1.

We calculate some approximsnts, For the LA we also give the interpolationset E because
the approximant depends on the chosen E.

The border of the domain of F is nicely simulated by the poles of the (k,1) APA:

L 2ke2 . =2ke2
y = X m with }];—1’2. —.ZY:T = -
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o HeREs
e Tt 0T
HIA (1,1)/(1,0) 1 : g:ggx; 0.5y - 0.125 xy
HA (1,1)/(0,1) 1 :8:§>5c;0.75y-o.125m
on 1 FeR
B O ) 0Ty
A
or
LA (1,1)/(1,0) ] : g:ggx; 0.5y - 0.125 xy
b
1A (1,1)/0,1) % : 8.?5( ; 0.75y - 0.125 xy
#,_

We also compare the function values in some points and see that the (1,1) APA and the
KWA 1/1 are much more accurate than the other types of approximants that have the same

operator-fitting ability.

(XJY)=(2!-1) (X,}’)=('0-4,‘Oo 5) (X,)’)=(2,"2)

F 1.4142 0.3162 1.0000
(1,1) APA, XWA 1/1 1.4000 0.4194 1.0000
CA(1,1)/(1,1), LA(T, 1)/ (1,1) 1.3077 0.3898 1.0000
HIA(1,1)/(1,0), LA(1,1)/(1,0) 1.5000 0.4722 1.3333

WA(1,1)/(0,1), LA(1,1D/0,1) 2.0000 0.4571 2.0000
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¢) Let us take a loock at

. A X X .
F: R - R: (y) -~ 1+ 51y + sin(xy)

We calculate some approximants Et(x,y), their operator-fitting ability and the exact
order of (F.Qk—P*) R &

If a Canterbury approximant is not uniquely determined we call it degenerate [307.

The interpolationset E prescribed for the calculation of LAB‘(] O/ (1,1,

L' (1,2)/(0,2), LAB' (2,1)/(0,2), 1AB' (2,2)/(1,1) always supplied a system of linearly
dependent equations. So we do not include these approximants here.

Next to the type of the approximant one can {ind some small remarks. If several types
provide the same rational function, they are grouped and then the multivariate Padé

approximant is given after the small remarks.

P,
sup [F(X,)’) -TE(X’Y) ‘

We have also calculated an estimate < of which is a measure

sup |F(x,y),
A
for the relative error made by approximating {(sup [F(x,y)| = 10}. When we compare
A
£ for the approximants ——t(x,y) that have the same operator-fitting ability, we remark

Q

that we can arrange them as follows from better to worse.

NC £y

6 HIA(1, 1)/(0,1) and LACT,1)/(0,1) 0.06
(1,17APA and KWA 1/1 0.09
HIA(T, 1)/ (1,0) 0.73
HIA(1,0)/(1,13 and LA(3,0)/(1,1) 0.81
HIA(1,03/(1,1) 90.1

8-9 HIA(1,2)/(0,2) and LA(1,2)/(0,2) 0.9 % 107/
(2,1) APA, KWA 2/1, CA(1,1)/(1,1), HIA(2,1)/(0,2) 0.06
and LA(2,1)/(0,2)
KWA 1/2 0.09

13-14 | (3,1)APA, KWA 3/1, CA(2,2)/(1,1) and LA(2,2)/(1,1) 0.9 % 107/
(1,2) APA 0.07
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Remark the fact that the accuracy of Canterbury and Lutterodt approximants depends
mainly on the chosen type of approximant, i.e. on the degrees of x and y in numerator
and denominator; one can obtain a very accurate or a very bad approximant with the
same amount of work, because one cannot always tell from the first Taylor coefficients
of F which degrees one should choose. And most of the times the only information one
gets about the multivariate function are some Taylor coefficients. If the denominator
of the Padé approximant equals 1-10y, then the rational function has the same poles

as the given multivariate function F and the only remaining terms in (F.Q*—P*) come
from sin{xy). This explains the fact that € diminishes tremendously for certain types
of approximants (0,9 * 10-7).

Rational approximations of multiple power series introduced by Billion {28]

He also only considers double series because the extension to many variables is straight-

forward. We briefly repeat his definition of rational approximations.

Given the double series

oo

Fix,y) = 2 c.,xiyj

i,j=o M
we introduce the polynomials
k-p k- p-1
- £ p+l k ¢ £k
@ (,y) =| = c_ x Ty + 3 (g ,x ¥y e, X"y
kyp E=O k£9p+‘e E=O k,[, F—,k
if k » P
k-1
k k k k .
Ck’k Xy o+ EO (Ck,£ X y2 + Cz,k xt ¥ ) ifk=p

It is easy to see that for p fixed

2 By play) = )

The rational approximation {n/m}p(x,y) is now defined by the e-algorithm

NERON Pe o

. i

(1sp) - ] = 1

= X, 1= 0,7,u00
EO kzo Qk,p ( Y) »
1
1,p) _ _(i+1,p) _ j= o1,
41 Tei T T TEE L L (L) 1= o,
Ej Sj

(n/m, (6Y) = e Shmp)

1f we take p=o we obtain precisely the (n,m} APA. The applicability of the -algorithm
for the calculation of the {n,m) APA was proved in § 7. of chapter I.
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§ 8. BETA FUNCTION

8.

1.

Introduction

The Beta function is an example which has also been studied by the Canterbury group
{25] and by Levin [ 35]. We will compare our results with theirs. The Beta function

may be defined by
I'x) r
B(x,y) = (F)( W)

where I is the Gamma function. Singularities occur for x = -k and y = -k {(k=o, 1, 2,...)
and zeros for y = - x -k (k=o, 1, 2,...).

We write

A(x-1,y-
O npy -AlsleD
with

Alu,v) =1 + uv £{u,v)
The coefficients in the Taylor series expansion of f{u,v) have been calculated by the

g[u,v) for £(u,v)

first method suggested in [ 25]. We will calculate some (n,m) APA
and compute
1+ G O DgeeT,y-1)
Xy
as an approximation for B(x,y). Also we will compare the singularities and zeros of
{1+ (x~1) (y—])—é(x—hy—])]/xy with those of B(x,y}. The numerical values of the APA
can easily be calculated via the e-algorithm, while the coefficients in numerator and

denominator can be calculated by solving a linear system whose matrix has low displa-
cement-rank.
Let us first take a look at the computational effort it takes for the calculation of
a certain approximant. We denote by Nf the number of coefficients in the Taylor series
of £ which we shall need for the computation of the approximant; Nu still denotes the
number of unknown coefficients in the homogeneous system,
For a HJA(n,n)/(m,m):

N, = (m+1)z ;

Np = m1}" + (n*1)° + 2 min(n,m) - 1
For an (n,m) APA:

for mm > o:NU = { (nmrm+ 1) (et 2) - nm{ron+ 1)1 /2
(m+2) (m+1)/2
Nf = (1) (e 2) /2

for nm = o:N
u
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The rational functions which Levin used for the approximation of the Beta function,
were of the following type

n n
22 ' zz <
y 2 %43 Y R b p13
Jj _i=o j 1=0
z X = + 2y =
j=o 2 i i=0 2 1
z By; Y Zoq;s X
j=o 1 j=o 1
m m i }
Z z a5 Xy
i=o j=o

and we shall denote them by [ (n i )/m]r because for their computation:

3

Ny

Ne

(for more details see {35}).

(rn+1) + (n +1)(n +1)
2(In +1){n +1) - (n +T) + [max(o,m+r—n1)]2 -1

#

Using the prong-method [30] the homogeneous system of equations for the calculation
of WA(n,n)/(m,m) can be solved in O[m (2m2+2m—1)] operations.

Exploiting the fact that the matrix of the homogeneous system of equations has low
displacement-rank o{H), the denominator of the (n,m) APA can be calculated in
O(a(H]Ni), so at most in O{_m_s} [ (nm+n+m+ 2) (nmrntm+ 1) - (nmne2) (mn+n+1))2] operations.
But the calculation of a function value of the (n,m) APA can via the ¢-algorithm
already be performed in O[ {n+m) 2+m2] operations and we prefer this method to the solu-
tion of the system.

The solutlon of the homogeneous system for the calculation of [ (nT,n )/m] involves

o (m+1) + (n +1) (n +1)] operations because each system in the q . has a Toeplitz
structure.

After comparison of the Nf,
(see also [35]) the mumerical Values of

N and the computational effort we decided to compare

(8,4)APA with [ (4;5)/2 l3 and HIA(7,7)/(3,3)
(4,4)APA with [ (3;3)/1 1, and CA(3,3)/(3,3)
(8,3)APA with [ (2;5)/2 1, and HIA(7,73/(2,2)

We shall also give the trajectories of the poles and zeros of some Canterbury approxi-
mants and some abstract Padé approximants (Levin did not draw any figures illustrating
the situation of poles and zeros).

It is easy to see that the APA can produce better results than the HJA and the CA,
e.g. for (x,y)=(-0.75,-0.75), and that they can also produce better results than the
approximants Levin used, e.g. for (x,y)=(0.50,0.50). They are most accurate for
(u,v)=(x-1,y-1) not too far from the origin.
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Numerical values

8.2.

We compare the numerical values of the approximant with the exact values of B(x,y) at

ts.

various poin
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8.3. Figures

The pattern of singularities and zeros

figure I11.8.7.
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of the Beta function B(x,y) itself is shown in

y
5.0
~a-0
N L
NN
0 20 30 40 50
T T CTT X
2\
AN
Figure II.8.1.

The situation of poles and zeros of CA(2,2)/(2,2) and HWA(7,7)/(2,2) is illustrated in
the figures II1.8.2 and I1.8.3 respectively. The poles and zeros of (0,2)APA, (2,2)APA
and (7,1)APA are drawn in the figures 11.8.4, II.8.5a-b and II.8.6a-b respectively.

In both cases we remark that the vertical, horizontal and diagonal lines are nicely

simulated.
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§ 1.

§ 2.

CHAPTER III: THE SOLUTION OF NONLINEAR OPERATOR EQUATIONS

INTRODUCTION

Several types of nonlinear operator equations

F(x) =0
will be considered. Iterative methods for the solution of those operator equations are
iftroduced and discussed in § 2. and § 3. Starting from an approximation X, for a root
x of F, a sequence of further approximations {xi} is constructed in such a way that

X is computed by means of x;. The well-known Newton- and Chebyshev-iteration

1+
[211pp. 205] are special cases. Among others, an interesting new iterative procedure
which we shall call the Halley-iteration, is constructed.

Afterwards systems of nonlinear equations, initial value problems, boundary value pro-
blems, partial differential equations and nonlinear integral equations are respectively
treated in the paragraphs 4, 5, 6, 7 and 8, We will remark that in the neighbourhood

of singularities iterative procedures that are derived from solutions of the Padé appro-
ximation problem of order (n,m) with m > o (cfr. Halley's method) are more suitable

than those where m = o. Finally the numerical stability of the Halley-iteration for

the solution of a system of nonlinear equations will be discussed in paragraph 9.

INVERSE INTERPOLATION

Consider the nonlinear operator F: X - Y where again X is a Banach space and Y is a
commutative Banach algebra. Suppose we want to find X" in X such that

P =0
Let F be abstract analytic in a neighbourhood U of X and let ¥ be a simple root of F,

in other words let F'(x")_1

exist and be a bounded linear operator. Then there is a
neighbourhood V of O such that the inverse operator G: V C Y + U C X exists and is
abstract analytic in V [ 6 pp. 299-301].

By means of solutions of the Padé approximation problem for the inverse ¢perator G
(X must be a commutative Banach algebra then), we can construct iterative methods to
find x* (inverse interpolatiomn).

By Fi and F; we mean respectively the first and second Fréchet-derivative of F at X;
Let Fi = F(xi) =y and G(yi) = X We know that G(0) = X and that G is analytic in

a neighbourhood of 0; so we can write [ 471 pp. 205]
-1 1t =1 = 2
(Ii Fi ) (y yi) + o (I11.2.1)

where (Pg Fi_1)(y-yi)2 is the bilinear operator F; evaluated in (Fi_1(y—yi),F£_](y—yi)).

G = 6lyy) + B Omyy) - 4F)

If we calculate a solution (Pi,Qi) of the Padé approximation problem of order (n,m)

for G in Yy, we could iterate
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1 1
Xi,q = [—Q-i—.Pi} 0) or (-Q:;.P*i] {8)]
where —l~.P ; 15 a reduced rational form of lw.P..
Qu; ™ Qi
Observe that the well-known Newton-iteration results from approximating the series
(II1.2.1) by its first two terms, i.e. a solution of the Padé approximation problem of

order (1,0) for G:
1

Xi,q = X; * a; where a, = -Fi— F. (I11.2.2)
The (0,1) Padé approximation problem gives the following iterative method:
_ .2
Xpp = xi/(xi - ai) (111.2.3)

where the multiplication and division are those in the commutative Banach algebra X,
The first three terms in (I1II1.2.1), which form in fact a solution of the (2,0) Padé
approximation problem, could also be used to approximate x*, giving the next iteration:
|
ie1 |7 Fa) (I11.2.4)

X =X, +a, - xF
i i 2
The iteration (III.2.4) is known as Chebyshev's method for the solution of operator

equations.
Another way to approximate x* is to use a solution of the (1,1) Padé approximation
problem for the series in (II1.2.1):

- i (I11.2.5)
EE5 TS T B vy
a. + sF! 'Fla?
1 21 11
which is a generalization of a formula of Frame [ 18] and a rediscovery of the Halley-

correction, now for operator equations.

If Fi—1F;a§ = ai.Lai for a bounded linear operator L, then (III.2.5) reduces to:

a,
i
X.,4 = X. +
i+] i %Lai

where I is now the unit for the multiplication in the Banach algebra X. If X = R = Y
this reduction can always be performed and (I11.2.5) then results in the classical
Halley-iteration. The iterative procedure (I11.2.5) is closely related to the method of
tangent hyperbolas [ 39 pp. 188]:

1

x x. - {F! + —-F'.'a.}_T F.
1 1 11

i1 " 2 i
which can also be written as
_ Tor=Tr, o1
Xieq T X U SR Fag o ay

where Ix: X > X: x » x is the identity. This second formulation shows the interrelation
with (ITX.2.5): the operator {Ix + %F£'1F¥ai} is evaluated in as, the vector a; is mul-
tiplied by a; and those two vectors are divided in order to avoid the inversion of

{IX + %FE_IFEai}. This technique is similar to a method introduced by Altman to aveoid
the inversion of matrices in a procedure to solve a system of nonlinear equations.

One of the main drawbacks to the use of (n,m) Padé approximants is the computational
cost of evaluating higher derivatives of F. However, in some cases these derivatives

can be computed quite easily, e.g. if F satisfies a certain differential equation (so
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that the derivatives can be computed from this equation rather than from F itself} or
if F is a composition of polynomial, trigonometric or exponential fumctions.
Let us now suppose that the iterative procedure chosen for the calculation of a simple

* .. . . * . . *
root x of F is convergent, i.e. lim X, =x or equivalently lim ”Xi - X || = o.
e Jopeo

Definition III.2.7.:
An iterative procedure which calculates X1 by means of X5
is of order p if for all i, there exist integers py = 0 and

P, >0 and there exist multilinear operators

P Py
E ¢L(X',Y) and E ¢ L(X“, Y) with
P Py

P
E  {x-x.) ! £ 0 such that
Py 2

[Epl(x*-xi)p1].(x*—xi+1] = Epz(x*-xi)p2 and p = Py~Pq-
In classical definitions of order of an iterative process, the factor Ep (x*—xi) !
on the left hand side is missing. i
Its presence here is due to aOPi and aOQ.l or aOP*i and aoQ*i in the abstract Padé appro-
ximation problem; this will be made clearer in the next theorem. Nevertheless this
definition is an extension of the well-known definition [ 38 pp. 148] because for py=o
and EO regulfr in X we can p:ove that there exist Ji in H{; such that

I = xg s 0 - x )P
We will now use the notation le'P*i for a representant of the rational operators that
can be formed with the elementsl(Pi,Qi) and (P*i’Q*i) of the (n,m) abstract Padé appro-

ximant for G in Yis which is an equivalence class.
Theorem 1II1.2.1.:

The order of the iterative procedure Xiq = C~l»uP*i)(O) is at least
’ i
nm+n+m+1—aOQi if D(Tto) # @ where T is such that Pi = P*i'T’ Qi = Q*i'T
and t_ =23 T.
o o

Proof:

Because of theorem 1.5.4 we can write

nm+n+m+1-t0

(6-Q; - P,) 0 = 0(ly-yy) )
Ry :
where Q. () = 2 B,J. [Y'}’i)J

oxi
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I

1 .

For y = O we have, since G{0) = x* and X4

*
Qi@ » (f-x;, ) = (6.Q,;-P,)(0)

let p, = aO(G.Q*i~P*i) > nm+n+m+1-to and Py = 3, Q*i’

Since X is a simple root, G is sufficiently differentiable in

a neighbourhood of O containing the line segment joining the

points O and Y3 and so via Taylor's theorem {41 pp. 124)

po-1
1-6 2

ry) P,
pz_]] T (G'Qﬁi_p*i) ((1"8})/:-[) (’Yi) dt

65RO = 144

p,-1
1-9) |

{p
1 (1-8)
fotpnT %

i

P
Q) (C-8)y)) (yy) | at

for certain multilinear operators

P, P,
D €LY ,X)and D_ ¢ L({Y “, X).
Py P2

Now Yy T F(x*) - F(xi)

U Fred s (-0 x) dey O - x))

i}

Lix - %)

with L a linear operator and thus

* P = * 2]
{Ep1 x - xi) 1.(x - Xi+3} = Epz x - xi)
P 1Y

WithE & -x) =D (LO* -x)) | and

o i P, i

P P

E o -x)%=0 @ -x) %
Py 1 Py 1

If we write p = p, - p; then p z nmn+m+1-t -2 Q. = nm+n+m+1--aoQi

L H = P
because aC‘Q*1 to ale
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Using theorem III.2.1 we see that
Newton's method has order 2
iteration (II1.2.3) has order 2
Chebyshev's method has order 3
Halley's method has order 3
According to definition I1I11.2.7 the method of tangent hyperbolas is also of order 3.

DIRECT INTERPOLATION

Since F is analytlc in a nelghbourhood of x containing the approximants X, We can
approximate F by -—-P or w—. P, i where i’Qi) is a solution of the Padé approximation

T Q*
i
oroblem of order (n,m) for F in X5 We then calculate Xsoq such that Pi(xi+1) =0 or
P (X1+1)
Let us again take a lock at the iterative procedures we obtain if n*m < 2 and n - o.

0 and iterate (direct interpclation).

First of all we write down the Taylor series expansion
1 2
- 1 (e I >l SV .S,
F(x) F(xi) + Fi(x xi) + ZFi(X xi) + o (I11.3.1)
The use of the (1,0) Padé approximation problem gives
! - ES
Fovo Bl - x)
or equivalently
-1
= - '
X T % B
which is precisely Newton's method.
When we use a solution of the (2,0) Padé approximation problem we obtain
1 2
[ - il - =
Fi + Fi(xi X. ) + P (x1+1 xi) 0
so that we have to solve a quadrdtlc operator equation. As indicated in [42], solving
such an equation is a quite complicated matter; moreover, the choice of Xy, q among
distinct solutions of the quadratic equation is also a problem.

However, an approximate solution X, . can be obtained in the following way [ 16].

i+l
The root of the quadratic equation satisfies
- _ t"‘ - 1"('1 1 _ 2z
Xieg 7% B R o gF B G

If in the righthand side X5 Xy is approximated by the Newton-correction ag, we have

+1
an approximation for X4 which is precisely a Chebyshev-iterationstep

- -1
= - ¥ 18
Xi41 Xg * a; ZFi Fiai
Another way to express x +1 is
1 -1
= - v Al
Xy {F + F (X1+1 Xi)} Fi

If again in the rlghthand 51de Xip1”

X = _ [ 1 ' -1
Xipp = % - By gfiag O F
which is the method of tangent hyperbolas.

Xy is approximated by a; [15] we get

A solution of the (1,1) Padé approximation problem for F in x; is

(P1,Q)) = (FyF} (x4 F} x0T ° - 28 Fr o) ? B Gex )R Gex ) )
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where the multiplication is now the one defined in the Banach algebra Y.

If x.

s 18 such that Pi(xiﬂ) = (J, we have to solve

ll 2
F.o+ F(x -x)=l P %)
i S L B A F'i x1+1
If we approximate in the righthand side X017y by a; we get the approximate solution
- - dpe g
41T X5t Ry g R
which is again Chebyshev's method.

1f F’i'(x-xi)z = (F‘i ® L) (x—xi)2 for a certain linear operator L, then JQ'T'Pi can be
reduced to *

X441
X,
i

X

1
' (x- -4 -
Fi +Fi(x xi} 2Fi & L{x xi}

1
P 00 -

I - %L(x—xi)
Remark again that for X = R = Y this reduction can always be performed. If X4 is
such that P, (xl+]) =0, then] g
Xopp =% {F’i - —Z—Fi ® L} Fi

where now (F! - lF ® L) = F! + l(F‘_a_) R L =F+ lF'.'a.. S0 we have again the method

1 21 i 02711 i 2171
of tangent hyperbolas.
We must conclude that the methods derived by direct interpolation are either too compli-
cated {when we calculate the exact solution X, ]) or similar to methods of § 2. (when
we calculate an approximate solution x ) Thls justifies the fact that we will only
use iterative procedures from § 2. for the solution of the different nonlinear operator

equations.

SYSTEMS OF NONLINEAR EQUATIONS

If we want to solve a system of p nonlinear equations in p real variables
f1 (x], sy xp)

F(x) = =0

(X]' ceey X)

then X = RP = ¥ and the multiplication in X and Y is performed component-wise with
I=(1,...,1) in RP, The successive approximations x5 in an iterative procedure are
vectors in RP. The operator F' is represented by the Jacobian matrix

af1 (x) af1 (x) af1 )
8X1 axz axp

Pi' = :
afp (x) afp (x)

aX oX X = X.
1 P
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and the operator F'i’ by the hypermatrix

2 2
5,0 ot (0 8%, (0 2%, (%) 5,00 8% (0
= .. =
ax] BXTBXP aXZaX1 axz axp axpax] axp
P = : :
1 . .
2 2 2 2
a"f_({x £
FZ( ) 2 p(x) 3 fp(x) 3 fB(x)
5 i
ax-l aX.’aXp aXan} aXp X = Xi
azfz{x) 8%5, ()
With ——— = —=—  for j, k, £ = 1, cevs Do

axjaxk axkaxj

Let us compare the numerical effort per iterationstep for the different iterative pro-
cedures.
Iteration (III.2.3) and Newton's method both solve one system of linear equations

F!a, = -F.

i i

and combine X and a; to find X4
Chebyshev's method, Halley's method and the method of tangent hyperbolas each solve

two systems of linear equations

Chebyshev: {Fi a; = - Fy
2
- i
Fi bi = Fi aj
1
Xig1 =X * 33 770y
Halley [Fi a; = - F
L} - i} 2
Er bi = Fi aj
as
= x. +
1+ oa e L
i 27
Tangent hyperbolas: {F; a; = - Fy
1 e -
(Fi * 3 F ai) b, E,
Xie1 T X 405

However, for the first two methods these systems have the same coefficient matrix F;
so that the elimination part of the Gauss-method has only to be performed once, while
the third method requires the solution of linear systems with matrices F; and F%+J§F'£ai
so that the entire Gauss-method has to be performed twice. If we use the e-algorithm
for the calculation of the next iterationstep in Halley's method, we alsc have to

solve two linear systems of equations:
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(o) _
N
BN
1 i
(. (o) _ . LTS M B
650 =X tay €, =X, *a - [ai +Zbi ] = X541
NONPR
Ay _ ]
g X3 *a; - 7h

Let us now compare the numerical results for the solution of a system of nonlinear
equations where the inverse operator G has singularities in the neighbourhood of O.
Consider

& -

exp (-x+y)-0.1
2N )

exp(-x-y)-0.1
which has a simple root

* (*Zn (O.])) (2.302585092994046)
x = =

0 0.

The inverse operator
In(u+0. 1)3+2n(v+0. 1)

2 2. ,u Z
Enf{u+0. 1) -£n (v+0. 1)

2
has singularities for u=-0.1 or v=-0.1.
In table 111.4.1 one finds the consecutive iterationsteps of Newton's method and itera-
tion (I11.2.3) both of order 2 with X, = (5.3,0.3) as initial point. After 13 iteration-
x12H = 1O~5) while Newton's method needs 28
iterationsteps to obtain the same accuracy.

steps method (III.2.3) converges (Hx13 -

In table I1.4.2 one finds the results obtained by Halley's method and the method of
tangent hyperbolas both of order 3 with X, = (4.3,2.0) as initial point. If Chebyshev's
method is used, starting from the same initial point X then the sequence of iterands
diverges.

Clearly methods derived from rational approximations, like Halley's method and iteration
(111.2.3), behave better in this case than methods derived from polynomial approxima-
tions, like Chebyshev's and Newton's method. The choice of the initial point also plays
an important role: if it is close to the singularity, linear methods get into trouble,

and if it is not, linear and rational methods can behave equally well.
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i x5
0 0.53000000 (+01) 0. 30000000 (+00)
1 -0.14641978 (+02) -0.58006624 (+01)
2 -0. 13641986 (+02) -0.58006552 (+01)
3 -0. 12642005 (+02) -0.58006355 (+01)
4 ~0.11642059 (+02) -0.58005821 (+01)
5 -0.10542204 (+02) ~-0.58004369 (+01)
6 -0.96425985 (+01) -0.58000422 (+01)
Newton 7 ~0.86436705 (+01) -0.57989703 (+01)
8 -0.76465781 (+01) -0.57960627 (+01)
9 ~0.56544360 (+01) -0.57882050 (+01)
10 -0.56754628 (+01) -0.57671785 (+01)
11 -0.47302660 (+01) -0.57123764 (+01)
12 -0.38637718 (+01) -0.55788736 (+01)
13 -0.31416378 (+01) -0.53010155 (+01)
0 . 53000000 (+01) 0. 30000000. (+00)
1 0.11128288 (+01) 0.14061045 (-01)
2 0.29686569 (+01) 0.10780485 (-01)
3 0.22508673 (+01) 0.36586016 (-02)
4 0.23024184 (+01) 0.18765919 (-02)
) 0.23025834 (+01) 0.93837391 (-03)
6 0.23025847 (+01) 0.46918733 (-03)
(I111.2.3) 7 0.23025850 (+01) 0.23459371 (-03)
8 0.23025851 (+01) 0.11729586 (-03)
9 0.23025851 (+01) 0.58648482 (-04)
10 0.23025851 (+01) 0.29324216 (-04)
1 0.23025851 (+01) 0.14662108 (-04)
12 0.23025851 (+01) 0.73310541 (-05)
13 0.23025851 (+01) 0. 36655270 (-05)
Table I11.4.1.
i X.
i
0 . 4300000000000000 (01) . 2000000000000000 (01)
1 .3336155282457216 (01) .1035972419924183 (01)
Halle 2 .2560818009367738 (01) .2596797949731372 (00)
Y 3 .2308175634684460 (01) .5683785304496196 (-02)
4 .2302585151186738 (01) .6120489087942105 (-07)
5 .23025850092994046 (01) -.3759322471455472 (-17)
0 .4300000000000000 (01} . 2000000000000000 (01)
1 .3337356399057231 (01) .1034771307502802 (01)
Tangent 2 .2561541506081360 (01) .2589564130873139 (00)
Hyperbolas 3 .2308222334300647 (01) .5637241306601315 (-02)
4 .2302585152707625 (01) .5971357897526734 (-07)
S .2302585092994046 (01) . 1443269364993953 (-16)

Table III.4.2.
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INITIAL VALUE PROBLEMS

The successive approximations X5 in an iterative procedure will now be real-valued
functions, Let X = C'([0,T]) and Y = C([0,T]) denote the set of all real-valued func-
tions that are respectively continuously differentiable and continuous on the real
interval [0,T].
Consider the equation

%-’g - £(t,x) = 0

(I11.5.1)

x(O) = ¢
for t € [0,T].
We could restrict ourselves to the set Cé (I0,T1) = (x € C'((0,T}) | x(O) = c} and try
to find a zero X (t) of the following operator

dx

. 1 . -

F: CL{0,T1) € X = CUO,T: x » F - £(t,%)

starting from an initial approximation xo(t) that satisfies X, (0) = ¢, and computing
corrections (xiﬂ-xi) (t) that satisfy (xiH—xi) ) = 0.

We calculate the necessary derivatives:

\ . . d _ of(t,%)
F'(x) : C'(I0,T]) -+ CUO,T)) : X —+ (o = 222220 ) x
° dt ax x=xo(t)
2
Flig) + 10, T) x C'A0TI) - CUO,TI) : () - 2EEX S
X X = xO(t)

For the calculation of the Newton-correction ao(t) we have to solve the linear problem
' = -
F (xo)ao F{XO) (111.5.2)
and iterate
- - _ -1
X (t) = xo(t) + ao(t) = xo(t) F’(xo) F(xo)
One can prove that the solution of (III.5.2) is [41 pp. 170]

A (s) - A (D)
e© ° F(xo) (s) ds

i

t
a (t) = ~
where ° 0

2f(s,x(s))

ds

t
A (1)
° 0 ax ] x = x_(s)
The whole procedure can be repeated to calculate the next 1terationsteps.
For the Chebyshev~ or Halley-iteration one has to solve two linear problems:
t = -
F (xoj a = F(XO)
2z
t = T
F (xo) bo F (xo) a
and iterate respectively

(I11.5.3)
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x,(€) = x (0 + a_(t) - -;—bo(t)
or az(t)
xf{t) =X [§9) I r—
a, (t) + Mb (t)

We now turn to some examples
Consider the nonlinear initial value problem

d}c_ (1+x}

x{0) =

for t € [0,T].

We will calculate Xy {(t) starting from XO(t) = t for the Newton-, Chebyshev- and Halley-
iteration. Observe that:

2
A, (1) = -t
" (xo) xz = —ZXZ
s d 5 7 9 11
2 2 3
_ t t -8 I A S 1 4 8t 16t
a, (1) = Jge s%ds 3 595 * 05 Y 945 * 10595
(term by term integration)
t . thes? 2 o 3st® oot
by (1) = =fg 267 7 [a,()]" ds = (-2) €G3 * 7gz5~ * Tesoo5 ¢ )

The next iterationsteps are:

Xy (t) = t +—13t3 + -]—éts -6-:t7 + ()4§ ? .. (Newton)

Xy (ty =t +%t3 + é 5 -3—}—gt7 + Z%gé ? +ngtﬂ + ... (Chebyshev)

Xy (ty =t + -%tz + -T%)ts +—12t7 2822 ° 81_82(%_23—2 1 . (Halley)
For T <— the exact solution is

<L ‘tgt:t’“lsts*%ts*“%t? 28229 Asi;igﬂ*

Initial value problems correspond to Volterra integral equations. So equation (IIL.5.1)

can be transformed into the following nonlinear integral equation:
FOO = x(1) - ¢ - J5 £(5,x(s)) ds
2 t a%f {(s,x (s} 2
Now F'{x } =1 -V and F"(xo) x" = ~fo —————’—-2——2—— x"(s}) ds
0 X o 3X | x=x (s)

where Lix=>x is the identity operator and VX = fO ax (s, x(s))lx = x, (s) x(s)ds.
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o

, -1 _ no. e =1 oo :
So F (xo) = nio VO if HVOH < 1. If we rewrite F' (xo) X = (IX + n; VO) x

X + VO (F'(XO)-]X) the equations (II1.5.2) and (III.5.3) can be solved iteratively:

290 =0

290 = -F @) + v, 2V @)

= -x, (1) + ¢+ 75 £(s,x (50)ds + 5 s, x() 237 (s) as

j x= xo(s)

b (1) = 0

(1) = Friy aly + vpUT P )

t azf (s,x(s))

= -5 al (s)ds + fg—g-)f-(s,x(s))lxzx (S)bgj‘”(s)ds
(o]

3x | x=x_(s)

where ag (t) is the last approximation a(()J) (t) for the Newton-correction.
For our example where £(t,x) = 1 + x2 and c=0, we get the iterationsteps:

1.3 2.5 4.7 8.9
X, (t) Tttt 4+ oEt * JpEt’ * ggEt toeee (Newton)

H

1.3, 2.5 17,7 62.9 16 11

i

X, (t) = ¢t Rt o+ ettt et ¢ et 4 075t e (Chebyshev)
L. A3 25 17,7 . 62,9 91369, 11
Xp (0 =t ettt - et et v Rt - igeget to-c- (Halley)

Let us now turn to an example where the method of Halley, which is newly introduced
here in (I11.2.5), proves to be much better than the methods resulting from the Padé
approximation problem of order {(n,o} for G. Consider the equation

RAL) %"E - (0.1+8=0
x(1) = fne

for t € [1,T} with ¢ a small nonzero positive number and T large. We are looking for
*
a zero x (t) of the nonlinear operator

F:x-»e"%- ©.1+¢) =y

The inverse operator
Giy >4 (et + JT (0.1 +y) ds) = x

comes nearby a singularity for y = -0.1, thus inthe neighbourhood of y = O.
The exact solution is x* {(t) = &n (et + 0.1(t-1)). Let us take our initial approximation

xo(t) = In et. The derivatives at X, are
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x (t) dx
P'(xo)x=eo (xﬁg‘r%)

2 5,1 dx N
e ® x(t) (Za—f * X

i
F (XOD X

For xo(t) = fn et:

1
F’(xo) X =&t (%+ E—x)

" z_ dx 3
F {xc} x" = g’c.x.(zdt * T x)

For the Newton-correction we have to solve the linear equation

da
o, 1 _0.1
T T W%

The solution is constructed in the same way as for (II1.5.2):

t ‘0(5)‘A0(t) 9_‘.L
23

ao(t) s

n

-,
—

]

where

A(0) = 1

a (0 =& (t-1)

For the Chebyshev- and Halley-iteration we need the bo(t):

3

2
ts 0.1,2 s7-1 _ 2
bo(t) = f.l T (T) _s—‘dS = [ao(t)]

because
2
" 2 _ 0.1.2 t%-1
Fo(x) a, = (——E ) 2 €

The next iterationstep is:

x1(t) = fngt PRSI ol (Newton)
€ t
x1(t) = fnet +9-é—}- t—;l (1 - Q'Z% E—%l) (Chebyshev)
. 0.1 t=1 0.1 t=1

x1(t) = fnet + palis /(1 + 5 t) (Halley)

x)(8) = (tnet)? / (enet - &1 By (iteration (I11.2.3))
When we compare th () - X (3 = sup lx* (t) - Xy (t)| for the different procedu-

tel 1,T]

res (see also figures II1.5.1 - I11.5.4 for the picture of the different functions
}x* ty - X {t)| ) we see that for ¢ = 0.01 and T very large:
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I-x;ll, > 10-fn 11 = 7.60 (Newton)

I =x, ), ~ 40+£n 11 = 42.40 (Chebyshev)

Ixyl, = -1 e 11 5 0.73 (Halley)

IX"-x,ll, = 10-2a 11 = 7.60 (iteration (I11.2.3))

Also the function-values for t=2 and £=0.01 illustrate that the iterative procedures
that take into account the singularity of the operator G in the neighbourhood of O,

are much more accurate:

X 2) = - 2.12026354
%y (2) = 1.08797700 (Newton)
%y (2) = -11.4120230 (Chebyshev)
x; (2) = - 2.48345158 (Halley)
%y (2)y = - 1.71722223 (iteration (II1.2.3))
50
40
30 Newton:
Figure ITI.5.1.: 20 IX* (t)-x, (1) |
10
f t
3 100
50
40
Chebyshev:
) } 30 *
Figure 111.5.2.: |x (t)—x] (B
20
10
.t
1 100
50
40
30 Ha*lley:
Figure I11.5.3.: ) X (B)-x; (1) |
2
10
t

1 100
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50
40 .
50 iteration (11.2.3):
Figure III.5.4.: |x*(t)—x ()]
20 !
10
t
1 100

An iterative method resulting from the solution of the Padé approximation problem of
order {n,m) for G with m > o, is also very useful when there are several singularities
in the solution x*(t} itself, because the rational approximations xi(t} can simulate
certain singularities. We emphasize the fact that discontinuities cause difficulties
when discretisation techniques are used. We will illustrate the advantage of the use
of Halley's method and iteration (I1.2.3) by an example.

Suppose we want to solve

Foo =& ¥ =0

x(0) = -1

for t ¢ [0, U[2,T with T large.

The solution X (t) = E%T'

As an initial approximation we take X, (t) = -1 and we calculate
F(xo) =1
dx
+ - -
F (XO} X I 2x
F”(xo) xz = sz

For the Newton-correction we have to solve the linear problem

da

O = -
T Zao(t) = -1

The solution is constructed in the same way as previously
A (s)-A (1)
t
a()(t) = '.aro 5 ° °
with

t 2o
AO(t) —[O 2ds = -2t

12t
a (t) =7 (-e™))
Now we calculate the bo(t) for the Chebyshev- and Halley-iteration

db
0 _ 3 02t
% " ZbO(t] =73 (1-e™7)
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So
A (s)-A (1)
t 1 2
by(t) = s e ® O L (1-e?)? g
_ % (e4t—1) _ te2t
The next iterationsteps are
1 2t
Xi(t) =-3 (1+e™ ) {Newton)
1 2t 4
xﬁt)=—§e (1-1) ~§(etﬂ) (Chebyshev)
2t 1 . 4t
te” + - -1
N g (e -1 (Halley)
x; (8 2t . 1,3t
-{1+t) e" + Z(e +3)
~2Z
x](t) = L eZt (iteration (111.2.3))

The exact sclution x*(t) has a pole in t=1. The iterationsteps XT(t)’ obtained by ma-
king use of the solution of the Padé approximation problem of order (1,1) and (0,1)
are more accurate than the Newton- and Chebyshev-iterationsteps, because they approxi
mate the pole of x*(t) respectively by a pole in t=1.01993442 (Halley's method) and
t=0.54930615 (iteration (II1.2.3)). So they alsc approximate x*(t) well beyond the
discontinuity while for the Newton- and Chebyshev-iterationsteps lim Xl(t) = —o.

100

To illustrate this we compare the function-values for t=3/2:

< @ = 2.000
x, 3) = - 10.54
x; 3) = - 45.78
x; B = 2.544
X B) = 0.117

BOUNDARY VALUE PROBLEMS

Consider the equation

“1["2‘ - £(t,x) = 0
dt
x(0) =0 = x(1)

for t € [0,1].

Let X = (C"{[0,1}) denote the set of all real-valued functions that are twice conti~

(Newton)}
(Chebyshev)
(Halley)

(iteration (1I11.2.3))

nuously differentiable. Then we look for a zero of the cperator



110

2
Fi x € C"([0,M)]x(0)=0=x(1)} < X = C({0,1]) : x » é.% - £(t,x)
dt

The Newton-correction a, (t) is the solution of the following boundary value problem

dzao af 'dzxo
_— = .a (1) = + ft,x (t)) = v _(t)
at? X xex (0O at? ° °

Since boundary value problems correspond to Fredholm integral equations, the Newton-
correction is also the solution of the following linear Fredholm integral equation of

the second kind
1 f
ao(t) -fO G(t,s) g—x— (s,x(s)) ’x=xo.ao(s)ds= fg) G(t,s)vo(s)ds=wo(t) (I11.6.1)

where

G(t,s) = {s(t-1) for O

A
w
A
ot

t(s-1) for t

1A
1)
iA

1 {41 pp. 176 1]

This linear equation can be written as
(IX—L) ao(t) = wo(t)

where
Ix: x(t) » x(t) is the identity operator
La (t) = ) L(t,s) a_(s) ds
with p
= - a—. < <
L(t,s) = s{t-1) P> (s,x(s))I x=x, for0=s =t
of c e <
t{s-1) = (s,x(s))I x=x, fort =s =1

If this linear operator (IX—L) is bounded then (IX—L)-1 exists if and only if a linear
bounded operator K with inverse K exists such that HIX—K(IX—L) | < 1.

3

Then (IX-L)_1 = 2 [IX--K(IX-L)]n K {41 pp. 43]. Let us take K = IX here. Then
I-K(L-L) = L. n=o

Now LI = sup x| = max s3 | L(t,s) | ds
=1 10,1]

< ”af

1
-"KI x=xo(t)”'[g?'71(]f0 ] G(t,s) ’ ds

_ 1 ,of
-3 ”H] x=x, (1) !
where || || = max | |.
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n

of 1P,

ax | X=X,

™ 8

So if |} I is small enough then (IX-L}_1 =

n=o
Again the Newton-correction can be computed iteratively

1

s =0

SIS W (1) + 1) L(t,s) a9V (s) as

where

; HLHj+1 fw i
H 0

0 - O € e O
la (1) - a5” (O] —

The correction bo(t) can be calculated analogously, and the whole procedure can be
repeated for the next iterationsteps. As an example we will solve the equation
2
d™x 2
-tx" -1 =0
at?
x(0) =0 = x(1)

for t € [0,1].
Let us take xo(t) = 0. For this £(t,x), |IL| = 1/54 < 1.
The solution of equation (II1,6.1) is
_1
8.0 (t) = "Z‘t (1"'t)
The correction bo(t) is the solution of the boundary value problem

2

d
o _ af . ) ) 2
wl x| x=x (1)Po(B) T Bk 3, (1) = -2ta (t]

or converted into an integral equation

3
by(t) = J§ B(t,s) -gmf((s,x(s)) b, (s)ds = ~7) 6(t,8) 25 (1-5)7 ds

{ X=X,

~3
Lol
w

5
1.t t t t t 3.4 1 3 2
Sob() =363 -5 0 T T HMGT Rt g (U Tt )

The next iterationstep is

x4(t) = %’c -1 (Newton)
1 34 1 3. .2
Xl{t} =4t -ty (2 - Tt - T35 (" + "+t + 1) {Chebyshev)
t{t-1)
X](t) i ts 3.4 1 3 2 (Haliey)
-2-71-'2-+-76t--1-4-(~)~(t +tTat e

If we calculate a1(t) iteratively, we get
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ago)(t) =0

t6 ts t

TSt D )

(U
® =7 vy 15 " 26~ 1%

and for xz(t) in the Newton iteration

x,(t) = x; () + alP ()

i

a(t)“‘a(t)( 34*'1}4—0(t3+t2+t+1))

which is precisely one Chebyshev-iterationstep.

The solution of the boundary value problem has been calculated for discrete values
t 550 (i=0,...,200) in the interval [0,1], by means of subroutine DD@2AD of the
Harwell llbrary (based on a finite difference approximation to a linearized form of
the equation) and also with the initial values x. *x(t =0. After interpolation through

the (t X. ) we get the following picture of the solutlon X (t)

19"
2.58

1.25

B.2p

3.8 B.25 .58 D.75 1.08

Figure III.6.1.

The different functions x1(t) mentioned above, give the same plot. We can also compare

the function-values in some points (7 significant figures):

t DD@ZAD Newton Chebyshev Halley
0.25 0.0933169 0.0937500 0.0933121 0.0933141
0.50 0.1242918 0. 1250000 0.1242839 0.1242879
0.75 0.0932114 0.0937500 0.0932053 0.0932084

Table 1II.6.1.

*
The functions |x (t) - x1(t)] for the different iterative schemes give the following

plots:
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1073
2r
Figure III.6.2. 14 Newton
0 ¥ L Ll ¥
0.00 0.25 0.50 0.75 1
107>
2
Figure II1I.6.3. 1 Chebyshev
0 * Ly T L
0.00 0.25 0.50 0.75 1
-5
2 10
Figure IIL.6G,4, 1 Halley
0 ¥ ¥ : 1
0.00 0.25 0.50 0.75 1

§ 7. PARTIAL DIFFERENTIAL EQUATIONS

Consider the following nonlinear equation which is of interest in gas dynamics
2 2
x(s,1) =23 + 23 = xP(s,1) for (s,0) ingc R
as

2

x(s,t) = r(s,t) on the boundary of the region @
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A solution x(s,t) is sought in the interior of Q.

If F(x) = ax - xz, then
t E--4 -
E (xo) X = AX 2x0.x

F"(xo) x2 = --2;’(2

The Newton-correction satisfies ;
- . = - 11.7.1
Aao(s,t) 2 ao(s,t) xo(s,t) X (s,t) AXO(S»t) (I )

ao(s,t] = 0 on the boundary of the region @

Pohozaev has proved that [40 ]

X = X

x(s,t) = r{s,t) > O on the boundary of @
has a unique positive solution x*@,t) and that the Newton iteration converges if the
initial approximation X, is the solution of the Laplace equation with the same Dirichlet
boundary conditions:

Ax =0
(o]
XO(S,t) = r(s,t) > O on the boundary of Q

This initial approximation cancels the temm -8, in (I11.7.1). Instead of solving
(II1.7.1) we can again rewrite it as a linear integral equation of Fredholm type and
second kind by means of the Green's function K(s,t,u,v) for @:

a (s,t) = 2 J[JK(s,t,u,v) a (u,v) x_(u,v) du dv + [ K(s,t,u,v) xz(u,v) du dv
[¢] o o o} o [¢]

(111.7.2)
If @ = [0,1] x [0,1] then

sin kns sin jut sin knu sin jnv

K(s,t,u,Vv) =-:% z
n”j=

3= it
k=1
L4 g sin kns sin jrt sin kpu sin jnv
S
e j=1 :2 2
k=1 3Tk

For r(s,t) = 1 the initial approximation xo(s,t) = 1. We compute ao(s,t) by repeated
substitution in (I11.7.2), where we use the indicated approximation for K(s,t,u,v):

aéo) (s,t)

it
o

#
1

n
am)(s,t) 16 5 smzkns ;m jnt
° T+ 39 K
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n Ty,
We will denote z from now on by 32 .
j, k=1 j, k=1
i,k odd

The function bo(s,t) is the solution of

bc(s,t) = 2 I K(s,t,u,v) bo(u,v) x (u,v) du dv - 2 J K(s,t,u,v) az(u,v) du dv
o (o} s o

. " 2 _ ,.2
since F (xo} a = Zao.

So for r(s,t) =1 and @ = [0,1] x {0,1] we get

b (s,0) = 0

M (s,t) = 21° 2" ih sin ins sin hnt

o T T 5 ket (10D R (D) P(LK, B P(hy,m)
L.m=1
i, h=1

¥
where

P(i,k,2) = (i-k+2) (i+k-0) (i-k-£) (i+k+2)

Greenspan has proved that the solutions of the following finite systems which are the
result of a discretisation of (III.7.1), converge to the solution of sx = x2 with
the given Dirichlet boundary conditions, as the mesh size h approaches zero [ 26]:

let xlj = x{s;, t.} = x{ih,jh)

construct X(J) in terms of x(§< D as follows
xi(},(?: - (k) - xikl)n '3‘03 =1fori,j=o0,...,mand h =I1n (111.7.3)
9

el ol P -l

g _ (1) |

The procedure terminates when max {Xij ij
1,]

be the solution. We shall now cc,)mpare the function-values of the different iteration-
steps X (s,t) (Newton, Chebyshev, Halley) and the solution of (I11.7.3) for h=1/100
and e=5.0(-9). For the calculation of K(s,t,u,v) we have taken n=5. The functions

< ¢ and this final x§§3 is defined to

X, (s,t) all give the plot drawn in figure III.7.1.

Figure I11.7.1.
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T~ 0.25 0.50 0.75
0.25 0.954473792 0.942281229 0.954473792
Newton 0.50 0.942281229 0.925794323 0.942281229
0.75 0.954473792 0.942281229 0.954473792
5
. 0.25 0.50 0.75
0.25 0. 954360724 0.942115745 0. 954360724
Chebyshev 0.50 0.942115745 0.925550785 0.942115745
0.75 0.954360724 0.942115269 0. 954360724
8
. 0.25 0.50 0.75%
0.25 0.954360443 0.942115269 0.954360443
Halley 0.50 0.942115269 0.925549983 0.942115269
0.75 0. 954360443 0.942115269 0.954360443
5
. 0.25 0.50 0.75
0.25 0.958513709 0.947882237 0. 958513709
h = 1/100 0.50 0.947882192 0.933717325 0.947882192
0.75 0.958513647 0.947882149 0.958513647

Table I11.7.1.

§ 8. NONLINEAR TNTEGRAL EQUATION OF FREDHOIM TYPL

A general nonlinear Fredholm integral equation may be written in the form

F(x) = fz K{t,s,x(t),x(s)) ds =0 fora=<t=bh

We will treat the equation

F(x} = x(t) -1 -%*X(t) fé-tf—sx(s) ds

for0O<ts1 and 0= =1
which was derived by Chandrasekhar [10]
If we write
Y B
Ix = fO pares x(s) ds

then

A
F' (xo) X X == (x.LxO + xO.Lx)

F"(xo) x2 = - AX.Lx

=0

For X, = 1 the Newton-correction is found by solving

(I11.8.1)
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if we take j=1 for the calculation of ao(t) and bo(t) we get

t+1
t £n
x1(t) =1 + 2 xS ; =1+ aé]) (t) (Newton)
-3t
2l
() = 14 2D 75 @ RO
1 a; " () + ;—r—i—;—z—-;:j— fo t+s a;’ (s) ds (Chebyshev)
(M
a (t)
x (1) =1+ i (Halley)
Z 1
1_I__Tt_£n~t_+1 e ay () as

Rall mentions the fact that xo(t) = 1 is a satisfactory initial approximation for the
Newton-iteration only if [41 pp. 77]

VZ-1
0s=ss= Vv 0.59758...
For other X we need other initial approximations. If we want to know the solutions
x*(t) for » = 4% (£=0,...,10) we could use a tactic known as continuation: the solu-

tion for \ = is used as an initial approximation for the calculation of the solution
for \ = 210 . Now for A = O the exact solution of (III.8.1) is x*(t) =
For the computation of the integrals in (II1.8.2) and (II1.8.3) we have used the nine-

point Gaussian integration rule [ 1 pp. 916

9
e s s w £ (t

3
k=1 k

where

Yk

0.015919880246186%
0.0819844463366821
0.1933142836497048
0.3378732882980955
0. 5000000000000000
0.6621267117019045
0.8066857163502952
0.9180155536633179
0.9840801197538131

and the W are the solution of the linear system

9
2ot = —(z e, 9).
k=1

This integration rule enables us to calculate aéj)(tk) and béj)(tk) to the desired
accurdcy. It also enables us to calculate further iterationsteps Xi+1(tk):

9 wz
t, 5 w=—x (t,) k=1,...
k 2=1 tk + tz i ’

W OO0 I U PN D

in (tk) 9

Flx) () = =1+ x; (&) (0 -51x; (1))
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al® (1) = 0 and b1 (1) = 0

. X I .
Tox () U-glx (5 ¥ () 4y ( f WANER) (£,
5 ; ’ i
V- loxiy) - lx () ££1 ety

(3) -
ai (tk)
to the desired accuracy, and

9 W,

{tk) £=1 tk+t

b (1 - (-2a;(t)ay(t,) + x; (b0 ey

1 -

n4>’m4y

Y
L x.

i £

to the desired accuracy, where ai{tk) is the last approximation a

EJ){tk) to the Newton-
correction. We can continue the iteration until

max Sty )-x. ()] s e
k=1,...,9 T

- . * g E . -
We give the solution x (tk) for =%3 (£=1,...,10) and the number of iterationsteps
needed in the different iterative procedurcs to achieve convergence to 8 decimal digits

(e = 5.(-9)). In {41 pp. 78] Rall has approximated the integral equation (I1I.8.71) by

3 S W, é{
ék -1 - 37£ktk 221 ?;F?z where £ = X {tk) for k= 1,...,9

This fixed point problem can be solved by repeated substitution and the method of
continuation. The number of iterations required now to obtain convergence to eight
decimal places is also shown in the [ollowing table. We notice a significant difference.
All the computations are performed in double precision accuracy (about 16 decimal
digits). For the calculation of x*(tk) for a chosen , (TI11.8.4) has been rewritten
as follows [47] to remove singularities in the integrand for small t and great A

* *
with x (1) =exp (2 (1))

ki

O RO RSO RN N O

2
£ cosec’ ¢ - cotg @

f(8) = x Arctg & tge)
1 - xgcotgoe

gle) = % A Arctg (t tg ¢)
2t (1-2)
h{e) =
2
- +%~x 6
z,(t) = l‘x fﬁz ; ! (]‘t Zn+%} for 1=t /2 -1
= B e B & v =t -
z Z 8 n=g {Zn+1) i+t
L 2n+1
%—x { % fn t In %i% + 3 -E—-—7-}£or O<t<+Z-1
- n=g (2n+1)°
2 =2 (310 I Ay
,3(t) == oy Arctg ( 5 3(1—x))



120

*187III °1qElL

X YA S Sy 62 2z 81 St 2l oL 6 L dd
4} < g g £ € £ < ¢ € VH
o} ¥ € < ¢ g ¢ g g g 6]
Al S ¥ ¥y 4 ¥ v < < € an
60SC96.8°7 | v6669208° L | 8464956571 | £12521vy L | 18STEEES L | 290186%Z" L | OpL8SZ8I "L | ZIP6IOZ1 1 | STIOZBLO"L [ SLEYI9SO°LY &
£9655702°7 | 09956608° L | S66601L571 | £08L982¢* L | £98ZHZS L | LOZOSEYZ 1 | S6YSOBLL L | 9SESEETL L | 6£T8S9L0"L | 1216852071 8
1017099577 | zz6011Ss°1 | 96611855 L | 4vySypOp-L | 90965L05° 1 | Z81S9LST 1 | L1288B69L L [ OZ9L6LLL™L | PLP6SELO L | SO8SPPEO™ L L
0LLLOSOS 7 | 6956659971 | S69ZZ¥8b*L | LOVEELOS L | pOLYOLEZ L | 0ZLZPELZ L | LLIZZLSL L | OS96S60L "L | 1SZ0VB90 1 | £25022¢0° L) 9
L1821710°7 | 08SS095S™ 1L | £5792S iy L | 90SYELIS | [ 01,08SKZ 1 | $165L481°L | 90Z6E6SL "L | LI6SSL60°L [ €99LL190"L | ¥£ZZ68Z0° 1| S
699SS1L° L | ZOLPOSZY L | 6LLYOVZE L | POLLLPSZ L | L18SO661°1 | £00Z9SSL L | SSIOBYLL L | #SIVEL8O L | 0991Z1G0"L | 89%SEVZO°L) ¥
1261726p° L] 8762198771 | 4526252271 | S6SSYRLETL | LZ1907vi L | LOBLLLEL L] SL¥90P80° L | 649566G0° L | TI6L18£0°1 | S68678107 L1 €
0552680771 | OL8YYLYL L | LYOSO6LL L | 9079846071 | 6058564071 | £4260£90°1 | OLOOY8YO"L | 8¥OS6YS0°L | 6850572071 | 16468010°1) ¢
7648115071 | 8001265071 | £7898250° 1 | €6555270°1 | Z2S18220% 1L | §9S5v810°1 | 0£¢8EYIOTL | 8¥9ES0OL0"L | 16Y48300°1 | 8860¢500° 1} 1
0L =Y 6°0 = X 8°0 = Y L0 =X 9°0 = X 0 =Y 70 = X $°0 =¥ 270 =Y 1'0=Y | ¥
jutod pextd = dd )
koTTRH = VH ) x
AdysAqay) = HD
£

UOIMON

i




Table 111.8.2.

(¢ = 5.(~-9))

I () - x (]

x=1.0

A =0.9

= 0.8

A =0.7

A= 0.6

A= 0.5

X = 0.4

A=0.3

x= 0.2

A= 0,1

— N =N~ o,
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Table 111.8.3.

(¢ = 5. (-9))

X" () - x(t)]

A =0.9

« 2 e e

MY ON T 00 D U S < MY

A= 0.8

A =0.7
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The convergence to eight decimal places of the different methods of approximation does
not imply that those eight digits are significant dlglt% for x° (tk) For small tk and
great X the 1terat1ve methods do not converge to X (tk) but to a function in the neigh-
bourhood of X (t Let us denote by xl(tk) the solution obtained by performing one of
the iterative procedures Newton, Chebyshev or Halley (for each of the iterative pro-
cedures after a different number of iterationsteps) and let us denote by XF(tk) the
solution obtained after rewriting (I1I1.8.1) as a fixed point problem.

In the tables 1I11.8.2 and 111.8.3 one can find k*(tk) - xI(tk)] and ]x*(tk) - xF(t
for k=1,...,9 and » =0.1,...,1.0 . For small tk (k=1,2) generally

Ol
X (ty) = < (tY = x;(t)

Only for » = 1.0 one notices slight differcnces.

NUMERICAL STABILITY OF THE HALLEY-ITERATION FOR THE SOLUTION OF A SYSTEM OF NONLINEAR
EQUATIONS

Numerical stability of iteratione

Consider the numerical solution of the equation

Fix) = (I11.5.1)
with F: RP %'B{p: x - F{x), abstract analytic in O and assume that (III.S8.1) has a
simple root x*. We briefly repeat the definition of condition-number given by [ 48]
Wotniakowski.
The consition-number should measure the sensitivity of the selution (output) with res~
pect to changes in the data (input). We assume that F depends parametrically on a vec~
tor d ¢ Hiq, called data vector

F(x) = F(x;<d)
Instead of the exact value F{x;d) we only have the computed value f2(F{x;d)) in t di-
git floating=-point binary arithmetic. At best we can expect that f£2(F(x;d)) is the exact
value of a slightly perturbed operator at slightly perturbed data

fL(F(x;d)) = (IX + AF) F{orpx;d+ad) (111.5.2)
where IX is the p x p unit-matrix, aF is a p x p matrix and

fax] = Cyolixl
fadll = Coplldj (111.9.3)
l[aF|| = C

A

IA

SD

for constants C1, C,, C3 only depending on the dimensions of the problem, and with
= o7t

the relative computer precision [ 27].
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We summarize (111.9.3) by writing
sx = 0(p) ad = O(p) AF = O(p)

We will always, for a given F, define the data vector so that (I1I.9.2) holds and so
that the condition-number (see definition II11.9.1) is minimized. Let ££(d) denote the
t digit binary representation of the vector d in floating-point arithmetic

I££(a) - dff < Cofld}  i.e. £8(d) - d = 0{p)

Since d is represented by f2{d), we solve in fact F(x;£2(d)} = O instead of F(x) = O,
independent of the method used to solve {I11.9.1). Let Fi and Fé denote the partial
Fréchet-derivatives of § respectively with respect to x and d.
Now F(x;f£(d)) = 0 has a root ?f in the neighbourhood of x* and ¥ - x* =0(p) if t
is sufficiently large:
- - et o7 G am@ - o
+ higher order terms in §* - x* and f£(d) -d

* -1 * 2
= -Fo s d) O Falxs dy(£e(d) - d) + 0075,
-1

For X # 00 X - X/ = 1RO RGOS ) Co fan/ix 10000

Definition III.9.1.:
* -1 L * * .
Cond(F; d) = HF;(X 5 d) Fé{x 5 d).di/jix | is called the

condition number of F with respect to the data vector d.

We call a problem ill-conditioned if cond(F;d) >» 1.

Let us now suppose tbat F(x;d} = 0O is solved by an iterative procedure @(xi,F], where
¢ can use several FEJ), the jth Fréchet-derivative of T at X5 (if j=1 or 2, a single
or double prime is used instead of the superscript j}. If {xj} is the sequence of
successive approximations of xf, we can at best cxpect Xy to be the representation of

ok
a computed value for x ,

Y *

Iy - X0 = Kollx' |
5o * ke ok * e * 2
I = X7 = lixg = X+ i - s Kollxh g+ Co cond(F; d).|Ix || + O(o")

Kol = 21+ 151 + Co cond(F; ). + 0(o%)

15

[Ko + Cp cond(F; d)1.1x"] + 0(o9).

I

Definition III1.9.2.:

An iteration ¢ is called numerically stable if

lim x; = X = oo X (C cond(F; d) + K) + 0(:7),

1o

with C and K nonnegative constants.
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In practice we often want to find an approximation X5 such that Hxi - x‘” < g.”x*”.
This is possible if the problem is sufficiently well-conditioned, i.e. p cond(F; d)=0(¢)

In floating-point arithmetic we have

Xi4q = @(xi,F) +£i where gi = f£(¢(xi,F)) - @(xi,F)

Theorem I1I1.9.1.:

A convergent iterative procedure @(xi,F), i.e. lim H@(xi,F) - x*“ =0,
ise
is mumerically stable if 1im UgiH = DHX*H.(C.cond(F; d) + K) + O(pz)
i<>°°

Proof:
We simply verify the definition:

Lim fx; - X" = Lime(xg_q, B) - XU+ gy 0]
1 10

n

Lim flg; 4l = o &) (C cond (F; d) + K) + 0(o")
100

The Halley-iteration

In [ 48] Woiniakowski proves numerical stability of the Newton-iteration for the solu-
tion of a system of nonlinear equations,

X.

= X. + a,
i+ i 1

with

a. = —F!—]F.
i i i

under a natural assumption on the computed evaluation of F.
Theorem III.9.2.:

If a) £L(F(x;; d)) = (I, + oF)) Fx; + ax;5 d + ady) = Flxg; d) + 8F;
with &F; = aF, F(x;; d) + F (x5 d) ax; *+ Fy (x;3d) ady + O[pz)
b) £2(F' (x5 d)) = F'(x;; d) + oF} with #F; = 0(p)
c) the computed correction ft(ai) is the exact solution
of a perturbed linear system
(F'(xi; d) + sF} + Ei) f@(ai) = - F(x;; d} - &F; with
E; = 0(p)

then the Newton-iteration is numerically stable
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We will now prove numerical stability of the Halley-iteration for the solution of a
system of nonlinear equations:

2
a.
Kigg =X * “"““I'T"" (111.9.4)
a; * b
with 1
b, = F17V pr g2
1 1 1 kS

under assumptions similar to the assumptions for the Newton-iteration. We will also
assume that the divisions in (II11.9.4) are such that

1

1 |"} "
a; +5F; " Fja

1 oGy PR M = oth (111.9.5)

i

Condition (III.9.5) takes care of the fact that the denominator of the correction-term
in (I11.9.4) does not become too small in comparison with O(Haillj_k pk).

The assumption (III.9.5) is a natural generalization of the following relations:
a.

forp =1 : lim x =1
S R g
i 271 i “i
U
a.
3LeN,DeR;3-vizL:| T 2l51+D
—_—t T T
v F Fyag
(casej=1,k=o,g=o)
and
in a convergent process (111.9.4) 1im Nx* - x.l =0
joe 1
5 U
:
lim - =0 lima, =0
ise a~+—2-rF'i]F’i'a§ joe  t
[}
] az
AN €N o>v¥izN: = = 0(p) MeN>vVizM: a, =0(p)
1 -1 oy L2 i
ai+§'Fi F' a

I

MeN>VYI=>2M: a.

O(lta,llo)

B
—

a.
1
= 0(lla;lle) = 0(e)
1 -1 ., 2 1.1 2 i
a; *7F  Flay a;+3F 0 Fey

¥i =z max{N,M) :

(case j =1, k=0, £ = 1)
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From now on we will sometimes write F(Xi)’ Fi(xj), Fé(xi), F“(xi), F”(xi) instead of

F(xi;d), F;(Xi;d)’ Fé(xi;d), F’(xi;d), P”(xi;d) in order to shorten the notations.
Theorem 111.9.3.:

If a) £L(F(x;3d)) = (L *oF JF(xg+ax;3d+ad;) = Flx;) + 8F, with
8F, = tF;F(x,) + F%(Xi) axg o+ Fi(xg) adg + O(oz)
b) f[(F'(xi;d)) = F'(xi) + 5?1 with 6Fi = 0(p)

0(e)

c) fﬂ(F”(xi;d)) = F”(xi) + 5Fg with gF;
d) the computed correction fﬁ(ai) is the exact solution

of a perturbed linear system

(F'(xi} + 5F§ + Ei’T)fK(ai) = —F(xi) - sF,, with ki,i = 0(p)

e) analogously,

It

() + AR £0a)” with By, = 0(o)

(F’(Xi) + SFi + Ei’z)fﬂ(bi)
and (II1.9.5) holds,

then the iteration (111.9.4) is numerically stable.

Proof:
Let F'(x;) + 5Fi + Ei,1 = F'(xi)(IX*Hj’1)

where Hi g = F'(xi)—]{aFi+Ei 1= 0(r) because of b) and d).

So f6r small o

(1X+Hi,1)" = LoH o+ 006°)
Thus

£0(a;) = (LoHy DELTTCF,-5F) + 0(07) (111.9.6)
Analgously

£2(b;) = (IX-Hi,Z)Fi”1(Fg+5Fg) fz(ai)z + O(oz)

with Hi,Z = 0(p).
Now

e 2 | pogepn =1 2 2
(F1+6F1)f£(al) = (F1+5F1)[ (IX-Hi, 1)}:1 (_Fi-F’Fi}} + O(D )
2z

= (FUssRn gy (R -1 a z
= (Fy+8F)al + Z(F+6F)(F] F.,F! 6F1"Hj,1ri F;) + 0(e")
2 1

- -1 2
- 1t il - il 1 _ 1 -
(By+sFy)ag = 2Fy(a;,Fi™ eF -H, (FITTE) + 0(o%)
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Thus
£0(b.) = FI" N (Fr+sF)al - 2F! T 'EU(a. F! T 6F.-H, .F!7'E.)
i i i tiv%i i Yivitti i, i
-1 1" 2 2
- Hy oF P ag + 00

A computed approximation Xy satisfies

1
fk(ai)z

X. = (I +61. )| x, + (I_+81. ,) " |,
+1 x i i x 71,2 fﬁ(ai) +'%f£(bi)}

1

where 6Ii 1 and 5Ii ; are diagonal matrices and
3 >

511,1 = 0(p) and 51i,2 = 0(p). So

2 -1 2
ai-Zai.(Fi 6Fi+Hi’]aj) + O{o )}

|
R TN I

ag + 90 - oay + 0(o")

where
sa, = By 'oF, + Hy e - JE7Tery af
*%Hi,zPiqpi' af + BT G2y, By OF; - Hi~,lF§—1Pi)'
Using (II1.8.6) we find
£0(a) - a, + H, . a, ~ H. ,E/T8F. + 0(o%) = -F!™'eF.,
i i i,1 71 i,14 i i i

and thus, for positive constants Dy and Do,

1

izF'i’ 8F; [ = D,oflal

since

I£2(a;3-a; {l = Dyolla |
and

9’1 '-1 '

WEL T RES D = HES - UL fay -
Thus
Xioq = (Ll ) |, al - 2a,(py P H, ) ¢ o1y jal + 00 Yyl ) J
i+ X 191 i i

2
ai+2bi-6ai+0(p)
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2. . . 2z
where 8. ;aj is the linear operator &I, , evaluated in a;
> x4

{componentwise square of the vector ai).

S0
. 2 2
al - 2a. (F VR 4H. ja.) + sl al + 0(o s 5, 0%)
i 11 i 1,171 1,271 i
Xipq = (Lrly ) gxg # T ¢
i a. +—= b,
i 271
with
1 1 2
co=I+ — (52, + 0(o")) = o(a; P&, %=0,1,2)
1 a. t+ =D, 1 3. + =b.
1 271 i 2

since 5a; = O(p“&iﬂ), where I is the unit vector (1,...,1) in RP.
Using (I11.9.5) we conclude
1 2

2
—| oCa; FEH, k=0,1,2) = 0(%).
a; *3b
For g, = x4 - @(xi,F), we have
2
3
g = §11,1 X+ (c. -
a. + =b.
1 1
-Zai(F‘ Yo, ity 480+ sl 2a + O(o ffa; Il )
* 2 .C.
1 i
a, +> b
Z
a4
* o1y y e c; + 0(a)
’ a. +-—= b,
i 271
So
1 2
. = 3 2 2
g = 511’1 Xy . % o Olella )™, o Mlaslt™)
1 A kS
! -1 2 2 2
+ 1 (-2a;F] '6F; + Olpfla;ll",e fla im0+ 0(n))
a. + = b.
i 2 71
+ 0(p%).
Thus
~Zay -1 2
et = koplix. | + kyolla, ! + jf——"———F: &F, + 0007,
i i i 2 i 4. + 1 b, & 1
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and since
-Za 1 ~2a; 1 2
1 = 2t (A ) i AX o .
T Fl oF; T H (L.FiF(xi; + FX{Xi)L;}\j + Fd\xj}Adl)+ 0o}
a, +=b. a. + b,
i 27 i 271
1 Zai
= O(ofla; NF(x;) - bX
a. + %b. * 1 a. +-l
1 L1 1 1
‘a -1 ! 2
_—— 1 ot H i
. L FiOFyxp)ad; + I 0(elia; 1,
i 2% 8 7 2%
we find that

Lim e, = oix J (K + C cond(F;d)) + 0(s7)

1o

for lim, a. = 0 = lim. )i s
w3 0 hmhm F(xl) in a convergent process and

- |_1 1 - i
a;ax; = Ofplla,[)) and a;F! Fd(xi)Adi = 0(elia ).

le

Consider the following operator

e

€

XYy

1 .

ey with dy >0 and d; > 0.
/ _dz

The operator F has a simple root X = (—;— n(d,d,J, %fn{d}/dv))-

Clearly d = (d;, d,) ¢ R’

Now

where £2(x) = x + t'x, £0y) =y * o'y, £2(d)) = d| 2

&

[(1+a1)e

FL(Fx,y;d)) =

[(1+52)e

is caused by -{{x) + (L{v), &

2

is the data vector

(=x-atx+y+a'y) (1+64)
Vopraiay e

(-x-8"x=y=4"y) (1+6,)
Fo(dyd) (1)

- 1
L ejd, T2y = d, ¢ e,

is caused by -{£{x) ~ {2{y), =5 are caused by the

exponential evaluations (i=1,2), k; are caused by the subtraction of f{[di] (i=1,23.

One can rewrite fL{F(x,y;d)) = {1‘:&}*‘)1’(X+Ax,y+ﬁy;d+z\d) with
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ax = x8y + a'x(1+8,), 2y = ye, + a'y(I+ey), od = (84d, 5,d),

atd - e.d
A1d . A 1 ,
1+ £y

Azd =

Aéd - Ezdz . d2 + Aéd (e(><+A')<+y+A'y)(62—91)_1
s

1+ £ 1+ £

(1+s1)(1+K1)-1 0
AF =
(x+A‘x+y+A‘y)(e1-62}
0 (1+52)(]+K2)e =1
The inverse of the Jacobian matrix in the root x* is
1 —d2 —d1 -1 0
2(d1.d2) d2 -d1 d 0 -1

The condition-number of F with respect to the data vector d is

e o1 M
B M —
<l

Using the Schur-norm [A|| = VZi j aij of a matrix A = (aij) and the Lz—norm flalt = vz; ai
of a vector a = (ai), the condition-number is

2 2

= *

V2 d1d2”x Il
Putting d1=d=d2, the root X = (-¢n d,0) and the condition-number is vZ/|gnd|.
The problem is extremely well-conditioned if cond(F;d) = 1, i.e.

vZ. vZ

d €= eV upe¥?, +uy

The problem is very ill-conditioned if d = e® with ¢ very small.
We will now check some of the conditions of theorem III.9.3. We already know
£L(F(x,y;d)) = (I +AF)F(xrax,y+ay;d+ad). Now
t _e—x+y e—X+y
£2(F' (x,y;d)) = £2
e XY Xy

where
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-Xty (-x-4'x+y+2'y) (T+8,) _ -
fele ) = (1+e) e Vs (e XY O

"

= "X e+ (Tveq) (78 21y,

and (~x-8'x-y-4'
—x= -4 T+g
fe(e XYy y-8'y) (1+8,)

H

(1+52J e
ey gmtaegy (XY Y) (0176))

(1+52) e

ey e (x+p'x+y+2'y) (84-6,)
eX) [1+52+(1+52)(eAXAye 1 2_1)

So fL(F'{x,y;d)) = F'(x,y;d) + &F'{x,y;d) with
8F' (x,y;d)

maxRy gy

et (*ep) (e 0

- AX- By (X+A'X+Y+A'Y)(e1—ez) .Fv(x,}’;d)
0 52+(1+52)(e e -

i

0(r)

We can write down an analogous formula for F'(x,y;d).

The two linear systems of equations are well-conditioned since the condition-number

R R . R
of the linear systems in x = lim x; is
e

* - *

1Ey o RS ) - 2
One can prove that the use of Gaussian elimination with row pivoting for this example
satisfies the conditions d) and e) of theorem III.9.3. So we can expect to get a rea-
sonable approximation of the solution of F(x,y;d) = O using the numerically stable
iterative method (I1I.9.4); the numerical results illustrate this. let us at the same
time follow the loss of significant digits in the root x* as the problem becomes
worse-conditioned. The calculations are performed in double precision (t=56). We solve
the nonlinear system F(x,y;d) = 0 for d = exp(lo—k), k=0,...,16. The root & = (~10-k,0).
In table III.9.1 we give for each 4 the 6th iterationstep (xé,yﬁ} in the procedure
(1I1.9.4) starting from (xo,yOJ = (2,%&, the number £ of significant digits in Xe» and
the condition-mumber cond (F ; exp(10 ™) ).
It is also important to know that the iterative procedure stops at the 6th iteration-~
step, except for k=7, 13 and 14 where respectively £=11, 5 and 3 in the last iteration-
step (x7,y7). We have used the stop-criterion

-15
mx(lx'ﬂ - xi[’ lyiq - yil) =10 W(]xi”|: IyiqD'

1

We remark that the algorithm even behaves considerably well for a condition-mumber
3 4
of the order of 107 or 107,
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k Xg Yo 2 cond{F;e]O k)
0 -0.1000000000000000( 01)  0.3597855161523896(-18) | 16 Vi

1 ~0.1000000000000000( 00)  -0.2376055789464463(<17) | 16 10V7

2 ~0.1000000000000001 (-01)  -0.6397150159689093(-17) | 15 1047
3 -0.0999999999999997 (-02)  0.5077502606368951(=17) | 15 1093
4 -0.0999999999999844 (<03)  0.3913464269882279(-17) | 13 10tz
5 -0.0999999999997470(-04)  -0.3905797959965137(-17) | 12 107
6 -0.0999999999986935(~05)  0.5633677343553680(~17) | 11 1097
7 ~0. 1000000000174599(~06)  ~0. 1058449777227516(-16) | 10 10V7
8 -0.1000000000015281(-07)  0.4124494865312562(~17) | 11 108v7
9 -0.1000000007452433(-08)  ~0. 2449359520991520 (- 17) 9 10%7
10 -0.0999999014314586(-09)  0.4265833288825851(~17) | 8 1007
1 -0. 1000000261210708(-10)  -0.6446772724219823 (~17) 7 10'VT
12 -0.0999980430668081(-11)  0.3302303528672576(~17) | 5 10142
13 -0.0999761308551817(~12)  0.1322187990417560(-16) | 4 1013z
14 -0.1000372750236664 (-13) 0. 1182870095748150(-16) | 4 1047
15 -0.0963108239652912(~14)  0.1398012990192197 (-17) 2 10"%v7
16 -0.0868560967896870(~15) 0. 3349523961106902 (~17) i 10677

Table III.9.1.
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