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Abstract-The Pade approximation problem in operator theory and its solution will be repeated briefly 
together with some properties of the Pade approximants. Effective methods for the solution of differential 
and integral equations are of great practical importance and there is a vast literature devoted to this subject. 

Here a few methods. resulting from the use of Pade approximants in operator theory, are introduced and 
illustrated by means of some typical examples (initial value problems, boundary value problems, partial 
differential equations. nonlinear integral equations). 

Among the new methods is an iterative scheme which we will call Halley’s method and which proves to 
be very useful in the neighbourhood of singularities. 

Well known methods such as Newton’s and Chebyshev’s method prove to be special cases of the class of 
iterative procedures. 

1. INTRODUCTION 

Let X be a Banach space and Y a commutative Banach algebra without nilpotent elements. We 
shall denote the scalar field by A (where A is R or C), the unit for the addition in the Banach 

spaces by 0 and the unit for the multiplication in the Banach algebra by 1. Let F: X + Y be a 
nonlinear operator analytic at O([lO), p. 113). In other words, there exists an open ball B(0. r) 
with centre 0 and radius r > 0 such that: 

F(x) = g0 b F’k’(0)x” for lixll< r 

with 

+, F”‘(O)x” = F(0) 

and 

F’“‘(O) the Ph Frechet derivative of F at 0. 

Write (I/k!)F”‘(O) = C,. The C, are symmetric k-linear bounded operators ([lo], pp. 100-l 10). 
We say that F(x) = 0(x’) if there exists an open ball B(0, r) with 0 < r < 1 such that: 

llF(x)ll I JJlxll’ for all x in B(0. r) 

and with j E N and J E Roi. 

Write D(F) = {x E XIF(x) is regular in Y, i.e. there exists y E Y: F(x) 3 y = 1 = y * F(x)}. 
An abstract polynomial is a nonlinear operator P:X+ Y such that P(x) = 

.4,,s” + .4,,_,x-‘I-’ + . .A A0 with A, a symmetric i-linear bounded operator and A0 an element of 
Y. The degree of P(s) is II. 

We also introduce the following notations. 
If there exists a positive integer j,, such that for all 0 zs k < j,: Akx’ = 0 and Aj,X’l 9 0 then 

;i,,P = j, is called the order of the abstract polynomial P. 
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If there exists a positive integer j?, such that for all jz < k 5 n: &r” = 0 and A,,x’l S 0 then 
dP = jl is called the exact degree of the abstract polynomial P. 

We can easily prove the following important lemmas for abstract polynomials [5]. 

Let U V be abstract polynomials. If U(x) . V(x) = 0 and if D( VJ 2 0. then U(s) = 0. 

Let U, V be abstract polynomials. If D(U) # 0 then dV s a( U . V) - d,(U) (because Y 
contains no nilpotent elements). 

1,THEPADkAPPROXIMATIONPROBLEM 

Definition 2.1. The couple of abstract polynomials (P(r). Q(x)) = 
(A n,n+nX 

nm+n + . . . + A,,,,,x”~, B,,_,x”“‘-“’ + . . . + Bnmx”“‘) is called a solution of the Pade ap- 
proximation problem of order (n, m) for F if the abstract power series 

(F . Q - P)(X) = O(X”~+“+~+‘). (1) 

The choice of P(x) and Q(x) is in [4] justified by the fact that for all non-negative integers n 
and m a solution of the problem described in definition 2.1 exists. 

We shall restrict ourselves now to those n and m for which a solution (P(x), Q(x)) with 
D(P) f 0 or D(0) f 0 can be found. 

We define (l/Q): D(Q)- Y: x+[Q(x)]-', the inverse element of Q(x) for the multiplication 
in Y. 

We call the abstract rational operator (l/Q). P, the quotient of two abstract polynomials, 
reducible if there exist abstract polynomials T, P6, Q+., such that P = T * P, and Q = T. Q* 
and dT 2 I. 

For the solutions (P, Q) of the Pad6 approximation problem and for the reduced rational 
operators (l/Q*) * P, we can prove the following properties. The proofs of those properties can 
be found in [5] except some small modifications. 

THEOREM 2. I 
Let (P, Q) satisfy (1) and (l/Q*). P* be a reduced form of (I/Q). P. Let P = P*. T and 

Q = Q*. T with T(x) = kgc, TL x’ and to = &T. If D( T,,,) # 0 or d,,Q* = 0 then doP* 2 &,Q*. 

We write n’= JP* - a,,Q* and m’= aQ*- &Q* if D(T,,) $0 or doQ* =O. 
The term -a,Q* for n’ is justified by the preceding theorem. 

THEOREM 2.2 
If D( T,,,) # 0 then n’ 5 n and m’ 5 m and (F . Q, - P*)(x) = O(X’~~~~~+“‘*““-‘) 

The fact that (F . Q* - P*)(x) =0(x “cly*+n’+m’c’) implies that (F . Q* - P,)(i)(O) = O for i = 
0,. . . ,doQ, + n’ + m’ at least. For polynomials P* and Q* with &P, 2 &Q* we know that 
always 

(F. Q.+ - P,)“‘(O)=Ofor i = 0,. . . ,d,Q* - 1. 

So the meaningful relations are: 

(F . Q* - P,)“‘(O) = 0 for i = c&Q*, . . . ,&Q* + n’ + m’ at least. (2) 

When 0 E D(Q*) and thus &Q* = 0, the relations can be rewritten as: 

F”‘(0) = (&. P,)‘“(O) for i = 0,. . ,n’ + m’ at least. 

So (2) clearly has an interpolatory meaning at 0 and (I/Q*). P, is a local approximation for F. 
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3. ITERATIVE METHODS FOR THE SOLUTION OF OPERATOR EQUATIONS 

Consider the nonlinear operator F: X + Y. Suppose we want to find x* in X such that 
F(x$) = 0. 

Let F be analytic in a neighbourhood-of the simple root x*. Since x* is a simple root, 
F’(x*)-’ is a linear bounded operator. If the inverse operator G : Y-+X exists, it is analytic in a 
neighbourhood of 0 ([2]. p. 301). 

By means of solutions of the PadC approximation problem for the inverse operator G we 
can construct iterative methods to find x*, i.e. starting from an approximation x0 for x* a 

sequence of further approximations {Xi} is constructed in such a way that xi+, is computed by 
means of xi. By Fi’ and Fi” we mean respectively the first and second Frechet derivative of F at 

Xi. Let F; = F(x,) = yi and G(y;) = x;. 
We know that G(0) = x* and we can write: 

G(y) = G(y;) + F,‘-‘(y - L.,)-~~‘~‘(~~~F,‘-‘)(~- yi)*+. . ’ (3) 

where (F:‘F:-‘)(y - l’i)’ is the bilinear operator F:’ evaluated in 

(E’-‘(Y - Yi), Fi’-‘(Y - Yi)). 

If we calculate a solution (Pi, Qi) of the Pad6 approximation problem of order (n, m) for G 
in yi we could iterate: 

Xi+1 = $, ’ Pi(O) or $ ’ Pi*(O) 
I I* 

where (l/Q;*). Pi* is a reduced form of (l/Q). Pi 
We can expect that iterative procedures where m > 0 will be more suitable than those were 

m = 0 if the operator G has singularities in the neighbourhood of 0. 
An example has been given in [61 for the solution of nonlinear systems of equations. Other 

examples will be given here. 
Observe that the Newton-iteration results from approximating the series (3) by its first two 

terms, i.e. the solution of the Padt approximation problem of order (1,O) for G: 

xi+, = xi + ai where a; = - F:-‘Fk (4) 

The (0, 1) PadC approximation problem gives the following iterative method: 

xi+1 
=x 

x; - a;’ 

The first three terms in (3), which form in fact a solution for the (2,O) PadC approximation 
problem, could also be used to approximate x*, giving the next iteration: 

xi-l 
= xi + ai - &‘Fi”ai2 

2 ’ (6) 

The iteration (6) is known as Chebyshev’s method for the solution of operator equations ([lo], 
p. 205). 

Another way to approximate x* is to use a solution of the (1, 1) PadC approximation 
problem for the series in (3): 

x,+1 
a,’ 

= ” + ai + ( I/2)F;‘-‘F;“a;2 (7) 

which is a generalisation of a formula of Frame [7] and a rediscovery of the Halley-correction, 
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now for operator equations. If F;‘-‘F;“a;’ = n, . Lai for a bounded linear operator 15.. then (7) 
reduces to: 

Xi+1 = x, + 
Iii 

, 1 i(1/2)Lai 

Using a solution of the (0,2) Pad6 approximation problem we get 

xi+1 = 
x’ 

Xiz - XiUi + Ui? + (1/2)Xi~j’-’ ~i”a;~’ (8) 

We will now use these methods for the solution of a few typical problems. The considered 
Banach spaces and Banach algebras will be C”‘(B) where: B C R’“, B subset of closure of its 
interior, 

@l)(B) = (f : B -_, RI ‘~~~~i~ * . a;:) exist for 0 % k I I and (z,, . . . ,z,) in the interior of B, and 
. . . ” 

are continuous and bounded 
I 
. 

So the successive approximations xi in an iterative procedure will be real-valued functions. 

4.INITIALVALUEPROBLEMS 

Consider the equation $ - f(t, y) = 0 

Y(O) = c 
for t E 10, T]. 

(9) 

Let C’([O, T]) and C([O, T]) denote the set of all real-valued functions that are respectively 
continuously differentiable and continuous on the real interval [0, T]. In fact we could restrict 
ourselves to the space C,‘([O, T]) = {y E C’([O, T])ly(O) = c} and try to find a zero y*(t) of the 
following operator 

F: Cc’(KA n-+C(w, TI): Y +lo, Y) 

starting from an initial approximation ye(t) that satisfies y,,(O) = c, and compute corrections 
(y;+r - yi)(r) that satisfy (yi+l - yi)(O) = 0. We calculate the necessary derivatives: 

F’(yo): Cc’(W, n+ cw, m: y-, (py JY 

Fyy,): C,‘([O, T]) x C,‘([O, TI) + cm TI) : (Y, Y) + - J’f(L Y) 
dy2 I y’y”u,’ y2 

For the calculation of the Newton-correction a,,(t) we have to solve the linear problem: 

F’(yo)ao .= - RYO) (10) 

and iterate 

Y,(f) = ye(t)- F'(Yo)-'F(Yo) = ye(t)+ ao(0. 

One can prove that the solution of (10) is ([lo] p. 170): 

Y,(f) = Ye(t) - , Ad,)-Ad’) F( yo)( s) ds 
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where 

A,(t) = - I ’ m, Y(S)) ds 

0 aY I Y = Y,,( s ) 

The whole procedure can be repeated to calculate the next iteration steps. For the Chebyshev- 
or Halley-iteration one has to solve two linear problems: 

F’(Yohl = - RYO) 

F’(Yo)h = F”(Yoh2 

(11) 

and iterate respectively: 

ye = Y0(0 + aO(U -i+,(t) or ydt) = y”(t) + 
a02(f) 

aOtt) + fbo(t) 

We now turn to some examples. 
Consider the nonlinear initial value problem 

$-(I + y2)=0 
Y(O) = 0 

for t E [O, T]. 
We will calculate y,(t) starting from ye(t) = t for the Newton-, Chebyshev- and Halley-iteration. 

Observe that: 

A,(t) = - t’ 

F”(y,)y2 = - 2yz 

- F(y,) = t2 

f 
ao( r) = er’-sz t3 2t’ 4t’ 8t9 16t” 

s’ds =T+E+los+945+m+. . . 

(term by term integration) 

The next iteration steps are: 

?‘I([) = t + f f’ ‘r it5 +&t’ +&I” + . . .(Newton) 

1 ? 2 17 62 16 -- !r(t) = f + 1’. + 3” + zt’+ 2835r9+ 2025r” + . . .(Chebyshev) 

1 2 17 62 91369 
y,(r) = f +T’? +i5f5 +z1’+mt9- 81 860625t” +. . .(Halley). 

For T < (IX) the exact solution is 
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Initial value problems correspond to Volterra integral equations. So equation (9) can be 
transformed into the following nonlinear integral equation: 

F(Y) = Y(t); c - “’ f(s. Y(s)) ds. 
I 

Now F’(y,) = I - V, and 

F”( y,)y’ = - I ’ d?f(s, Y(S)) 
dy’ 

y’(s) ds 
n r=r,,,C, 

where I: Y -+ y is the identity-operator and 

VOY = 
’ af I - ” __(& y(s))l,=~,,~~~y(s)ds. 

so 

If we rewrite 

F’(Yo)-’ = “z. G if II V0ll< 1. 

F’(yJ’y = (1 + g, V,“jY = Y + V,(F’(YJ’Y) 

the eqns (10) and (I 1) can be solved iteratively: 

Q(f) = 0 

aXl”(f) = - F(yo)(t) + Voao”-“(t) 

= - ye(r) + c + I,’ f(s> ye(s)) d.s + I,’ $ (s, ~(sN,=,,,.s, d,-“(s) d.s 

b,‘O’( f) = 0 

ho”‘(f) = F(y,)a,?(t) + Vobo(i-“(t) 

=- ’ a?f(s, Y(S)) 
I?$ I a,,‘(s) ds + 

y = q,, ,) 
I,’ 5 (~7 y(s))1 c=s~,,W%) ds 

where a”(t) is the last approximation a;“(t) for the Newton-correction. 
For our example where f(t, y) = I + Y’ and c = 0, we get the next iteration steps: 

y,(t) = t = if3 +$f5 +$$f7+$&fa+&ff’ + . .(Chebyshev) 

y,(t)= t+$3+~f5+~f7+&1y- 8,~~~~25f11 + (Halley). 

Let us now turn to an example where the method of Halley, which is newly introduced here in 
(7), proves to be much better than the methods resulting from the Pade approximation problem 
of order (n,O) for G. 
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Consider the equation e”“(dy/dt) - (0.1 + E) = 0 
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y(l) = In E 

for t E [I, T] with e a small nonzero positive number and T large. We are looking for a zero 
y*(r) of the nonlinear operator: 

dv F:y+e'z-(O.l+e)=z. 

The inverse operator: 

‘(O.l+z)ds)=y 

comes nearby a singularity for z = - 0.1, thus in the neighbourhood of z = 0. 
The exact solution is y*(t) = In(er + O.l(r - 1)). Let us take our initial approximation y&) = In et. 
The derivatives at y, are: 

F’(y,)y = e. ‘i’“‘(!!By+~) 

JP(yo)y2 = e?d’) . y . ( 2% + 4.3 1 . 

For ye(r) = In E t: 

For the Newton-correction we have to solve the linear equation: 

da0 1 
x+TaO(r)=!+. 

The solution is constructed in the same way as for (10): 

f 
adt) = eAO’s’-AoU) z ds 

where 

SO 

-40) = I ,‘ids=Inr. 

a”(t) = $(r - 1). 

For the Chebyshev- and Halley-iteration we need the b,(r): 

0.1 2 
b”(t) 

sl- 1 
= I ‘s , 7 i 7 1 7 ds = [ao(r)l’ 
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The next iteration step is: 

0.1 f-l 
y,(t) = In et + T 7 (Newton) 

(Chebyshev) 

y,(t) = In et +yy 1 + 2 $-!) (Halley) 

y,(t) = (In et)‘/ 
( 
In et -y J+ 

1 
(iteration (5)). 

When we compare IlY*(t) - Yd% = SUP/Y*(t) - Ydt)( for t E [ 1, T] in the different procedures (see 
also Figs. 4.1-4.4) we see that E = 0.01 and T very large: 

(jy* - yIllr = 10 - In 11~ 7.60 (Newton) 

)ly* - Y,[(~ = 40 + In 11 -42.40 (Chebyshev) 

IIy*-ylllrz -~+lnll=0.73 (Halley) 

((y* - y,((, ~1 10 - In 11 = 7.60 (iteration (5)). 

Also the function-values for t = 2 and e = 0.01 illustrate that the iterative procedures that take 
into account the singularity of the operator G in the neighbourhood of 0, are much more 
accurate; 

y*(2) = - 2.12026354 

y,(2) = 1.08797700 (Newton) 

y,(2) = - 11.4120230 (Chebyshev) 

y,(2) = - 2.48345158 (Halley) 

y,(2) = - 1.71722223 (iteration (5)). 

58 .lb 

‘Is .8ll 

91.00 

35 .a 
38.11 

25 .I0 

IO .8tl 

15.10 
10.88 
5.08 

8.0e Y 
1 .dfl itxl.lM 

Fig. 4.1. iy*(~)- y,(r)(Newton). 
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5fl.flE 

45 .a1 
98.18 

35.86 
38 .M 
25.80 
28.88 
15.08 

11.11 
5.11 

1.11 
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Fig. 4.2. Iy*(f) - y,(l)\ (Chebyshev). 

58.80 
L(5.80 

WI.00 

35.00 
38.00 
25.08 
28 .LM 
15.00 

10.80 

5 .BB 
0.w 

Fig. 4.3. IV*(I) - y,(t)1 (Halley). 

68.80 

45 .ma 
98.88 

3s .lln 
31.10 
7S.80 

21.11 
15.11 

lB.Llll 

5.18 
1.80 

I 

_ly 
Fig. 4.4. l?*(t) - y,(t)1 (iteration (5)). 

An iterative method resulting from the solution of the Pad6 approximation problem of order 
(n, m) for G with m > 0, is also very useful when there are several singularities in the solution 
y*(t) itself. because the rational approximations yi( t) can simulate certain singularities. We 
emphasis the fact that discontinuities cause difficulties when discretisation techniques are used. 

We will illustrate the advantage of the use of Halley’s 
example. 

Suppose we want to solve 

dy F(y)=~+y?=O 

y(0) = -1 

for t E K4 (l/31 U [(XL Tl with T large. 
The solution 

method and iteration (5) by an 
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As an initial approximation we take ye(t) = - 1 and we calculate 

F(y,) = 1 

F”(y,)y? = 2y?. 

For the Newton-correction we have to solve the linear problem: 

The solution is constructed in the same way as previously: 

I 
I 

a”(f) = - ,.4,(.,)-.4”(t) ds o 

with 

A,(f)=- ‘2ds =-2r. 

SO 

ao( f) = I( 1 - e”). 

Now we calculate the b,(f) for the Chebyshev- and Halley-iteration 

so 

b,(f) = I ’ eAd”)-Adl) !-(I _ e?‘)? ds 

0 

= $eJi - 1) - fez’. 

The next iteration steps are: 

1 
y,(f) = -$I + e”) (Newton) 

y,(f) = -i e”(1 - t) - f (e” + 3) (Chebyshev) 

f e2’ + (1 /4)(e4’ - 1) 
yl(r) = _(, + t) ,I( + (1/4)(e4f + 3) (Halley) 

Y,(f) = & (iteration (5)). 

The exact solution y*(f) has a pole in t = 1. The iteration steps y,(t), obtained by making use of 
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the solution of the PadC approximation problem of order (1, 1) (i.e. Halley’s method) and (0, 1) 
(i.e. iteration (5)), are more accurate than the Newton- and Chebyshev-iteration steps, because 
they approximate the pole of y*(f) respectively by a pole in t = 1.01993442 (Halley’s method) 
and t = 0.54930615 (iteration (5)). So they also approximate y*(t) well beyond the discontinuity 
while for the Newton- and Chebyshev-iteration steps lim y,(t) = -a. 

,-+x 
To illustrate this we compare the function-values for t = (3/2): 

y* ; = 2.000 
0 

3 
y, 5 = - 10.54 (Newton) 

(I 

3 
y, - = -45.78 (Chebyshev) 

0 2 

yl i = 2.544 (Halley) 
0 

3 
y, - = 0.117 (iteration (5)). 

0 2 

5. BOUNDARY VALUE PROBLEMS 

Consider the equation (d’y/dx’) - f(x, Y) = 0 

Y(0) = 0 = y( 1) 

for x E [0, 11. 
Let C”’ ([O, 11) denote the set of all real-valued functions that are twice continuously 

differentiable. Then we seek for a zero of the operator 

F:{y (5 @lwA ~l)lY(O) = 0 = Y(l))-+ C([O, 11): r-&(x, y). 

The Newton-correction Q,(X) is the solution of the following boundary value-problem: 

d’aO af 7-- d’yo 
dx- dY v=\‘“(X) 

. 44x) = - dx? + ftx, h(x)) = Q(X). 

Since boundary value problems correspond 
correction is also the solution of the following 
kind: 

to Fredholm integral equations the Newton- 
linear Fredholm integral equation of the second 

a&) - I’ F’ 
G(x, t)s(t, Y)[,=~, adt) dt = J G(x, t)vo(t) dt = we(x) 

0 0 
(12) 

where 

t(x - G(x, t) 1) for 0 5 t 5 x = 
x(t - 1) for x 5 t 5 1 

([IO]. p. 176). 
This linear equation can be written as: 

(I - L)a&x) = IQ(X) 
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where 

Lao(x) = I’ L(x. t)a,(tj dt 
0 

with 

I df t(x - l)+r, y(t))l,,,, for 0 5 t 5 x 

L(x, f) = * 

af x(t-l)-(t, y(t))(,,,,for x5tSl. 
ay 

If this linear operator (I - L) is bounded then (I - L)-’ exists if and only if a linear bounded 
operator K exists with inverse Km' such that 111- K(I - L)(J < 1. Then (I - L))’ = 

SO [I - K(I - L)I”K ([lOI, P. 43). 

Let us take K = I here. Then I - K(I - L) = L. Now 

is small enough then (I - ,L-’ = 2 L”, 
? 
= 

VU n=o 
Again the Newton-correction can be computed iteratively: 

aho’ = 0 

a;:‘(x) = W”(X) + I’ L(x, t)q,‘-‘j(t) dt 
0 

where 

IlLI,, - a,,‘“(x)ll 5 ‘y$! 

The correction ho(x) can be calculated analogously, and the whole procedure can be repeated 
for the next iteration steps. 

As an example we will solve the equation: 

!i!& -(xy’- I)=() 

y(O)=O= y(l) 

for x E [0, I]. 
Let us take y,,(x) = 0. For this f(x, y), llLil= (l/54) < I. 



Padbapproximants in operator theory for the solution of nonlinear differential and integral equations 

The solution of equation (12) is: 

&j(x) = ;x( 1 - x). 
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The correction b,(x) is the solution of the boundary value problem: 

d’b,, af --- 
I dx- 3.v v=\<,,r, 

. b,(x) = F”(y,,)a,,?(x) = - 2xa;(x). 

Or converted into an integral equation: 

b,(x) - I’ 0 
W, 1)$ (6 YW)I,.=,,, . b,(f) df = - I’ 0 

G(x, I); (1 - f)’ dt. 

so 
7 6 5 

bo(x)=-;($-~5 ;; *lo I---) = so(x). (&+4+&(x3+x2+x+ 1)). 

The next iteration step is: 

1 
y,(x) =2x(1 - x) (Newton) 

x5 
y,(x) = :x(1 - x) 2 - 42 +$x4 - &(x3 + x2 + x + 1) 

E 1 (Chebyshev) 

Y,(X) = 
x(x - 1) 

-2-~+$jx4-&)(x3+x~+X+ 1) 
(Halley). 

If we calculate a](x) iteratively, we get: 

@‘O)(X) = 0 

I x7 x6 2 
a,“‘(x)=-j ;iz-ij+@-& ( ) 

and for y:(x) in the Newton iteration: 

Y?(X) = y,(x) + a,“‘(x) 

1 
= uo(x) - jQo(X) . 

i 
~-~x4+~(x3+x?-x+1) 4.2 ,. 1 

which is precisely one Chebyshev iteration step. 
The solution of the boundary value problem has been calculated for discrete values 

x, = (i/200)( i = 0, . . . ,200) in the interval 10, II, by means of subroutine DD02AD of the 
Harwell-library and also with the initial values yi = y(Xi) = 0. After interpolation through the 
(x,. yi) we get the following picture of the solution y*(x): 

.dd 

Fig. 5.1 
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The different functions y,(x) mentioned above, give the same plot. We can also compare the 
function-values in some points (7 significant figures): 

x DYZ.ilJ Sewton Chebyshev FAlk) 

0.25 0.0933169 O.C93'500 0.093 3121 @.CP33141 

0.50 0.1242918 0.1250000 C.1242839 C.12128'9 

0.75 @.093211J o.o93:5c@ 0.0932053 @.@932084 

The functions /y*(x) - y,(x)/ for the different iterative schemes give the following plots: 

10-3 
10-s 

lI=LIEA !==LzIL 
0.00 0.25 . 

0.00 0.25 0.50 0.75 1 

Fig. 5.2. (Newton). Fig. 5.3. (Chebyshevl 

01, 1 

O.@O 0.25 0.50 0.75 1 

Fig. 5.4. (Halley). 

6. PARTIAL DIFFERENTIAL EQUATIONS 

Consider the following nonlinear equation which is of interest in gas dynamics: 

Au = 2 +$ = u’(x, y) for (x, y) in Cl c R2 

u(x, y) = b(x, y) on the boundary of the region a. 

A solution u(x, y) is sought in the interior of R. If F(u) = Au - u’, then 

F’(u& = Au - 24 - u 

F”( U”)U? = - 2ul. 

The Newton correction satisfies: 

Audx. Y) - ?u,dx, .v) . udx. y) = u,,‘(x, y) - Au,, 

a,(~, y) = 0 on the boundary of 0. 

Pohozaev has proved that [9]: 

(13) 

Au = u’ 

u(x, y) = b(x, y) > 0 on the boundary of 0 
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has a unique positive solution u(x, y), and that the Newton-iteration converges if the initial 

approximation ug is the solution of the Laplace equation with the same Dirichlet boundary 
conditions: 

.AuO = 0 

uO(x, _v) = b(x, _v) > 0 on the boundary of R. 

This initial approximation cancels the term -Au,, in (13). Instead of solving (13) we can again 
rewrite it as a linear integral equation of Fredholm type and second kind by means of the 

Green’s function K(x, y, z, t) for a: 

aok Y) = 2 I I K(x, Y, i, t)ao(z, t)u&, t) dz dt + K(x, y, z, t)uo’(z, t) dz dt. (14) 
n I1 

If fi = [O, l] x [0, l] then: 

K(x, Y, 2, t) = 3 $ [ sin krx sin jry sin km sin jd 

:z, i’ + k’ I =q...1. 

For b(x, y) = 1 the initial approximation uO(x, y) = 1. We compute a& y) by repeated sub- 
stitution in (14), where we use the indicated approximation for K(x, y, z, t): 

ao’O’(x, y) = 0 

j odd 
k odd 

The function bo(x, y) is the solution of: 

bo(x, y) = 2 K(x, y, z, t)b,(z, t)uo(.z, t) dz dt - 2 K(x, y, z, t)ao’(z, t) dz dt 

R n 

since F”( uo)ao’ = - ?a(,‘. 

So for b(x. y) = 1 and a= [0, l] x [0, I] we get: 

bo”‘(x, y) = 0 

715 n ih sin irrx sin hlry 
*““‘(x’ ‘) = x1? !F:,, (i’+ h’)(j’+ k’)(l’+ m’)P(i, k, I)P(h, j, m) 

I. h=l 

where 

P(i. k,I)=(i-k+I)(i+k-/)(i-k-I)(i+k+I) 

Greenspan has proved that the solutions of the following finite systems which are the result of 
discretisation of (13). converge to the solution of Au = u’ with the given Dirichlet boundary 
conditions as the mesh size h approaches zero [8]: 
Let 

uii = u(x,, yi) = u(ih, jh) 
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construct uJk’ in terms of uJk-” [I I, as follows 

U. 
1.0 

ck)=~O,jk)= ~~~~'~'=~~,~~'=1fori=O ,..., m;j=O ,.... m; h=’ 
m 

(k) 
4j (k)+ ui,j_,(k)) = - [ui/k-'q? 

(15) 

the procedure terminates when max ]Ui/“-“- Uijk)l 5 E and this final Uii(‘) is defined to be the 

solution. We shall now compare the function-values of the different iteration steps u,(x, .v) 
(Newton, Chebyshev, Halley) and the solution of (15) for h = I/100 and E = 54-9). For the 
calculation of K(x, y, z, t) we have taken n = 5. The functions u,(x, y) all give the plot drawn in Fig. 
6.1. 

Chebyshev 

0.25 0.942115745 0.954360724 

0.50 0.925550785 0.942115745 

0.75 0.942115269 0.954360724 

0.954360443 

h=l/lOO 

0.25 
I 

n.50 
I 

0.75 

0.25 0.958513709 0.947882237 0.958513709 

0.50 0.947882192 0.933717325 0.947882192 
0.75 0.958513647 0.947882149 0.958513647 

Fig. 6.1. 

7.NONLINEARINTEGRALEQUATlONOFFREDHOLMTYPE 

A general nonlinear Fredholm integral equation may be written in the form: 

F(y) = I” K(x, r, y(x), y(f)) dt = 0 for n 5 x I 6. 
II 
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We will treat the equation: 

461 

F(Y) = y(x) - 1 - ;y(x) (, &y(t) dt = 0 
I’ (16) 

which was derived by Chandrasekhar [3]. 
If we write: 

Ly = I ,,’ +U) dt. 

then: 

F’(Yo)Y = Y - $(Y . LY" + Yo . LY) 

F”(y,)y? = - Ay . Ly. 

For y0 = 1 the Newton-correction is found by solving: 

which can be converted in a linear integral equation of Fredholm type and second kind: 

The equation can be written in the form: 

Ixln- 
x+1 

(Z - aa = 

lz,,,,$ 

where 

Now 

and so we can try to invert Z - 9 as we previously did (cfr. boundary value problems). 

Takeagain K=Z.ThenZ-KiZ-P)=Y.with/iY~!~,‘!f\n,~,<l 
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The Newton-correction can be computed as follows: 

ao’O’( x) = 0 

hxln- 
x+1 

so”‘(x) = 
2 x 

x+1 
l-+xlnx 

+ L&+“(X) 

The correction b,(x) is calculated analogously: 

ho”‘(x) = ‘-& so(t) dt + Z’bo”-“(x) 

where a,,(x) is the last approximation a,,(j)(x) for the Newton-correction 
If we take j = 1 in both cases we get e.g.: 

= 1 + so(‘)(x) (Newton) 

y,(x) = 1 + a:“(x) + 

Y,(X) = 1 + 
uo”‘(x) 

(Halley). 
l- 012) 

l-(A/2)xIn(x+l/x) 

It has been proved [l l] that the exact solution of (16) is: 

y*(x) = exp y ( I ” In (1 - A0 cot gd) do o I A ~ 1 

0 x2 sin’ 0 + ~0s’ 0 ) 

(17) 

(18) 

(19) 

Rail mentions the fact that ye(x) = I is a satisfactory initial approximation for the Newton- 
iteration only if ([lo], p. 77): 

For other A we need other initial approximations. If we want to know the solutions y*(x) for 
A = (i/10) (I = 0,. . . ,lO) we could use a tactic known as continuation: the solution for I = (//lo) 
is used as an initial approximation for the calculation of the solution for A = (I + l)/lO. NOW for 
A = 0 the exact solution of (16) is y*(x) = 1. 
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For the computation of the integrals in (17) and (18) we have used the nine-point Gaussian 
integration rule ([I], p. 916): 

where 

/ Xk 

k=l 0.0159198802461869 
2 0.081984446336682 1 
3 0.1933142836497048 
4 0.3318732882980955 
5 o.5oOOOOOOOOoOoooo 
6 0.6621267 117019045 
7 0.8066857 163502952 
8 0.9180155536633179 
9 0.9840801197538131 

and wk are the solution of the linear system 

$, x;-’ wk = +(f = 1,. . . ,9). 

This integration rule enables us to cakuiate &,%l,) and b?)(xk) to the accuracy desired. It 
ah enables us to Cahdate further iteratiOn StepS yi+l(xl,): 

F(y;)(Xk) = - 1 + y;(&)( l-3 Ly,(x,)) 

a;“(&) = 0 and b/“(Xk) = 0 

a;“( XL) = 
1 - ?;txk)( 1 - +;(xk)) + 

1 -$;(xk) 

to the desired accuracy and 

A 
-XI 

b,“‘(x,) = 
2 

1 - $Y;(&) 
$$j (-2ai(xk)ai(-%) + Yi(&)b?-“(x,))] 

to the desired accuracy where ai is the last approximation a/j’(q) to the Newton-correction. 
We can continue the iteration until A=m,ax,glY;(xk) - Y;_](&)j I E. We give the solution Y*($) 

for A = (I/10)(/ = 1.. . . .lO) and the number of iteration steps for the different iterative pro- 
cedures necessary to achieve convergence to 8 decimal digits (E = 5.(-9)). 
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In ([lo], p. 78) Rail has approximated the integral equation (16) by: 

where &=_v(.rk) for k=1.....9. 

This fixed point problem can be solved by repeated substitution and the method of con- 
tinuation. The number of iterations required now to obtain convergence to eight decimal places 
is also shown in the following table. We notice a significant difference. All the computations are 
performed in double precision accuracy (about 16 decimal digits). 

i 

For the calculation of y*(xk) for a chosen A, (19) has been rewritten as follows[l I] to remove 
singularities in the integrand for small x and great A: 

y*(x) = exp(z*(X)) 
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with 

z*(x) = ;/o=‘2 [f(e) - g(O) + h(O)] do + z?(x)- z3(x) 

where 

f( 0) h Arctg (xtg 0) 0 case = 20 cotg - 0 
1 - A0 cotg 0 

g(8) = ;A Arctg (x tg e) 

h(B) = 
2x( 1 - A) 

1 1 I 1 x2A 2-1nx’n1+x 

X2n+l 

‘-“+g- 
n=O(2n+1)2 I 

forOIxIV2-1 

z,(x) =$J(y)Arcfg (fJ(&)). 

The convergence to 8 decimal places of the different methods of approximation does not imply 
that those 8 digits are significant digits for y*(xk). 

For small xk and great h the iterative methods do not converge to y*(xk) but to a function in 
the neighbourhood of y*(xk). 

Let us denote by y,(xk) the solution obtained by performing one of the iterative procedures 
Newton, Chebyshev or Halley (for each iterative procedure after a different number of iteration 
steps) and let us denote by yF(xk) the solution obtained after rewriting (16) as a fixed point 
problem. 

In the following table one can find jy*(xk) - yI(xk)I and Iy*(x,J - yF(xk)J for k = 1,. . . ,9 and 
A =O.l,. . ,l.O. For smail xk(k = 1,2) generally yF(xk) I y*(xk) 5 y,(xk). 

Table 7.2 

‘S (Xk)_YI (x,)1 (E - 5.(-9)) ~ 1 3.-(-j) 
S.O(--) 

3 8.91-9) 
4 -.8(-g) L 5 
t >, 

8 >c 
Y CC 

X=0.? ‘.=O. 5 x=0.4 x=0.5 

7.5(-S) l.l(-4) l.S(-4) 1.9(-4) 
9.4(-y) 1.3(-6) 1.6(-6) 1.9(-6) 
4.7(-8) l.'(-') 2.2(-T) 3.6(-i) 
3.?(-8) 7.61~8) 1.4(-y) 2.2(-7) 
2.2(-E) 5.1(-S) 9.5(-8) 1.5(--) 
1.-c-8) 3.9(-S) T.3(-8) 1.2(-') 
1.4(-S) 3.1(-E) 6.0(-8) 9.9(-8) 
l.?(-8) 2.Y(-8) 5.3(-B) 8.8(-8) 
l.l(-8) 2.7(-B) 5.0(-t?) 8.2(-E) 

X=0.6 x-o.7 x=0.8 1=0.9 

2.3(-4) 2.7(-4) 3.0(-4) /3.5(-4) 
2.0(-6) 2.1(-6) 2.1(-6) 2.1(-6) 
5.4(-7) 7.7(-7) l.O(-6) 1.4(-6) 
3.3(-7) 4.8(-7) 6.6(-7) '9.0(-7) 
2.3(-7) 3.4(-7) 4.7(-7) 6.5(-T) 
1.8(-i) 2.6(-7) 3.7(-7) 5.3(-7) 
;:S;:-; 2.2(-7) 3.2(-7) 4.5(-7) 

?.O(-7) 2.8(-7) 4.1(-7) 
1.3(-7) 1.9(-7) 2.7(-7) 3.9(-7) 

I I I 

- 

NY* (Xk! - Y,(X,) I (E=5. (-91) 

h .=O.l '=@.I x=0.3 '=O.J x=0,5 1=0.6 i=o.7 h=0.8 

-'.l(-8) I.?(--) 1.8(-T) 2.6(-') 3.:(-') 

5.21-6) 6.-(-E) 1.3(-T) 1.9(-') 2.8(-i) 
J.s[-s> E.l(-8) 1.2(--) l.S(-7) 2.6(-‘) 

Only for A = 1.0 one notices slight differences. 

3.5(-4) 
2.1(-6) 
1.4(-6) 
8.9(-:) 
6.5(-7) 
5.2(-7) 
4.5(-7) 
3.0(--) 
3.8(-') 

x=1.0 

3.9(-4) 
7.1(-6) 
1.2(-S) 
2.8(-S) 
5.1(-S) 
7.8(-5) 
l.l(-4) 
1.3(-4) 
l.S(-4) 

h=l .o 

3.9(-41 
9.‘(-6) 
2.(1(-S) 
4.4(-S) 
-.8(-s) 
l.Z(-4) 
1.6(-J) 
?.O(-4) 
2.2(-4) 
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