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Abstract—The Padé approximation problem in operator theory and its solution will be repeated briefly
together with some properties of the Padé approximants. Effective methods for the solution of differential
and integral equations are of great practical importance and there is a vast literature devoted to this subject.

Here a few methods. resulting from the use of Padé approximants in operator theory, are introduced and
illustrated by means of some typical examples (initial value problems, boundary value problems, partial
differential equations, nonlinear integral equations).

Among the new methods is an iterative scheme which we will call Halley’s method and which proves to
be very useful in the neighbourhood of singularities.

Well known methods such as Newton's and Chebyshev's method prove to be special cases of the class of
iterative procedures.

LLINTRODUCTION

Let X be a Banach space and Y a commutative Banach algebra without nilpotent elements. We
shall denote the scalar field by A {(where A is R or C), the unit for the addition in the Banach
spaces by 0 and the unit for the multiplication in the Banach algebra by 1. Let F: X - Y be a
nonlinear operator analytic at 0([10], p. 113). In other words, there exists an open ball B(0, r)
with centre 0 and radius r > 0 such that:

F(x)= ?__‘,0% F®W0)x* for ||x|| < r
with
& FO0)x* = F(0)

and
F®(0) the k™ Fréchet derivative of F at 0.

Write (1/k)F'®(0) = C,. The C, are symmetric k-linear bounded operators ([10], pp. 100-110).
We say that F(x)=0(x)) if there exists an open ball B(0, r) with 0 < r <1 such that:

| F(x)|| =< J|x|/ for all x in B(0. r)
and with jEN and JER,".

Write D(F) = {x € X|F(x) is regular in Y, i.e. there exists yE Y: F(x)-y=1=y - F(x)}.

An abstract polynomial is a nonlinear operator P:X—-Y such that P(x)=
Ax"+ A, x" '+ ..+ A, with A; a symmetric i-linear bounded operator and A, an element of
Y. The degree of P(x)is n.

We also introduce the following notations.

If there exists a positive integer j,, such that for all 0=k < j;: Ax*=0 and A,-lxj' # 0 then
a,P = j, is called the order of the abstract polynomial P.
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If there exists a positive integer j, such that for all ;< k< n: Ax*=0and A;x" 20 then
aP = j, is called the exact degree of the abstract polynomial P.
We can easily prove the following important lemmas for abstract polynomials [5].

Lemma 1.1
Let U, V be abstract poltynomials. If U(x)- V(x)=0 and if D(V) = 0. then U(x)=0.

LevMma 1.2
Let U, V be abstract polynomials. If D(U)# @ then dV < 4(U - V)— d(U) (because Y
contains no nilpotent elements).

2. THE PADE APPROXIMATION PROBLEM
Definition 2.1.  The couple of abstract polynomials (P(x), Qx) =
(ApanX™™ 4 4+ ApX™, BypgeeX™™ ™™ +...+ B, x"™) is called a solution of the Padé ap-
proximation problem of order (n, m) for F if the abstract power series

(F- Q= P)x)=0(x"=mrmrh, (b

The choice of P(x) and Q(x) is in [4] justified by the fact that for all non-negative integers n
and m a solution of the problem described in definition 2.1 exists.

We shall restrict ourselves now to those n and m for which a solution (P(x), Q(x)) with
D(P)# @ or D(0) # 0 can be found.

We define (1/Q): D(Q)— Y:x—[Q(x)]™', the inverse element of Q(x) for the multiplication
in Y.

We call the abstract rational operator (1/Q)- P, the quotient of two abstract polynomials,
reducible if there exist abstract polynomials T, P, Qy, such that P=T P, and Q=T - Q,
and aT = 1.

For the solutions (P, Q) of the Padé approximation problem and for the reduced rational
operators (1/Q,) - P4 we can prove the following properties. The proofs of those properties can
be found in [5] except some small modifications.

THEOREM 2.1
Let (P, Q) satisfy (1) and (1/Qy) - P4 be a reduced form of (1/Q): P. Let P=P,- T and
aT
Q = Q* - T with T(x) = z Tkxk and t() = a()T If D(T,ﬂ) # @ or 800* =0 then 00P* = HQQ*

k=t

We write n' = 0Py — 3,Q4 and m' = 9Qy — 3,Qy if D(T,) # 0 or 3,Q, =0.
The term —doQ, for n’ is justified by the preceding theorem.

THEOREM 2.2 -
If D(T,)#0 then n'<nand m' < m and (F - Q, — P,)(x) = O(x 0Qerr=m'=ly

The fact that (F - Qy — Py )(x) = 0(x™@"**™*") implies that (F- Q,— P,)?(0)=0 for i=
0..... 3,Qu+n'+m' at least. For polynomials P, and Q. with 3,P, = 3,Q, we know that
always

(F-Qu—P)0)=0fori=0,...,50Q«— 1.

So the meaningful relations are:

(F Q.- P)0)=0fori=03,Qx,...,00Q«+n"+m at least. )

When 0 € D(Q,) and thus 3,Q, =0, the relations can be rewritten as:

0
F(0) = (QL P*> (0)fori=0,...,n'+m' at least.
E3

So (2) clearly has an interpolatory meaning at 0 and (1/Q,) - P, is a local approximation for F.
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3.ITERATIVE METHODS FORTHE SOLUTION OF OPERATOR EQUATIONS

Consider the nonlinear operator F: X — Y. Suppose we want to find x* in X such that
F(x*)=0.

Let F be analytic in a neighbourhood-of the simple root x*. Since x* is a simple root,
F'(x*)"" is a linear bounded operator. If the inverse operator G: Y — X exists, it is analytic in a
neighbourhood of 0 ([2], p. 301).

By means of solutions of the Padé approximation problem for the inverse operator G we
can construct iterative methods to find x*, i.e. starting from an approximation x, for x* a
sequence of further approximations {x;} is constructed in such a way that x;,, is computed by
means of x. By F;' and F,” we mean respectively the first and second Fréchet derivative of F at
x. Let F; = F(x;) = y; and G(y;) = x;.

We know that G(0) = x* and we can write:

G() = G + F™ (v = y) = 3F BBy — )+ 3

where (FF ")y - v, is the bilinear operator F” evaluated in
(F'(y=y), F'(y=y).

If we calculate a solution (P, Q;) of the Padé approximation problem of order (n, m) for G
in y; we could iterate:

Yoy = PO 5= Pal0)

where (1/Q;y) - P;y is a reduced form of (1/Q,) - P;

We can expect that iterative procedures where m > 0 will be more suitable than those were
m =0 if the operator G has singularities in the neighbourhood of 0.

An example has been given in [6] for the solution of nonlinear systems of equations. Other
examples will be given here.

Observe that the Newton-iteration results from approximating the series (3) by its first two
terms, i.e. the solution of the Padé approximation problem of order (1, 0) for G:

Xiv1 = X + a; where a; = — F’,_lE (4)
The (0, 1) Padé approximation probiem gives the following iterative method:

S
X
X;— a,'.

&)

Xiv1 =

The first three terms in (3), which form in fact a solution for the (2,0) Padé approximation
problem, could aiso be used to approximate x*, giving the next iteration:

1 - )
X=X+ a;—3F''F'a} (6)

The iteration (6) is known as Chebyshev’s method for the solution of operator equations ([10],
p. 205).

Another way to approximate x* is to use a solution of the (1,1) Padé approximation
problem for the series in (3):

a’
Tar(DEE @ @

X1 =X

which is a generalisation of a formula of Frame [7] and a rediscovery of the Halley-correction,
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now for operator equations. If F'~'F"ai = a, - La; for a bounded linear operator L. then (7)
reduces to:

a;
Yt = 5T Lar

Using a solution of the (0,2) Padé approximation problem we get

3
Xi
Firt = x?—xa; + ai + (V2xF' " Flai @

We will now use these methods for the solution of a few typical problems. The considered
Banach spaces and Banach algebras will be C'"(B) where: B CR'™, B subset of closure of its
interior,

k
c(B) = {f:B-»R[%Zﬂéﬁ—“a—’i"—) exist for 0=k =/and (z,,...,z,) in the interior of B, and
|‘... Z""

are continuous and bounded}.
So the successive approximations x; in an iterative procedure will be real-valued functions.

4. INITIAL VALUE PROBLEMS

Consider the equation %)ti —ft,y)=0 9)

y0)=c¢
for t€[0, T].

Let C'([0, T]) and C([0, T]) denote the set of all real-valued functions that are respectively
continuously differentiable and continuous on the real interval [0, T]. In fact we could restrict
ourselves to the space C.([0, T) ={y & C'([0, T]|y(0) = c} and try to find a zero y*(¢) of the
following operator

F: €00, T~ €0, T): y 32 ~ fir,

starting from an initial approximation yy(t) that satisfies y,(0)= ¢, and compute corrections
(yi31 — y)(8) that satisfy (y;., — y,)(0) = 0. We calculate the necessary derivatives:

F0: €00, T~ 0. Thiy» (g -8 )y

-y2

y=yp(t)

0
Fn): C00, TYX G0, T~ (0, T (3, y)» =L

For the calculation of the Newton-correction aq(t) we have to solve the linear problem:
F'(yp)ao = = F(yo) (10)
and iterate
ni(8) = yolt) = F'(y0)™ F(yo) = yo(t) + aol1).

One can prove that the solution of (10) is ([10] p. 170):

W(t) = wl0) = f e A0 F(y)(s) ds
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where

ds

¥= Yok s)

Agf) = _fo 5f(s;9;/(S))

The whole procedure can be repeated to calculate the next iteration steps. For the Chebyshev-
or Halley-iteration one has to solve two linear problems:

F'(yo)ap=— F(y,)
(11)
F'(yo)bo = F"()’o)ao2

and iterate respectively:

>
yilf) = yo(t) + ao(t)—%bo(t) or y,(£) = yolt) +____(1_0(L

a1+ 3bi(t)

We now turn to some examples.
Consider the nonlinear initial value probiem

L (14y9=0

(0)—0
fort€[0, T].

We will calculate y,(f) starting from yo(t) = f for the Newton-, Chebyshev- and Halley-iteration.
Observe that:

Al=-1¢
F'(yo)y* = -
- F(yp) =1
[ £ 28 40 8P | 161"
ao(t)—jo S Yds = 3+ 15+m+'9—4§+]0395+

(term by term integration)

38¢° 992"

by(t) = - f2e' “lags)Fds = (- 2)(63 2835 T 155025 1

The next iteration steps are:

. lp 2, 45 8
wit) = t+3t +15t +105t +945t +...(Newton)

gl 1T 62 o 16
_\,(t)—r+3t +15t +315t +2835t +2025t .. .(Chebyshev)

1, 2 17 7 62 o 91369
\,(t)—r+3t += t+315 +2835t 81860625t +...(Halley).

For T <(I1/2) the exact solution is

y ol 2 1T, 62, 4146
¥ =tgt=r+30 +15’ +315’ *5535" *geTTIst
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Initial value problems correspond to Volterra integral equations. So equation (9) can be
transformed into the following nonlinear integrai equation:

F(y)=yt)-c —fol f(s. v(s) ds.

Now F'(y)) =I- Vyand

where I:y -y is the identity-operator and
t
a
Vo =f ﬁ—f (8, ¥(SDfy= g0 ¥(s) ds.
o d¥y

So
F'(y)'= 2_:0 Viif [Vl < 1.

If we rewrite

x \

Fou'y=(I+3 VE)y=y+ ViF G0y

n=|

the eqns (10) and (11) can be solved iteratively:
af(1)=0
af'(t) = = F(yo) () + Voa, " M(1)

=—y(h+ec +J; f(s, yo(s)) ds +f0 g—ﬁ(s, YNy = sy @7 (5) ds

b (1) =0
bo"(t) = F'(yo)ao'(1) + Vb "(1)

=_I'M
R

: of -
- ai)ds+ [ Lisyon|  brds

¥=3yls)

¥=v(y)

where aq(t) is the last approximation a,"(¢) for the Newton-correction.
For our example where f(t, y) =1+ y* and ¢ =0, we get the next iteration steps:

ol 25 45 8
yi(t)= 1430+ 5t +qost + g’ +. . (Newton)

ok 25 1T 0 62 0 16
y,(t)—t—3t +l5t +3‘5t +2835’ +2025t +...(Chebyshev)

by 26 1T, 62, 91369
,Vn(t)-—t+3t +151 +3]5t +2835t 81860625t +.. .(Halley).

Let us now turn to an example where the method of Halley, which is newly introduced here in
(7), proves to be much better than the methods resulting from the Padé approximation problem

of order (a,0) for G.
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Consider the equation e""(dy/dt) - (0.1 +€)=0
vil)=Ine

for 1 €[1, T] with € a small nonzero positive number and T large. We are looking for a zero
y*(1) of the nonlinear operator:

dy

F:y-e'
Y= s

-(0.1+e)=12z
The inverse operator:

G:z—>ln<et+J’ (0.1 +z)ds) =y
I

comes nearby a singularity for z = —0.1, thus in the neighbourhood of z=0.
The exact solution is y*(¢) = In(et +0.1(t — 1)). Let us take our initial approximation yo(f) = in €f.
The derivatives at y, are:

' ¥, dYO dy)
— oy {20 vy
F'(ygy=¢e (dz Y4

" 2 ¥ dy d)’o)
2 _ L vlt), .\ — —m
F(yO)y =e’f y (zdt+ydt -

For y(t)=In€ t:

oy = e (3Y l)
F(yo)y—et(dt+ y

t

dy 1
" 2 = . . sy, 2
F'(yo)y =€ty (Zdt+ty)-

For the Newton-correction we have to solve the linear equation:

dag 1 . 01
ar ="

The solution is constructed in the same way as for (10):

t
_aqn 0.1
ao(t) =f eAO(S) At ds
1 €S

where

Ao(t)=f Tas=mt
1§

So
0.1
an(t) = ?(f - 1.
For the Chebyshev- and Halley-iteration we need the by(¢):

Ps 0.0\ 51— 1 )
bom=f1 E(T) S ds =[anOP

t N
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because

. s (00—
F()’o)ao'-_-('e_) Pl €

The next iteration step is:

yi()=Inet+ M — (Newton)

I S YT VR A Y o
yi(t)=1In et + pa— (1 P )(Chebyshev)

0.1¢~ 01¢~-1
y(t)=Inet + p —t— <1+Z—?—> (Halley)

yi(8)=(In et)zl(ln €t — (—)6—1——{—1> (iteration (5)).
When we compare ||y*(£) — yi(1)||. = sup|y*(¢) — y,(¢)| for ¢t € [1, T]in the different procedures (see

also Figs. 4.1-4.4) we see that e =0.01 and T very large:
[y* = yll-=10-In11=7.60 (Newton)

Iy* = yill- =40 +1In 11 = 42.40 (Chebyshev)
10
ly* = yill== - 7 +in11=0.73 (Halley)

Iy* = yile = 10—1In 11 =7.60 (iteration (5)).

Also the function-values for t =2 and ¢ = 0.01 illustrate that the iterative procedures that take
into account the singularity of the operator G in the neighbourhood of 0, are much more
accurate;

y*(2) = —2.12026354

y1(2) = 1.08797700 (Newton)
y1(2) = — 11.4120230 (Chebyshev)
¥i(2) = —2.48345158 (Halley)

i(2) == 1.71722223 (iteration (5)).

58.28
45.08
4g.g
35.98
38.88
25.08
28.08
15.88
12.88
5.88

8.88 ///————'

.08 189,88

Fig. 4.1. [y*(¢)— y,(t)(Newton).



Padé-approximants in operator theory for the solution of nonlinear differential and integral equations 453

§8.02
45.98
4p.B8
35.88
3p.88
25.88
20.89
15.88
18.88
S.88

B.pp

.08 102 .82
Fig. 4.2. |y*(t) - y,(1)| (Chebyshev).

590.08
us.08
48.28
35.88
3p.82
25.98
28.88.
15.88
19.88
5.08
g.pg

B8P \sp .00
Fig. 4.3. [y*(t) - y/(1)] (Halley).

58.08
u5.88
4p.88
35.08
3.8
25.09
28.08
15.88
18.80
5.88

B.08

BB BRI TN
Fig. 4.4. |y*(t)— y,(1)| (iteration (5)).

An iterative method resulting from the solution of the Padé approximation problem of order
(n, m) for G with m >0, is also very useful when there are several singularities in the solution
v¥(t) itself, because the rational approximations y;(t) can simulate certain singularities. We
empbhasis the fact that discontinuities cause difficulties when discretisation techniques are used.
We will illustrate the advantage of the use of Halley’s method and iteration (5) by an
example.
Suppose we want to solve

F(.\’)=%+ vi=0

y(0)=-1

for + €10, (1/2)1U[(3/2), T] with T large.
The solution

1
t] =
Y =17
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As an initial approximation we take y,(t) = — 1 and we calculate

Flyg) =1

: dy
Fly)y=43,-2»

F'(yo)y* =2y".
For the Newton-correction we have to solve the linear problem:

day
dt

=2ay(t)=-1.
The solution is constructed in the same way as previously:
t
a()(t) - _I er(.\‘)—Ag(l) dS
0
with

Ayt = —f 2ds =-2¢
0

So
1 2t
ao(t) =§(1 —e’).

Now we calculate the by(t) for the Chebyshev- and Halley-iteration

dby

_ _l _a2y2

So
' Ly v
bo(t)=J CA"““AW).Z.(I —e¥) ds
0

_l A 1N padt
—4(e 1)—~te™.

The next iteration steps are:
w(H)= —%(1 +¢*) (Newton)

nt)=- % e'(1—-1) —s-l;( * +3) (Chebyshev)

(1) = te’ +(Ha)Ee" - 1)
I = T e (1) +3)

(Halley)

y(t) = 3—:26—37 (iteration (5)).

The exact solution y*(¢) has a pole in t = 1. The iteration steps y,(1), obtained by making use of
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the solution of the Padé approximation problem of order (1, 1) (i.e. Halley’s method) and (0, 1)
(i.e. iteration (5)), are more accurate than the Newton- and Chebyshev-iteration steps, because
they approximate the pole of v*(¢) respectively by a pole in t = 1.01993442 (Halley’s method)
and t =0.54930615 (iteration (5)). So they also approximate y*(t) well beyond the discontinuity
while for the Newton- and Chebyshev-iteration steps lim y(t) = — .

fmtx

To illustrate this we compare the function-values for t = (3/2):
3
K [Z ) =
y (2) 2.000

v (%) = -10.54 (Newton)

v

v (%) = —45.78 (Chebyshev)

y,(%) = 2.544 (Halley)

v (%) =0.117 (iteration (5)).
5. BOUNDARY VALUE PROBLEMS
Consider the equation (d*y/dx?) — f(x, v) =0
y(0)=0= y(1)
for x €[0,1].

Let C" ([0,1]) denote the set of all real-valued functions that are twice continuously
differentiable. Then we seek for a zero of the operator

2
F:{y € C'([0,1D){y(0) = 0 = y(1)} > C([0, 1]): y —%x—); = f(x, y).

The Newton-correction ay(x) is the solution of the following boundary value-problem:

dz)’o

da,_of - ao(x) =— e T f(x, yo(x)) = vo(x).

dx: ay ¥y=¥olx)

Since boundary value problems correspond to Fredholm integral equations the Newton-
correction is also the solution of the following linear Fredholm integral equation of the second
kind:

1 1
)= | 6 0%t - a0 8t = [ Gl (0t = wit) 1)
where
_[tx=1) for 0=t=<x
Glx. 0= {x(r—l) for x<t=1

([10]. p. 176).
This linear equation can be written as:

(I = L)ag(x) = wy(x)
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where
1
Lay(x) =f L(x, tyay(t) dt
0

with

Hx - l)g—{)(t, ()=, for 0st<x

Lix, t)=

of
x(t— 1)50, Y(Ny=y, for x=t=<1.

If this linear operator (I — L) is bounded then (I — L)™' exists if and only if a linear bounded
operator K exists with inverse K™' such that |I-K(I-L)|<!. Then (I-L)'=

x

[I- K(I-L)]"K ([10], p. 43).
=0
Let us take K = I here. Then I - K(I-L)= L. Now

n

1
L] < max f \L(x, t) dt
[0, 1] %0

I,

..
8 ay v=yolx)

%' is small enough then (- L)'= Y L".
. n=0

Again the Newton-correction can be computed iteratively:

1
-maxf |G(x, t)|dt
0

{0.1]

So if'

y=y

a(x)=0
af’(x) = w&x)+:f L(x, a, ' V(1) dt
0

where

LI Hwal

”aﬂ(x) - a(l(i)(x)“ = 1= HL“ .

The correction by(x) can be calculated analogously, and the whole procedure can be repeated
for the next iteration steps.
As an example we will solve the equation:

dz_\’ 21y =
i (xy-—1=0

v(0)=0=y(1)

for x €0, 1].
Let us take yy(x) =0. For this f(x, y), ||L| =(1/54) < 1.
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The solution of equation (12) is:

aglx) = %x(l - X).

The correction by(x) is the solution of the boundary vaiue problem:

by of

A 9y enn bo(x) = F"(yo)ay’(x) = — 2xag’(x).

Or converted into an integral equation:

] _(?_f. ' _ 1 t3 s
bo(x)—f0 G(x, t)ay(t, V() sy, * bolt) dt = fOG(x, t)i(l—t) dt.

So

_ i) x5 3 i
bo(x)‘“§(42 ;5720 140) ao(x) - (42 70 140(" tx ”H))

The next iteration step is:

yix)= %x(l —x) (Newton)

1 34
yi(x) —4X(1 X)[ 42-i-70 140(): +xi+x+ 1)] (Chebyshev)
yx)= x-‘ 3 x(x—l) (Halley).
-2~ D 70x ——m(x +x2+x+1)
If we calculate a,(x) iteratively, we get:
a](O)(x) =0

7 6 5
ey (X X X X
ar(x) (42 572 140)

and for y-(x) in the Newton iteration:

¥a(x) = yi(x) + a,"(x)

s
X 34+1

= o) = 1"0(") (42 70° 7 140

—( X x+ 1))
which is precisely one Chebyshev iteration step.
The solution of the boundary value problem has been calculated for discrete values
= (if200)( = 0,...,200) in the interval [0, 1], by means of subroutine DD@2AD of the
Harwell-library and also with the initial values y; = y(x;) = 0. After interpolation through the
(x. v;) we get the following picture of the solution y*(x):

ap!

Fig. 5.1
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The different functions y,(x) mentioned above, give the same plot. We can also compare the
function-values in some points (7 significant figures):

X DDp2An Newton Chebvshev Ealley
0.25 0.0933169 0.0937500 0.093 3121 0.0932141
0.50 0.1242918 0.1250000 0.1242839 0.1242879
0.75 0.0932114 0.0937500 0.0932053 0.0932084

The functions |y*(x)— y,(x)| for the different iterative schemes give the following plots:

-3
10 1075
2 2
1 1
04 ' r . . 0} , - . -~
0.00 0.25 0.50 0.75 ! 0.00 0,25 0.50 0.75 1
Fig. 5.2. (Newton). Fig. 5.3. (Chebyshev).
-5
5, 10
1
0 4 , - - -—
0.00 0.25 0.50 0.75 1

Fig. 5.4. (Halley).
6. PARTIAL DIFFERENTIAL EQUATIONS
Consider the following nonlinear equation which is of interest in gas dynamics:

_tu du_ , . 5
Au= ax2+ay2"“ (x,y) for (x,y)) n QCR

u(x, y) = b(x, y) on the boundary of the region ).

A solution u(x, y) is sought in the interior of Q. If F(u)=Au ~ &, then
Flup)u=Au—-2uy u
F'ug)u* = —2u’.
The Newton correction satisfies:
Aay(x, ¥) = 2ay(x, ¥) - uglx. ¥) = uy*(x, y) — Auy (13)

ag(x, y) =0 on the boundary of Q.
Pohozaev has proved that [9]:

5

Au=u

u(x, y) = b(x, ) >0 on the boundary of (2
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has a unique positive solution u(x, v), and that the Newton-iteration converges if the initial
approximation i, is the solution of the Laplace equation with the same Dirichlet boundary
conditions:

.Au() =0
ug(x, v) = b(x, y) >0 on the boundary of ().
This initial approximation cancels the term —Au, in (13). Instead of solving (13) we can again

rewrite it as a linear integral equation of Fredholm type and second kind by means of the
Green’s function K(x, y, z, t) for (:

aolx, y)=2ff K(x, v, z, hao(z, Huglz, 1) dz dt+ff K(x, v, z, Huy(z, ) dz dt. (14)
Y] 4]

If Q=10,1]x[0, 1] then:

K(x, v, z, t)—

|.:|

i [ sin ksrx sin ]wy sin k72 sin ]wt] -4 2":[
P+ k o

For b(x,y)=1 the initial approximation uy(x, y)=1. We compute aq(x, y) by repeated sub-
stitution in (14), where we use the indicated approximation for K(x, y, z, t):

ag¥(x, y) =

I (K+P)kj ~ w
jo_dd
k odd

-16 sin krx sin jor —16 <~ , sin k7x sin jr
aM(x, y)=—p z Y.____z 7 +])k; Y.

The function by(x, y) is the solution of:
bolx, ¥) = 2ff K(x, v, z, Ybo(z, up(z, t) dz dt =2 ff K(x, v,z Da(z, )dz dt
0 0

since F'(ug)ay" = —2ay".
So for b(x. ¥y)=1and Q=[0,1]x[0, 1] we get:

3
Lm=1
i

bO(O)(x9 ,V) = 0
2'5 z ik sin isrx sin hry
(I) ') = 5 .
b= X O + mOPG K DP ] )
m-

i

where

PUkD=>(i—k+Di+k-Di-k=-Dli+k+D
Greenspan has proved that the solutions of the following finite systems which are the resuit of
discretisation of (13). converge to the solution of Au = u” with the given Dirichiet boundary

conditions as the mesh size h approaches zero [8]:
Let

u; = u(x;, y;) = u(ih, jh)
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construct u;*' in terms of u;/*™" as follows

(k

Y, (k)
Uip " = Up; = Uim

)

(k

"=, M =1fori=0,...

uij' 0 _ 1

s j=0,...

wof _ - _ 4 1 0 k 1 oy —
W ( 2u70 ~ )+71'§(ui+l‘j iy 0+ e = - [

hl

uij k—l)]Z

(15

the procedure terminates when max |u;*™" — u;/*"| < € and this final u;* is defined to be the
18]

solution. We shall now compare the function-values of the different iteration steps u(x, v)
(Newton, Chebyshev, Halley) and the solution of (15) for A =1/100 and € = 5.(=9). For the
calculation of K(x, y, z, t) we have taken n = 5. The functions u,(x, y) all give the plot drawn in Fig.

6.1.
x ]
Y
Newton
0.25 0.50 0.75
0.25 0.954473792 0.942281229 0.954473792
0.50 0.942281229 0.925794323 0.942281229
0.75 0.954473792 0.942281229 0.9544737¢2
Chebyshev
G.25 0.50 0.75
0.25 0.954360724 0.942115745 0.954360724
0.50 0.942115745 0.925550785 0.942115745
0.75 0.954360724 0.942115269 0.954360724
Halley
0.25 0.50 0.75
0.25 0.954360443 0.942115269 0.954360443
0.50 0.942115269 0.925549983 0.942115269
0.75 0.954360443 0.942115269 0.954360443
h=1/100
0.25 0.50 0.75
0.25 0.958513709 0.947882237 0.958513709
0.50 0.947882192 0.933717325 0.947882192
0.75 0.958513647 0.947882149 0.,958513647

7.NONLINEARINTEGRAL EQUATION OF FREDHOLM TYPE

Fig. 6.1.

A general nonlinear Fredholm integral equation may be written in the form:

b
F(y) =f Kix, t, y(x), y(t)dt =0fora<x=<b.
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We will treat the equation:

Fiv)=yx) -1 —-—y(x)f‘ ——y (t)dr=0

forOsxslandOsAs]

which was derived by Chandrasekhar [3].
If we write:

.
X
Ly= \ my(t)d[.
then:
, A
F'y)y=y --2~(y “Lyo+yy- Ly)

F'(y)y*=—Ay - Ly.
For y, =1 the Newton-correction is found by solving:

A x+1 _A x+1
(1——2-x1n )ao(x)— Ix_HaO(t)dt 2xln-—x

which can be converted in a linear integral equation of Fredholm type and second kind:

A —)‘-xln——x+1
2 ' _ 2 x
a"(x)_l_i l x+1f0x+ta°(t)dt—l_ixlnx+ '
5 X In— 3 T
The equation can be written in the form:
A x+1
Exln——-
(I_g)a()(-x) A x+1
I-=xIn—
2 x
where
A,
Ky = f 2* y(t) dt
( lnfi)( +1)
Now

L ()2
=A==+ e <2

and so we can try to invert ] — ¥ as we previously did (cfr. boundary value problems).

Aln2

Take again K = I Then I ~ K(I - ¥)= ¥ with =3T3

<1
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(16)
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and

(I_g)—l = i gn
n=0

The Newton-correction can be computed as follows:
aO(O)(x) = 0
A I x+1
X
X

2
A +
1——2-xln—x-—

a,(x) = + LagiV(x) (17

The correction bo(x) is calculated analogously:

bg(o)(x) =0

bo(i)(x )=

— Ado(x) X (-1
1_%x1nx+1 0x+ta0(t)dt+$b0 (x) (18)
X

where aq(x) is the last approximation ag”(x) for the Newton-correction
If we take j =1 in both cases we get e.g.:

A x+1
=X ln—x—
= =1+ a,®
nxy=1+ Iy P 1 + a™(x) (Newton)
l-zxlh——
2 x
Lam
= ) (1)
ywx)=1+ay (x)+ : x+ 1), Pk (t)dt (Chebyshev)
l-=xIn—
2
()
=1+ G () (Halley).
- (A12) X 4, (p) dt
1-(AM)xIn(x+1/x) )y x+¢7°
[t has been proved [11] that the exact solution of (16) is:
w2
() — _—_xJ‘ In(1—Adcot g8) )
y*(x) exv(w . ————xZSin20+coszod0 0<i=1 (19
Rall mentions the fact that yy(x)=1 is a satisfactory initial approximation for the Newton-

iteration only if ([10], p. 77):

V2-1
In2

0=sA= =(0.59758. ...

For other A we need other initial approximations. If we want to know the solutions y*(x) for
A=(lf10) ({=0,...,10) we could use a tactic known as continuation: the solution for A = (//10)
is used as an initial approximation for the calculation of the solution for A = {/+ 1)/10. Now for
A =0 the exact solution of (16) is y*(x)=1.
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For the computation of the integrais in (17) and (18) we have used the nine-point Gaussian
integration rule ([1], p. 916):

9

fo f(x)(dx = 2 wif(x;)

=1
where

X

0.0159198802461869
0.0819844463366821
0.1933142836497048
0.3378732882980955
0.5000000000000000
0.6621267117019045
0.8066857163502952
0.9180155536633179
0.9840801197538131

O G0~ N B B

and w, are the solution of the linear system

SRR
> x we=pl=1,....9).
k=1

This integration rule enables us to calculate aq”'(x;) and b,¥(x,) to the accuracy desired. It
also enables us to calculate further iteration steps yi.i(x;):

9
Ldi
L,‘ = (X, k=1,...,9
yi(xi) xkglxk+x'}’( 1)

FOoe) = -1+ 3)(1-3 Lutxo)

a,'(O)(xk) =0 and bi(O)(xk) =0

1- y,-(xk)(l —%Lyi(xk)) %yf(xk)xk
+

9
a(x) = (2 i} a,”““(x,))
1= %Lyi(xk) l —%Lyi(xk) =1 %+ X

to the desired accuracy and

2x
Wy 21 S WL g (2 )b
b (x) = — 2 37 (F28x0a(x) + (%6 (x)
I=3Ly(x) "
2 !

to the desired accuracy where a;(x,) is the last approximation a’(x,) to the Newton-correction.

We can continue the iteration until max |yi(x;) — y,i,(x,)| = e. We give the solution y*(x,)
k=1,.... 9

for A=(10)I=1...., 10) and the number of iteration steps for the different iterative pro-
cedures necessary 10 achieve convergence to 8 decimal digits (e = 5.(—9)).

CAMWA Vol. 8 No. 6—E
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In ([10], p. 78) Rall has approximated the integral equation (16) by:

.9

where & = v(x) for k=1....

9
wi;
&xi
;é; Xt X

A
2

Tl

This fixed point problem can be solved by repeated substitution and the method of con-

tinuation. The number of iterations required now to obtain convergence to eight decimal places

is also shown in the following table. We notice a significant difference. All the computations are

performed in double precision accuracy (about 16 decimal digits).

jured
NIRRT 51 iy s g1 51 2l ot 6 L poxt4
ot 3 < < ¢ € € ¢ < < Aar1eH
R . . N . AdYs
<l | v | ¢ 9 $ § < € < < —Lqou)
Lt 5 v v v [4 v ¢ € € uoIMaN
LLZSLIEY L 18SCESSEs 1 {TO0186EC L] Obi8EZ8L L | ZLEGIOZL L [ STI9T8LO™L | SLEVO9L0 UL 6
£08/98CK" L L} 10Z0SSEZ 1] SOESO8LL L | 0SESEETL L [ GETBS9L0"L | 1716855071 8
LYBSHEOETL L {c8isotezt | 128869171 | 0TOL6LILL | FLE6SELOTL | S98SKYSOTL] £
1OVS6.95 "1 Ll 0TETPEIE ] LILTSLSTT L] 0S96560L L | LETOP890° L | £250270° 1| 9
LLBLLTHY® 90STGLLIS" L EISELL8ITH]| 90T616S17 L] L16SSL607L [ $90L1100°L | bETTE8CO L] S
GUOSLELLT | COLYYSTY” LIpseTt SL{E00zosSET | SSIo6PLLTE | ESEELLI80TL {099LZES07 L | 89FSERTOTL b
PLSETLED 1| BTELIV8T” SE8LLL L Z06LEELLT L] SLPOOFSO | 649566507 L | T16L18€0°1 | S686T810° L) €
00SL5R0Z 7 1 orBEpLEL” 0T98L60° 1 T1 J 260907 L] 0100E8T0"L 1| 6850522071 | Lsie80L071) €
BOTLTHL0” £65552207 1 1 ]59sst810° L] 0£E8SHLOL 1} 16528900°1 | 8869€500 L) 1 = ¥
0"l =X 670 = X 80 = X L0 = X 9°0 = X $T0 = X v o=\ £°0 = X °00= X o= |
X <
.
RAE AN

For the calculation of y*(x,) for a chosen A, (19) has been rewritten as follows[11] to remove

singularities in the integrand for small x and great A:

v¥(x) = exp(z*(x))
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with
1 72
)=~ f L£(8) - g(6) + h(8)] d6+ 2:(x)  2,(x)
mro

where

Ocose cg—cotg 0

f(8)= A Arctg (xtg 6) X colg 8

g(@) = —A Arctg(x tg 6)

h(6) = 2x(1—1A)
1= A+3A6°
3 {l—i———l—s(u)zn+‘}f0rl>x>\/2—l
8 = Qn+1P\I+x -
(x) =
1 ] x 2n+1 \/
X3 {2ln><ln 2(2n+1)2}for05xs 2-1

Z4(x )-—\/<3(1A ))Am < \/(3(1/\—)\)))

The convergence to 8 decimal places of the different methods of approximation does not imply
that those 8 digits are significant digits for y*(x,).

For small x; and great A the iterative methods do not converge to y*(x,) but to a function in
the neighbourhood of y*(x,).

Let us denote by y;(x,) the solution obtained by performing one of the iterative procedures
Newton, Chebyshev or Halley (for each iterative procedure after a different number of iteration
steps) and et us denote by yg(x,) the solution obtained after rewriting (16) as a fixed point
problem.

In the following table one can find {y*(x,) — y;(x;)| and |y*(x) — ye(x,)| for k=1,....9 and
A =0.1,..,1.0. For smail x;(k =1, 2) generally ye(x;) = y*(x) < y;(x,).

Table 7.2
¥oxeyp (1 (e = 5.-9)

c k| =001 2=0.2 =0.3 x=0.4 A=0.5 2=0.6 A=0.7 2=0.8 x=0.9 \=1.0
I
[

T 13.7(=5) | 7.5(=5) 1.1(=4) [ 1.5(-4) |1.9(-4) | 2.3(~4) [2.7(-4) }3.0(-4) |3.5(-4) 13.9(-4)

L2 §.0(-3) 9.4(-7) 1.3¢-6) | 1.6(-6) [1.9(-6) | 2.0(~6) |2.1(-6) {2.1(-6) |2.1(-6) |7.1(-6)

318.9(-9) |4.7¢-8) [1.2(-7Y [ 2.2(-7) [3.6(-7) [ 5.4(-7) |7.7(-7) [1.0(-6) {1.4(-6) |1.2(-5)

3| 7.8(=9) | 3.2(-8) |7.6(~8) [ 1.4(-7) [2.2(~-7) | 3.3(~7) [4.8(~7) [6.6(-7) 9.0(-2) 2.8(-5)

5| = 2.2(-8) [5.1(-8) | 9.5(-8) [1.5(-7) | 2.3(-7) {3.4(-7) [|4.7(~7) {6.5(-7) [5.1(-5)

6 se 1.7(-8) [3.9(-8) [ 7.3(=8) [1.2(-7) | 1.8(-7) [2.6(-7) |3.7(~7) [5.3(-7) {7.8(-3)

T s 1.3(-8) 13.2(-8) | 6.0(=8) |9.9(-8) [ 1.5(-7) [2.2(-7} [3.2(-7) [4.5(-7) [1.1(-4)

8| = 1.2(-8) {2.9(-8) | 5.3(-8) 8.8(-8){ 1.3(~-7) {2.0(-7) |2.8(-7) [4.1(-7) [1.3(-4)

o = 1.1(-8) {2.7(-8) | 5.0(-8) |8.2(-8) | 1.3(-7) {1.9(~7) 12.7¢-7) {3.9(-7) {1.5(-4)

V) - yR( ] (e=5. (-9)

K +=0.1 =0, 2 1=0.3 =04 %=0.5 1=0.6 x=0.7 »=0.8 %=0.9 A=1.0

TL5(-5) [1.1(=9) | 1.5(=4) [1.9(=4) | 2.3(-4) [2.7(-4) [3.1(-4) |3.5(-4) [3.9(-4)

9.4(=7) [1.3(-6) ] 1.6(=6) {1.9(=6)} 2.0(=6) [2.1(=-6) [2.1(=6) }2.1(-6) | 3.7(-6)

1.70=8) [1.2(=7) } 2.2(=7) |5.6(=T) | 5.4(-7) |7.7(-7) {1.0{~6) [1.4(-6) | 2.0(-5)

3.2(-8% |7L5(-8) [ 1.4(=") [2.2¢=79} 3.3(-7) |4.8(-7) {6.6(-7) {8.9(-7) | 4.4(-5)

2.2(-8) [5.1(-BY | 9.4(-8) [1.5(-7)| 2.3(~7) |3.3(~-7) [4.7(-7) | 6.5(-7) | 7.8(-5)

1.7(-81 |3.8(-8) | 7.2(-8) |1.2(=7) | 1.8(=7) 12.6(~7) I3.7(=7) | 5.2(-7) [ 1.2(~-%)

s 1.4(-81 |3.2(~8) | 5.9(~8) |9.8(~8) | 1.5(~7) [ 2.2(~7) |3.7(-7) [ 4.5(=7) ] 1.6(-9)

< 1.2(-8) |2.8(~8) {5.2(-8) |8.7(~8) | 1.3(-7) [ 1.9(-7) j2.8(-7) [4.0(-7) | 2.0(~4)

= T.1(=8) [2.6(-8) | 3.8(-8) |8.1(-8) | 1.2(-7) [ 1.8(=7) |2.6(-7) | 3.8(-7) | 2.2(-%)

Only for A = 1.0 one notices slight differences.
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