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ABSTRACT 

Section 1 will be devoted to the discussion of sone general­
izations of the concept of Pade-approximant for multivariate 
functions, based on the interpolation property of a Pade­
approximant. Host of those generalizations preserve, under some 
conditions, a number of properties of the univariate Pade­
approximant. In Section 2 we will repeat the recursive schemes 
used for the computation of the univariate Pade-approximant: the 
E-algori thm and the qd-algori thm. lie will also show that, if a 
generalizing definition is based on these recursive algorithms, 
then much more interesting properties remain valid for the 
generalization. In Section 3 we will illustrate the approximation 
power of this type of Pade approximants on a numerical example. 
Other applications are: the solution of nonlinear systems of 
equations [7], the solution of nonlinear differential and integral 
equations [3], the acceleration of convergence [4]. Since those 
applications have already been treated extensively, they will not 
be mentioned here; the interested reader is referred to the 
li tera ture . 

1. SOHE DEFINITIONS FOR HllLTIVARIATE PADE APPROXH1ANTS 

Let us first of all repeat the definition of univariate 
Pade approximant. Suppose we are given a function fex) by its 
Taylor series expansion around the origin, 

00 

fex) 
k L ck x wi th ck 

k=O 
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In the Pade approximation problem of order (n,m) we look for 
polynomials 

p(x) 

and 

q(x) 

n i 
L ai x 

i=O 

m 
L 

j=O 

such that in the power series (f, q - p)(x) the first 
n + m + 1 terms disappear, i.e. 

(f - q - p)(x) I ~xk 
k=n+m+l 

It is well-known that this problem had indeed a nontrivial 
solution for the a. and b. and that the rational functions 
(p/q) (x) satisfy a1 number of beautiful properties. 

The fact that all terms of degree up to and including 
n + m vanish in (f· q - p)(x), can be represented by means 
of an "interpolationset" E describing the fulfilled equations: 

~ = 0 for k b E = {O, ... , n + m} c N 

E 

~~-==~'~~~~'-~~------------~N 
o I n+m 

A natural generalization of this approximation problem to the 
multivariate case, is the following. We will describe the 
situation in the case of two variables, because the case of more 
than two variables is only notationally more difficult. 

Suppose we know the Taylor series expansion (or at least 
part of it) of a bivariate function 

00 

f(x,y) L 
i ,j=O 

i yj c .. X 
1J 

with 

Let us try to calculate polynomials 

c .. 
1J 
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n i yj p(x,y) I a .. X 

i+j=O 1J 

m i yj q(x,y) L b .. x 
i+j=O 1J 

of total degree nand m 
to be of total degree i+j 

respectively (a term 
), such that 

is said 

00 

(f • q - p) (x,y) I 
i+j=n+m+l 

If we represent this demand by an interpolation set E 
we have 

:IN 

E 

~O=l=-=.=.=.===n=+m=-------------~lN 

in lN2 , 

Counting N, the number of unknown coefficients a.. and b .. , 
u 1J 1J 

and N, the number of imposed equations, we remark that we have 
an ovefdetermined syste~ of homogeneous equations and thus that 
we cannot guarantee the existence of a nontrivial solution: 

1 1 
Nu = 2 (n+l) (n+2) + 2 (m+l) (m+2) 

1 2 (n+m+l) (n+m+2) 

The ideal situation would be 

N N - 1 e u 

because one unknown can always be determined by a normalization 
of the denominator q(x,y). 
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Several authors have created this ideal situation by alter­
ing the form of the polynomials p(x,y) and q(x,y) and/or by 
choosing another interpolation set. The definitions which we 
shall compare are those of Chisholm and his group at the 
University of Kent in Canterbury, Lutterodt who introduces two 
types of approximants, ::arlsson and Wallin who are primari ly 
interested in convergence properties. 

All those definitions are of the following kind. This very 
general setting has also been given by Levin [12]. 

Take a "numerator index set" N and a "denominator index 
set" D describing the form of the polynomials 

p(x,y) 

q(x,y) 

I 2 a .. x\j 
(i,j)bN,=lN 1J 

\' b xiyj 
L 2' . 

(i,j)bD~JN 1J 

and construct on interpolationset E such that 

NeE 

# (E\N) = # D - 1 

where # denotes the number of elements in a set. 

Now one can assure the existence of nontrivial 
b.. when solving 

1J 

(f • q - p)(x,y) 

For Chisholm's bivariate Pade approximants 

N ([O,n l ] x [O,n2]) n JN2 with n l ,n2 blN 

D ([O,ml ] x [O,m2]) n JN2 with ml ,m2 blN 

a .. 
1J 

E {(i,j)IO < i :: max(n l ,ml ), o < j :: min(n 2,rl2)} 

U {(i,j)iO < i::min(ml,ml ), 0< j ::max(n2,m2)} 

and 

U {(i,j) Imax(n2,m2) < j :: n2+m2, max(n2,m2) < i+j < n2+m2, 

0:: i :: min(nl,ml )} 
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U{(i,j) Imax(n1,m1) < i ~ n1+m1, max(n1,m1) < i+j ~ n1+m1, 

For 

° ~ j ~ min(n2,m2)} 

d .. = ° for (i, j) b E 
'1J 

dnl+ml+l-£1£+d£ln2+m2+l-£ = ° for £=n'_lmin(n l ,ml ,n2,m2) 

Lutterodt1s approximants we have 

N ([O,n l ] x [0, n2]) n ]N2 with n l ,n2 b]N 

D ( [0 ,ml ] x [0,m2]) n ]N2 with ml ,m2 ]N 

E ~ N 

E satisfies the inclusion property, i.e. if (i,j) b E 
then ([O,i] x [O,j]) n ]N2c E 

#E = (nl +l)(n2+l) + (ml +l)(m2+l) - 1 

d .. = ° for (i, j) b E 
1J 

and for his Pade approximants of type Bl 

~ ([O,n l ] x [0,n2]) n]N2 with n l ,n2 b]N 

D ([O,ml ] x [0,m2]) n]N2 with ml ,m2 b IN 

E NU{(i,O) Inl+l ~ i ~ nl+ml}U{(O,j) In2+l ~ j ~ n2+m2} 

U{(i,j) Inl+l ~ i ~ nl+ml , n2+l ~ j ~ n2+m2} 

d. . = ° for (i, j) b E 
1] 

For the Karlsson-\'lallin approximants 

N = {(i,j) 10 ~ i+j < n} with n b N 

D {(i,j) 10 ~ i+j < m} with m b]N 

E ~ N 

E satisfies the inclusion property 

1 1 
#E ~ 2 (n+l) (n+2) + 2 (m+l) (m+2) - 1 

None of those types of bivariate Pade approximants can be 
calculated recursively, and unicity of the approximant itself 
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can only be guaranteed under certain conditions. By imposing 
restrictions on N,D and E one can preserve some of the univariate 
properties of Pade approximants. We will discuss this in detail 
at the end of the next section. Those who want to know more 
about some of these multivariate Pade approximants are referred 
to [1, 9, 14, 15, 11]. 

2. OPERATOR PADE APPROXIMANTS 

Since the univariate €- and qd-algorithm will serve as 
a motivation for the introduction of operator Pade approximants 
(multivariate Pade approximants turn out to be a special case), 
I;'e will first repeat some facts about those recursive computation 
schemes. 

Consider a series L t. 
1 

in R and also the sequence 
i=O 

(si)if ~ of its partial sums; so s. 
1 

t + .•• + t .. 
o 1 

Input of the e-algorithm are the elements 

perform the following computations: 

s .. 
1 

a) 

b) 

c) 

(i) 
€ -1 o i = 0,1, ... 

(i) 
€ 0 = si 

(-j-l) 
€ 2j o j 

(i + 1) + 
€ j-l 

0,1, ... 

1 
(i + 1) 

€ . 
J 

(i) 
- € • 

J 

j 
i 

0,1, ... 
-j,-j+l, 

We 

The index j refers to a column while i refers to a diagonal 
in the €-table. If the algorithm does not break down the fol­
lowing property can be proved for the €-algori thm. \1e denote by 
t>sk = sk+l - sk· 
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Theorem 2.1: With s. = 0 1 

S. 1+j 

().S. 
1+j 

/',S. . 
1+J 

for 

().s. 2' 1 1+ J-

Input of the qd-algorithm are the terms 
following calculations: 

a) e Ci )= () Ci) \+1 
i , q1 = 0 t. 1 

e ~i) = (i + 1) + Ci+l) - Ci) 

i < 0 

().Si+l 

S. 
1 

().S. 
1 

1 

/',S. 
1 

t.. One performs the 
1 

0,1, 
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b) 
J 

q. 
] 

e. 1 q. i 0,1,2, .. . j 1,2, ... 
]- J 

c) Ci) = 
Ci + 1) Ci+l) I Ci) i = 0,1,2, 1,2, qj+l q. • e. e. 
] ] ] 

Again the index refers to a column while i refers to a 
Ci) (i) diagonal. If all the qj and ej exist, one can prove the 

following property. 

Theorem 2.2 

For s. 
1 

t + ... +t., 
o 1 

.1 (i+l) I e~i+l) I (i+l) I (i+l) ! (i+l)! 

+~~-~-~-;~-;~ -... -;~ 
For t. 

1 

for s. 
1 

i c.x 1 
i 
') C, x 

k~O K 

(the .th 
1 

k 
it 

term in the Taylor series of f), thus 

is well-known that Cn-m) 
E 2m is the Pade 
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approximant of 
seen as follows. 

order (n,m) for f. This can easily be 
The imposed conditions 

(f • q - p)(x) = L ~xk 
k=n+m+l 

result in two linear systems of equations in the unknown 
coefficients a. and b. of the polynomials p and q 

1 J 

with 

c b a 
o 0 0 

c b + ••. + C b a 

+ ... +clb=O n+ -m m 

+ ... +cb 0 n m 

n 0 0 n n 

c = 0 k 
for k < 0 and b. = 0 

J 
for j > m . 

A solution of the homogeneous system of equations is given 
by the following determinants: 

b 
o 

c 
n 

Hence an explici t 

n k 

k=O 
~x 

c n+l 

c n+m 

1 
c n+l 

C n+m 

cn_ l ... cn + l - m b. 
J 

formula for p(x) is 
q(x) 

n-l k n-m 

k=O ~x k=O 
ckxk 

c c n+l-m n 

c n+m-l c 
n 

m 
x x 
c c n+l-m n 

C C n+m-l n 

c 
n 

c 
n 

:th . 
J column In 
bo replaced by 

this column 
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n k n-l k n-m k I CkX I ~X Y ckX 
k=O k=O k=O 

n+l n n+l-m 
cn+1X c x c n+l-m x n 

n+m n+m-l n c x cn+m_1X c x n+m n 

1 m x x (1) 

n+l n n+l-m 
cn+lx C x C n+l-m x n 

n+m n+m-l n 
C x cn+m_lx C x n+m n 

Cn-m) 
E 2m 

Remark that formula Cl) is a rational function of the form 

n 

I 
i=O 

m 

I 
j=O 

where 

fCx) 

i+nm 
a.x 

1 

b j+nm .x 
J 

m 

I b j+nm 
.x 

j=O J 
y ~xk+nm 

k=n+m+ 1 

n i+nm -I a.x 
i=O 1 

This shift of the degrees over nm, which results from the 

279 

Cn-m) determinantal expression for E2m ' does not bother us in the 

univariate case because we can divide it out and it will serve as 
a useful tool in the operator case. 

Let us now turn to the definition of Pade approximants for 
nonlinear operators F:X ~ Y where X is a Banach space and Y 
is a commutative Banach algebra. I'le shall denote elements in 
the space X by the symbol z. 
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Suppose the nonlinear operator F is abstract analytic in 0 , 
i.e. 

where now k\ F(k) (0) with F(k) (0) the k th Frechet 

derivative of F at the origin, and thus a k-linear bounded 
operator. 

In the case X = JR2 and Y = JR, F(z) is merely a bivariate 

Taylor series expansion with y 
i+j=k 

i j 
c .. x y . 

1J 

For a given operator F we can now construct 
P (z) 
Q (z) , 

operator Pade approximant of order (n,m) , as 

P (z) 
Q (z) 

n k 
I ~z 

k=O 
n+ 1 

~n+ 1 z 

n+Y.I c z n+m 

I 

n+l 
cn+lz 

n+m 
c Z n+m 

n-l k 
I c z 

k=O k 
n c z .n 

n+m-l 
cn+m_lz 

n c z 
n 

n-m 
... Y Ck zk 

k=O 
n+l-m 

.. '~m+l-mZ 

n c z 
n 

I 

the 

where I is the unit element for the multiplication in Y and 
division in Y is multiplication by the inverse element for 
the multiplicative operator defined in the Banach algebra Y. 

It is easy to see [5] that P(z) and Q(z) are respectively 
of the form 

n 
P (z) = I 

i=O 

m 
Q (z) I 

j=O 

i+nm 
A. z 

1 

j+nm 
B.z 

J 
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where A. and B. are (i+nm)-
1 ] 

and (j+nm)- linear operators, 

and that 

(F 0 Q - P)(z) = L Dk 
k=n+m+l 

k+nm 
z ( 2) 

We want to emphasi ze here that originally these operator Pade 
approximants were not introduced in this way [2]. They were 
defined by means of the set of equations (2) and the validity of 
the E-algorithm was only proved afterwards. 

One of the immediate results of this definition is that the 
operator Pade approximants can be calculated recursively by means 
of the E-algorithm and that there is also a connection with the 
theory of continued fractions by means of the qd-algorithm (see 
[6]) . 

But many other properties are satisfied. We give here a 
list of desirable properties and will compare the multivariate 
Pade approximants introduced by means of the E-algorithm with 
the multivariate Pade approximants introduced via the inter­
polationsets: 

a) unicity of the solution 

b) reciprocal covariance: if f(x,y) is replaced by i(X,y) 

and if E(x,y) is the Pade ap-
q 

proximant of order (n,m) for 

f(x,y), is then ~(x,y) the Pade 
p 

approximant of order (m,n) for 

j(x,y)? 

c) homografic covariance: if f(x,y) is replaced by 

d) projection property: 

~: ~ : ~(x,y) with a,b,c,d in lR, 

and if E(x,y) is the Pade ap-
q 

proximant of order (n,n) for 
aop+boq 

f(x,y), is then cop + d 0 q (x,y) 

the Pade approximant of order (n,n) 

for aof+b ? 
~+d(x,y). 

if ~(x,y) is the Pade approximan t 

of order (n,m) for f(x,y), are 
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e) symmetry: 

f) consistency property: 

g) recursive computation 

h) block-structure: 

i) continued fractions: 

then E.(x,O) 
q 

approximants 
f(x,O) and 

A.A.M.CUYT 

and ~(O ,y) the Pade 

of order (n,m) for 
f(O,y) respectively? 

if f(x,y) = f(y,x), is then the 
Pade approximant symmetric too? 

if f(x,y) is a rational function 
itself, do we then find f back as 
its Pade approxinant by choosing the 
degrees of p and q appropriately? 

if the nultivariate Pade approximants 
of order (n,m) are ordered in a 
two-dimensional array for increasing 
nand m, does the Pade-table then 
consist of square blocks containing 
equal Pade-approximants? 

can the multivariate Pade approximant 
also be obtained as the convergent 
of a multivariate continued fraction? 

The following review gives an answer to those questions. 
Chisholm's and Lutterodt's approximants shall be denoted by 
(n l ,nz)/(m1 ,mZ) while the Karlsson-Wallin and the operator Pade 
approximants are indicated by n/m. 

Chisholm Lutterodt Karlsson- Operator 
Wallin 

Unici ty only under only wi th only if E yes 
certain respect to a contains as 
condi tions given E, if many points 
on c .. the homogeneous as possible 

1J system has a 
unique solution 

Recipr. Cov. yes 2'es no )'es yes 
Homogr. Cov. yes yes no yes yes 
Projection Pr. yes only if yes only if E yes 

E con- contains the 
tains the univariate 
univariate inter-
inter- polationsets 
polation-
sets 
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Chisholm Lutterodt Karlsson- Operator 
Wallin 

Symmetry only for only for only only for yes 
(n,n)/(m,m) sYl!lIDetric for symmetric E 

E and for (n,n 
(n,n)/ (m,m) /Cm,m) 

Consis tency no no no no yes 
Pro 
E;- algori thm no no no no yes 
Block- no no no no yes 
structure 
qd-algori thm no no no no yes 

3 NUHERICAL APPROXIHATION OF THE BETA FUNCTION 

The Beta function is an example which has also been studied 
by the Canterbury group [8] and by Levin [13]. We will compare 
our results with theirs. The Beta function may be defined by 

B(x,y) - r(x)r(y) 
- r(x+y) 

where r is the Gamma function. Singularities occur for x = -k 
and y = -k (k = 0,1,2, ... ) and zeros for y = -x-k (k=0,1,2, 
... ). IVe wri te 

B(x ) = A(x-l,y-l) 
,y xy 

with 

A(u,v) = 1 + uv f(u,v) 

The coefficients in the Taylor series expansion of f(u,v) have 
been calculated by the first method suggested in [8]. 

We will calculate some bivariate Pade approximants 

of order (n,m) for f(u,v) and compute 

1 + (X-l)(y-l)*(X-l,y-l) 

xy 

as an approximation for B(x,y). 

E..(u, v) 
q 

Let us first take a look at the computational effort it 
takes for the calculation of a certain approximant. We denote 
by Nf the number of coefficients in the Taylor series of f(x,y) 

which we shall need for the computation of the approximant. 
Since the coefficients a.. can be calculated by substitution 

1J 
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of the b .. 
1J 

in the left hand sides of the equations, 
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N will 
u 

now denote the number of unknown coefficients b .. 
1J 

in the homo-
geneous system. 

For Chisholm's approximan ts wi th nl n2 n and 

ml m2 m, we have 

N (m+l)2 
u 

2 (n+l)2 + 2 min(n,m) Nf = (m+l) + - 1 

For the operator Pade approxi~ants 

N = i [(nm + m+l) (nm+~+2) - nm(nm+l)] if nm > 0 u 
1 

if 2" (m+l) (m+2) nm 0 

Nf 
1 

= 2" (n+m+l) (n+m+2) 

The rational functions which Levin used for the approximation 
of the Beta function, I'lere of the following type 

n2 
i 

n2 
i n l y c/, •• y n l y p .. x 

xj i=O 1J 
yj i=O 1J 

L + L 
j=O n2 

i j=O n2 
i L Il ij Y L qij x 

i=O i=O 
m m i yj L L c/, •• x 

i=O j=O 1J 

and we shall denote them by [(nl ;n2)/m]r because for their 

computation: 

N 
u 

2 (m+l) + (n2+1)(nl +l) 

2(2n2+1)(nl +l) - (n l +I)2 

(for more details see [13]). 

2 + [max(O,m+r-n l )] - 1 

Using the prong method [10] the homogeneous system of 
equations for the calculations of Chisholm's approximants can 

be solved in 0[m2(2m2+2~_1)] operations. The calculation of 
a function value of an operator Pade approximant can be performed 
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via the E-algorithm in o [mZ(n+m)Z] operations and we prefer 
this method to the solution of the system of equations (Z). 

285 

The solution of the homogeneo15 system for the calculation 
of [nl;nZ)/m]r involves 0[(m+l)6 + (nz+l)Z(nl+l)] operations. 

After comparison of the Nf,Nu and the computational 

effort, we decided to compare the numerical values of the bi­
variate Pade approximants given in the table below. Chisholm's 
approximants are of the type (n,n/(m,m); the operator Pade 
approximants are still indicated by n/m. 

For the different groups (I), (II) and (III) we have Nf 
approximately equal to 87, 40 and 71 respectively. 

It is easy to see that the operator Pade approximants can 
produce better results than the Chisholm approximants, e.g. for 
(x,y) = (-0.75),-0.75), and that they also can be better than 
the approximants Levin used, e.g. for (x,y) = (0.50,0.50). 
They are most accurate for (x-l,y-l) not too far from the 
origin. 
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