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OLD AND NEW MULTIDIMENSIONAL CONVERGENCE ACCELERATORS 

Annie CUYT 
Department of Mathematics and Computer Science, University of Antwerp, Universiteitsplein I, 

B-2610 Wilrijk, Belgium 

In the past some multidimensional convergence accelerators have been studied by Levin [13], by Albertsen, 
Jacobsen and Sorensen [l] and by the author [5]. We show here that all these multidimensional convergence 
accelerators are particular cases of a whole class of multidimensional convergence accelerators. The common 
underlying principle is that they can be considered as multivariate Pad& approximants for a multivariate 
function that is different for different algorithms. Since we work in a very general framework, we are able to 
introduce a number of new multidimensional convergence accelerators and generalize them by using multi- 
variate rational Hermite interpolants instead of multivariate PadC approximants. 

1. Convergence acceleration of a table with single entry 

The idea of using the epsilon-algorithm to accelerate the convergence of a sequence, which can 
be considered as a table with single entry, is quite well-known. Given the sequence { a,} i E N with 
A = lim,,,, ai, we choose n and m in N and construct the ratio of determinants 

an a,_, . . . an-m 
van+, va, . . . Vantl-m 

Vu nfrn Va n+m-1 ‘.’ VU, 
0) 

1 . . . 1 

van+, va, . . . Van+l-m 

Va n+Vl Va n+m-1 --- van 

withvai = ui - a,_r and a, = 0 for i -c 0. The ratio (1) is the Pad6 approximant of order (n, m) 
evaluated at x = 1 for the univariate function 

f(x) = 5 va,x’. 
i=O 

We are particularly interested in approximations at x = 1 since 

f(1) = A. 
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This ratio of determinants can easily be computed using the epsilon-algorithm. With 

ELkl) = 0, E. (k) = ak, k=O, l,..., 

1 
k=O, l)...) z=o, l)...) 

formula (1) is given by Ed,,, (n-m). The E-values are usually arranged in a table as follows 

&‘_o’ 1 

(0) 
EO 

(1) 
EO 

&‘2’ (1) 
1 El 

Ea’ : 

The epsilon-algorithm is 
cases, that the convergence 
given sequence { a ; } i E N [ 2, 

The previous reasoning 
1, 2,..., and { CZ;}~=~ with 

&$O’ 

(1) 
E2 

called a convergence accelerator because it can be shown, in some 
of the columns or diagonals in the E-table is faster than that of the 
pp. 83-851. 
was generalized by Brezinski. Given sequences { gk( i)}i E N, k = 
A = limi,m a i where approximately 

ai=A + Crlgl(i) + ” ’ +(Ymg,(i), i ~ 0, 

it is easy to see that an approximate value for A is given by 

an a,_, . . . an-m 
g,(n) . . . g1b - 4 

gi4 -** &?(n-4 
1 1 

g,(n) ::: g,(n -m) 

&A4 *** &An-m) 

(2) 

In [3] it is shown that formula (2) can be computed recursively in an analogous way as formula 
(l), now using the E-algorithm. With 

E,$" = a,, l=O,l,..., n, 

g6fk = gk@), k= 1,2,...,m, I=O, l,...,n, 

EL’!, = 
Ef’g$f;:)l - Ef+“&+ 1 

d',Zi - df)k+ 1 

9 I= 0, l,..., k= 0, l,..., 

(1) 
&&:)I - g/y; l)&)k+ 1 

gk+l,/ = 

J&:)1 - &)k+ 1 
> j=k+2, k+3,..., k=O, l,..., 
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formula (2) is given by EC-“‘. The values El’!, and gitl,j are stored as in the tables (B.l) and 
(B.2) of Appendix B. Convergence acceleration results are given in [3]. In [lo] a computationally 
more advantageous organization of the E-algorithm is given in order to compute formula (2). 
With 

KG = a,/&?(% Gfi’ = l/&(0, l=O,l,..., n, 

kb’,‘k = &(MM, k=2 ,.,., m, l=O,l,..., n, 

kc’) 
k,k+l = 1, k=O, l,..., 

Ej’; = 
ELl_+ll; _ EC’) 

k-l,p 

h”f 1) 
- h%,k+l ’ 

l=O,l,..., k=l,2 ,..., p=O,l, 
k l,k+l 

hjj; = 

hsf-‘;‘, _ h”’ 
>J k-l./ 

h(‘f’) 
- hfLl,k+l ’ 

j=k+2, k+3 ,..., k=l,2 ,..., 
k l,k+l 

formula (2) is given by Ez<“‘/E$“‘. The values Ef,‘, E,(‘] and hjf:. are stored as in the tables 
(B.3) and (B.4) of Appendix B. So far for the one-dimensional case. ’ 

2. Convergence acceleration of a table with multiple entry 

Suppose we are given a table {ui ,,,, }( *,,,,, i lENP with multiple entry and with A = 

limi ,,..., i,~oo~i ,... I. The convergence acce&ators ‘we shall propose are different from the ones 

suggested by Haclart in [12]. She extracts a one-dimensional subsequence from the multidimen- 
sional table and applies one-dimensional convergence accelerators. We preserve the multidimen- 
sional nature of the problem as is done in [1,13]. In [5] formula (1) is generalized for this case as 
follows. Define 

with 

Clearly 

fbl,...,~p) = i ,,__ fzopvai ,... ipx;’ .** x2 

pvai ,___ i P =‘i ,,,, I p- Ii ‘t ,... (i,-l)...i, 
;=I 

P 

(34 

+Ca 
j,k=l 

~,...~,~,(i,-l)i,+,...il_,(i~-l)ii+,...~,- . . . +(-‘)P~~,,-l)...~i~-l~. (3b) 

/<k 

f(l,...,l) =A. 

For this multivariate function multivariate Pad6 approximants can be calculated and evaluated 
at the point (xl,. . . , xp) = (1,. . . , 1) via the epsilon-algorithm [5]. Let us restrict ourselves to the 
bivariate case for the sake of notational simplicity and deal with a table { aiJ}cl i) EN of double 
entry. The bivariate Pad6 approximant of order (n, m) to which the epsilon-algorithm applies, is 
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then given by 

I n 

c 2Va,j . . 
i+;=o 

c 2VUij . . 
i+j=n+l 

n--M 

c 2vaij 

i+J=o 

c 2Vaij 

i+j=n+1-WI 

. . . c 2valJ 

i+j=n 

1 1 . . . 1 

I c 2Va,j . . . c 2Va*j 
i+j=n+l iij=nil-WI 

c 2VU;, . . . c 2vaij 
i+j=n+m i+j=n 

(4 

where Cf+j=O 2~a,j can be simplified to Ci+j=kaij - Cr+j=k_lajj. For convergence acceleration 
results we refer to [5]. 

Just as the one-dimensional formula (1) can be generalized to the multidimensional case by 
using (3), the one-dimensional expression (2) can be translated to the multidimensional case. 
Then its recursive computation scheme will again be based on the E-algorithm. We shall now 
show that a number of multidimensional convergence accelerators suggested in the past appear 
to be particular cases of this generalization and also that some new multidimensional conver- 
gence accelerators can be introduced. The common underlying principle is that they can be 
considered as multivariate Pad6 approximants either for a multivariate function f( x1,. . . , xp) 

different from the one used in (3a) or with different multivariate numerator and denominator 
than in (4). For a description of the definition of multivariate Pad6 approximant that is used 
here, we refer to [8]. The framework developed there is a very general one and covers many 
previously introduced definitions for multivariate Pad6 approximants. The reader that is not 
familiar with [8] can first consult Appendix A. 

As a first special case, consider a convergence accelerator analogous to the ones developed by 
Levin in [13] and by Albertsen, Jacobsen and Sorensen in [l], given by 

ai,-dO,j,-eO . . . ai,-d,,jn-e m 
I 

vO”i,,+,-do,jn+,-e, .. . Vrnai.,+,-; j mr ntm-em 

1 

1 . . . 1 

V@l,+, -d,,j,+, -e,, * *. Vmai,+I-d,,&+l-e, 

VOai,,+,-d,,j,+,,-e, . . . Vmai,+,-d J m, “+m-=n, 

(5) 
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where 
n 

‘i,,-d,.j,,-e, = c vkai,,-di,j,-eAe 
h=O 

Remember that (iO, j,), (ii, ji), (ii, j,), . . . is an enumeration of N2. That this expression can be 
computed by means of the E-algorithm can easily be seen from the fact that it is a multivariate 
Pad& aproximant as given in [8] for the function 

f(x, Y) = f ValhJhxihyJh, (6) 
h=O 

where Vaihjh = ‘ihJh - ‘ih_,jh_, 

can be found as Ey’ 

and a,, = 0 if i -c 0 or j < 0. In the table of E-values expression (5) 
or as EyJ/Ez,‘. When Levin and Albertsen, Jacobsen and Sorensen 

developed their convergence accelerator, they did not know that recursive computation was 
possible and they computed (5) by solving systems of linear equations. The starting values for the 
E-algorithm are given by 

E#’ = c Vaihj,,xihyJil Vai,,j,, = ‘i,j, 

( i,, . .A, ) E W (x..!J)=(l,l) h=O 

df? = c V,U,,~_d,,j,,_p,X"'-d'YiJ~-er 
(i,, . ii, ) E 4 (x.l;)=(l.l) 

and for its simplified form by 

/,'I' 
O.r-1 = ‘i,-d,,j,-e; 

In the table of E-values expression (5) can be found as Eg) or as Efi/E,$‘J. If one examines [8] 
carefully, it is clear that a whole bunch of convergence accelerators, based on the use of 
multivariate general order Pad6 approximants, can be constructed. An even more general 
formula than (5) is the one that results if we use multivariate rational interpolants instead of 
multivariate Pad6 approximants. We refer the reader to the following section. 

3. Some new multidimensional convergence accelerators 

Let us first discuss new methods that result from the use of multivariate general order Pad6 
approximants. Consider a two-dimensional table { a,,}ci,,jEN: with lim,,j,,a,j = A and con- 
struct the series (3) with f(1, 1) = A. If we choose a numbering in N ’ and construct a sequence 

of sets M>,EN with I, = {(i,, j,), (i,, jl), . . . , (i,, j,)}, then for each I = 0, 1,. . . a variety of 
numerator and denominator index sets N,, and 0, with n + m = 1 exists. The general order Pad6 
approximants [ NJD,] 1,(1, 1) for (3), as described in [8] and summarized in Appendix A, can be 
computed by means of the E-algorithm and are found in EC) or in E,$-j/Eyj. Its starting values 
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are also given in Appendix A. A determinant expression for [ N,,/D,,,],,(l, 1) is given by 

.% ’ 
2vOai, jh ... 

h=U h=O 

2v0ai .+,.jt?+1 . . . 2vmai n+l.j,!+l 

2voa, ,,+m.ln+m . . * 2vmai n+n,./>?+” 

1 . . . 1 

2voa* ,,+,&+I . . . 2’Jma I”+lrjn+l 

2vOai,+m.jn+m ... 2vmai.+n,Th+n 

- 

with 

2Vkaz,,jh = alh-di.jh-ek - aih-dL-l.jh--e, - ai,-d,,lh-e,-l + ai,-d,-l,j,-e,-l. 

In order to illustrate this technique numerically we consider the following situation. Suppose 
one wants to calculate the integral of a function u(x, Y) on a bounded closed domain 52 of R2. 
For the sake of simplicity we take fi = [0, l] x [0, 11. The table { aij}~i,j~ EN~ can for instance be 
obtained by subdividing the interval [0, l] in each direction respectively into 2’ and 2’ intervals 

of equal length h, = 2-’ and h, = 2-j. Using the midpoint rule one can then substitute 
approximations 

u(x, Y)dxdY= h,h,u(+h,, :h,) 

to calculate 

aij = 
2k-1 21-l 

Let us take the diagonal enumeration of tV2 given by (0, 0), (1, 0), (0, l), (2, 0), (1, l), (0, 2), . . . . 
As an example we take u(x, Y) = l/(x + Y) which produces slowly converging a,j because of 
the singularity of the integrand in (0, 0). Let the values a,, be given for 0 < i +j < 9. With these 
data the approximations (4), (5) and (7) can be computed respectively for n + m = 0,. . . ,9 and 
n+m=o,..., 54. Note that (4) adds a complete diagonal of data in one step and (5) and (7) add 
the data along a diagonal one by one. The results displayed in Table 1 are the most accurate 
among the possible approximations &(;I,- m) and Ey) respectively for n + m = i and n + m + 1 
= $(i+l)(i+2) h w ere i G 9. We can compare them with the a,(i+lj,2,,,i,2,. The exact value of 
the integral is 

11 1 

lJ -dxdy=2ln2=1.38629436.... 
0 ox+y 

It is clear that (5) can be improved by (7). Similar conclusions can be found in the sequal of this 
section. 
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Table 1 

al(~+l,/2l.~r/21 

a,, =1.166667 

L(J+lw-L~Pl 
&2li/2] 

E(P) = 1.330295 
a *, = 1.209102 E$‘) = 1.361764 
a 22 = 1.269048 E$” = 1.396396 
a 32 = 1.292978 E$‘) = 1.386057 
a 33 = 1.325744 EL” = 1.386872 
a 13 = 1.338426 EL” = 1.386481 
a+, = 1.355532 EI~’ = 1.386309 
a 54 = 1.362056 E$‘) = 1.386298 

Formula (7) Formula (5) 

EJ” = 1.292352 E;” = 1.183518 
E,‘@ = 1.374224 Ej6’ = 1.228489 
Ei9’ = 1.359011 Ei9’ = 1.304007 
Es(12’ = 1.373649 E$“’ = 1.329994 
E,‘:’ = 1.385863 E,‘;’ = 1.360150 
E,‘?’ = 1.386177 E1’;” = 1.374274 
E:?’ = 1.386366 E,‘?’ = 1.371675 
Eiy’ = 1.386298 E$:9’ = 1.385897 

Secondly we shall discuss a technique that results from the use of multivariate general order 
rational interpolants described in [8] and summarized in Appendix A. Consider a two-dimen- 
sional table { ajj}(i,jjEN~ with lim,~j,,ui, =A and let {(xi, yj)}(,,ijEN~ be a convergent table of 
points in R* with 

lim (xi, Yj) = (ZI, Z2). 
i.J-*cc 

When using extrapolation techniques to accelerate the convergence of { aiJ } (i, jj E ,Q, We compute 
a sequence { bi } i E N with 

bi = lim 
(xLv)-+(~,3~z) 

'iCx, Y), 

where si( x, y) is determined by some interpolation conditions. The point (z,, z2) is called the 
extrapolation point. In analogy with the univariate extrapolation technique ‘of Bulirsch-Stoer, we 
choose for si(x, y) the bivariate rational interpolants on the descending staircase 

[%/4 1 I,, 
P&J I, bvD,l I, 

P2/41 I, [N*/D21 I4 

These rational interpolants, 

are constructed here such that 

PnCxiT Yj) 
a 

lJ = qm(x;, Yj> ’ 
(i, j) E I,,, E N2, 

and then b, is computed from 

bi= ;$;: ;;, n= l:(i+l)], m= iii], i=o, 1,2 ).... 
2 

(8) 
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Of course the choice of the interpolation points (xi, y,) greatly influences the convergence 
behaviour of the resulting sequence { b, } i E N. 

Let us compare the formulas (5), (7) and (8) numerically. We know that the Beta function 
B(x, y) for - 1 < x,y < 0 can be written as 

Nx, Y) = 
1+xyw(x+l, y+l) 

XY (x + l)(Y + 1) 
(x +Y)(I +x +y>, 

and that a Taylor series development for w( x + 1, y + 1) can be computed by the first method 
suggested in [ill. Let us denote this Taylor series by 

w (x + 1, y + 1) = f coi,ojxzyi, 
i, j=O 

and its partial sums for (x, y) = (u, u) by 

ak, = 5 C coi,oju’uj. 
i=O j=O 

Input of the convergence accelerators are these bivariate partial 
development for w( x + 1, y + 1) around (1, 1). We shall compute 
interpolants R( u, u) for w( u + 1, u + 1) and compare the value 

sums of the Taylor series 
rational approximants and 

1+ uuR(u, u) 

uu(u+ l)(u+ 1) 
(U+u)(l+z4+u) 

with B( U, u). Let the values akl be given for (k, 1) E I c N 2. Let us associate each ak, with an 
interpolation point (xk, yr) where 

lim (x,, Y,) = (q, z2), 
k,l-oo 

k,l,i_mmakt= w(u, d- 

So we construct a function f(x, y) satisfying 

ftxky _h> =akl? dZb z2) = wh de 

We can then proceed as in the Pad6 approximation case, choosing numerator and denominator 
index sets N and D, constructing subsets N,,, 0, and II, computing rational interpolants 

bY,/%l,+m for f(x, y) and evaluating them at ( zl, z2). In our example we have taken 

(u, u) = ( - 0.92, - 0.97). 
In the first column of Table 2 the values, 

1 + uua;, 

Uu(z4+l)(u+l) 
(24 + u)(l + U + u), 

are displayed. For the construction of all the other columns we have taken 

I= {(k, I):O<k,l,<6}, 

and used the enumeration (0, O), (LO), (0, I), (1, I), (2, 0), (0, 3, (2, I), (1, 2), (2, 9, (3, O), (0, 3), 
(3, I), (1, 3), (3, 2) (2, 3), (3, 3). . . . In order to compare values that use the same number of data 
as the al, for i = 0, 1, 2,. . . , we choose for R( x, y) the (i + 1)2 th elements on the descending 



A. Cuyt / Convergence accelerators 177 

Table 2 

i ai, (5) (7) (8a) (8b) 

1 118.551 106.835 140.066 23.0915 23.0915 
2 92.1841 88.6788 83.1745 100.396 88.2749 
3 88.3833 87.6991 86.8761 78.0438 85.7630 
4 87.1083 73.6345 86.1894 86.5946 86.0138 
5 86.5533 93.2420 86.0873 83.8083 86.0543 
6 86.3002 85.8025 86.0793 86.8151 86.0689 

staircase given at the beginning of this section, namely 

i=O: [&/Q],“, 

i= 1: [Q%],,, 

i=2: [ND,]IR, 

i = 3: [&/4] z,~’ 

i = 4: [%/%I Zz4’ 

i = 5 : [ %v%] z,, . 

The second column is an illustration of (5) and the third column an illustration of (7). The other 
columns illustrate (8) where we have made different choices for the interpolation points: 

bk, y,) = Wk, 2-7. 
The correct limit is 

( w 

A = B( -0.92, -0.97) = 86.07672.. . . 

All computations are performed on a Gould UTX/32 in double precision arithmetic. Remark 
that the values aii converge slowly due to the presence of singularities in the vincinity of (u, 
c) =(-0.92, -0.97), namely in u= -1 and u= -1. 

When evaluating the multidimensional convergence accelerators overall we advice to consider 
construction of the series (3) if Pad& approximants are used and to pay attention to the choice of 
the interpolation points if rational interpolants are used. 

4. Exact summation 

Several theorems exist that describe the type of series which can be summed exactly by a 
particular convergence accelerator in that sense that an application of the convergence accelera- 
tor to the sequence of its partial sums gives the limit value A. Consider for instance formula (1) 
again. According to [2, pp. 40-421 a necessary and sufficient condition for 

&“‘) = A , n-m=l,l+l,..., 
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is that there exist constants q,, . . . , a, with CrZO~k # 0 and (Y,+x,,, f 0, such that 

M 
c ak(un_m+k-A)=O, n-m=f, l+l,.... 

k=O 

This can easily be seen by solving (9) using Cramer’s rule. 
When using (2) instead of (l), formula (9) generalizes as follows. A necessary and sufficient 

condition for the exact summation [3] 

E’“-“’ = A 
m , n-m=l,l+l,..., 

is 

cm =A+ f akgk(n-m), n-m=l, l+l,.... (10) 
k=l 

When turning to the multivariate case analogous conclusions can be written down. The 
summation process (4) sums the series 

E Vaij 

i, j=O 

exactly, if 

m / n-m+k \ 

c ak 
c vaij-A =0 

k=O i+j=O J (11) 

with Cp=O~k # 0 and (Y,,(Y, # 0. 
An even more general result was proved in [4] for (5). When computed recursively, expression 

(5) is given by E,,, (“). A necessary and sufficient condition for exact summation of 

F Vaihjh (12) 

h=O 

is that there exist cq,, . . . , a, with (Y~(Y, # 0 and not all zero such that 

5 ak( ui,-d,,jn-e, -A) = ” 
k=O 

We have not mentioned the most general results here because this would take away much of the 
clarity when we try to show how things generalize. The reader can now translate more general 
conditions than (9) and (10) to the multivariate case. We conclude with a necessary and sufficient 
condition for our new convergence accelerator to sum the series (12) exactly. It is a simple 
application of results given in [4]. 

Corollary. A necessary and sufficient condition for exact summation of the series (12) by 

wn/Qn1I,+,, = (pn/qm)(x, y) (n 2 4, satisf?W 

p(Xi, Yj) = a;jV (j, j) E1n+m, 
m 
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is that there exist cq,, . . . , a, not all zero with (Y~(Y,,, f 0 and such that for n 2 1 

c&-)(n) -A) + ... +a,(t,(n) -A) = 0, 

where, in the notation of Appendix A, for 0 < k d rn 

with 

t/JO) = c dlr,,,e,j,,Bdli,~.e,j~(X, Y)y t,(n) = l? h_UCd,i,,.‘,j,~~d~i~,~~,,~(x7 Y) 

‘d,i,e,j =f[Xdlr...rXi][?ie,,...,~,], f[X;][Yj] =a,j, 

‘dLi,eL, = ‘, i < d, or j<e,. 

Appendix A. General order Pad6 approximants and rational Hermite interpolants for multivariate 
functions 

Let us restrict everything to the case of two variables for the sake of simplicity. Furthermore 
we assume that the finite interpolation set I = {(i, j): x.j is g iven at (xi, y,)} is structured so 

that it satisfies the inclusion property. This means that if a point belongs to the data set, then the 
rectangular subset of points emanating from the origin with the given point as its furthermost 
corner also lies in the data set. How this can be achieved in a lot of situations is explained in [9]. 
If none of the points in {(xi, JJ,)},,,~, E, coincide, then we are dealing with a rational 
interpolation problem and the values in { fij} Ci, jJ E, are function values. If all the interpolation 
points coincide, then the problem is one of Pad6 approximation and it is well known that the 
given data aren’t function values but Taylor coefficients. If some of the points coincide and some 
don’t, then the problem is of a mixed type and it is called a Hermite interpolation problem or a 
Newton-Pad6 approximation problem. In [9] is indicated how one should interpret the data A.,: 
some of them are derivatives and some of them are function values. In the sequel of the text it 
doesn’t play a role whether one is dealing with coalescent points or not since all the formulas 
remain valid in both cases and in the mixed case. Nevertheless we shall sometimes indicate how 
the formulas are to be read if some of the interpolation points coincide. 

Consider the following set of basis functions for the real-valued polynomials in two variables 

i-l j-1 

Bij(XT Y) = kgo(x - x/c) [go (Y -Y/J. 

Clearly B, j( x, y ) is a bivariate polynomial of degree i + j. Given the fr,, we can write in a purely 
formal manner 

f(x, V) = C fOr,OjBij(x, U>, 
(i, j)EN’ 

where the fOi,OI are the bivariate divided differences 

f OI,OJ=f[Xo:...,Xi][yO,...r~j] 
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given by 

f 1x0, 

or 

f [X0> 

. . . 7 xi][YOToem> Yj] = 
fb ~~eoe~Xi][YO9*~~~Yj] -f[xO~~~~~xi-l][YO~~~*~Yj] 

xi - x0 

f [X0? o**rXi][Y1>**.t~j] -f[xOr*~~~Xi][YOO,~~~rYj-l] 

Yj-YO 

with 

f [xi] [Yj] =hj* 

Divided differences with coalescent points xi,. . . , x~+~ and y/y.. . , y,,, are given by 

and 

f [xi][Yj30m*9 Yj+l] =$ 
(X,,Y,). 

In the Pad6 approximation case, for instance when all the interpolation points (xi, y,) coincide 
with (0, 0), the data are Taylor coefficients and we can write in a purely formal manner 

fCx, Y> = C fOi,OjxiYj 
(i, j)EN2 

with 

fOi,Oj = $ $ 
. . 

ai+jf 

axi ayj (~.v)=Kw) 

Note that the basis functions Bij(x, y) now take the very simple form x’y”. 
In order to construct rational interpolants or Pad6 approximants for the given set I we choose 

two finite index sets N, a subset of I, and D, a subset of N2, which determine the “degree” of 
the numerator and denominator and we put as in [9] 

P(x, Y) = (. ,F NaijBi,(x7 Y> 
I. E 

( N from “numerator”), 

Cltx, Y) = C bijBij(x? Y) 
(i,j)ED 

(D from “denominator”), (A-1) 

(f4-P)(xT Y) = C ‘ijBijtx9 Y> (I f rom “interpolation conditions”). 
(i,j)EN*\I 

The rational interpolant ( p/q)( x, y) will then be denoted by 

[N/D1 1. 
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Let us introduce a numbering Y( i, j) of the points in IV *, for example based on the enumeration 

(0, OMI, O), (0, I), (2, O), (I, I), (0,2), (3, O), (2, I), (1,2), (0, 3), *.*- 

In this case 

first diagonal second diagonal third diagonal 

y(i, j) = +(i +j)(i +j + 1) +j - i, 

but other enumerations can be used as well. The only limitation is that the enumeration must be 
such that for every I, the subset of IV* containing the first I points satisfies the inclusion property 
too. If we denote #N = n + 1 then we can write 

N= ;, 
I=0 

with 

fl=N_,CN,CN,C **. cN,_,cN,=N, 

#N,=l+l, 

N,\N,-i= {(i/, j,)}, l=O,...,n, 

y(i,, j,) >y(i,, j,), l>r. 

In other words, for each 1= 0,. . , , n we add to N,_ 1 the point (i,, j,) which is the next in line in 

N n N* according to the enumeration given above. Denote #D = m + 1 and proceed in the same 
way. Then 

D= ij, 
I=0 

with 

D 0, -* = 

#D,=l+l, D,\D,-1 = ((4, e,)), l=O,...,m. 

Now (A.l) can be rewritten as 

(fq)oi,oj =poi,oi = aii = k f: bpyfpi,vj, (i, j> E N, 
p=o v=o 

i .i 

(fq)oi,oj= 0 = C C bpvfpi,vj> 6, j> E I\NT 
p=o v=o 

with bp,” = 0 for (p, V) 65 D. In the Pad& approximation case 

the Taylor coefficient foi-_a,oj-_u. 

the divided difference fpi,vj equals 

Let us assume that the interpolation set I\N is such that exactly m of the homogeneous 
equations (A.2) are linearly independent. Degenerate cases can be avoided by adding interpola- 
tion data to the set I until the rank of (A.2) is equal to m. It is obvious that this condition 
guarantees the existence of a nontrivial solution of (A.2) given by the following determinant 
expressions, because the number of unknowns in the homogeneous system is now one more than 

(A.4 
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its rank. We group the respective m elements of I\N that supply the linearly independent 
equations in the set H and number them also following the enumeration given above, 

H= i; H,c~\N 
I=1 

with 

HI)=0 

#H,=l, H,\H,-, = {(h,, k,)}, I=l,...,m. 

The polynomials p(x, y) and q( X, y) satisfying (A.l) are then given by [9] 

f . 4,h,n,eokm 

Bd,e,(X, Y> .-* 

f d,h,,e,k, . . . 

4(X> Y> = . 

f d,h,,e,k,, . . . 

. . . 

. . . 

Bd,,e,,b, Y> 

f dn,h,,en,k, 

c (I,,)ENfdn,i,e,,jBij(X, Y) / 

f d,h,,e,,k, 
9 (A.3a) 

f . dn,hn,,e,,,kn, 

(A.3b) 

where 

f d,h,,e,k,=f[Xd,nXh,][Ye,‘-‘rYk,] 

with 

f 0 d,h,s,k, = 
ifdi>hj or e,,kj. 

In [8] these determinant formulas are given when all the interpolation points coincide and a lot 
of specific choices for N, D and I are described. In [7] it is illustrated that the covariance 
properties satisfied by these multivariate Pad6 approximants are determined by the structure of 
the index sets N, D and I. 

The formulas (A.3) can be rewritten so that they can be computed recursively. Multiplying the 
(I+ l)th row in p(x, y) and 4(x, y) by Bh,k,(X, y), I= l,..., m, and dividing the (1+ l)th 
column by B+( x, y), I = 0, . . . , m, results in 

C~i,j)ENfdor,euiBdoi,eoj(X, Y> ... C(i,j)ENfd,,r,emjB 4,,v,,,(X~ y) 1 

PC6 Y> = 
f d,h,,e,,k,Bdoh,>q,k, b, Y) ... f dmh,.en,k, Bd,,h,,e,k,(X, Y) 

> 

I I 

f dohn,,eok, Bd,h,,e,k,,(X, Y) ... f Bdh dmh,+mkm e k (x9 Y> / nr m. nl m 

(A.4a) 
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1 

f d,h,,q,k,Bdoh,,e,k, (X2 Y) ::I fd”,h,.....,,Bd”~,,=..k,(x, y) 

q(x, Y)= 
I 

f d,,hn,>e,,kn, Bd,,h,,,e,k,,(X, Y) ... fd,,h,,.e,,k,,,Bd,,h,,.e,,,k,,,(X, y) 

where for k<i and l<j 

Bij(X, Y> 
Bki,lj(XT Y)’ B (x u) =(X-Xk)‘..(X-Xi_~)(Y-Y,)..‘(Y-Yj-~) 

kl 7 

andfork>iorl>j 

For such a quotient of determinants the E-algorithm is particularly suitable [6] 

E$“= C fdoi,eojBdoi,eoj(X, Y), f=O,..-,n+m, 

(i,j)EN, 

&? = c fd,i,e,jBd,i,erj(X, Y) - c fd,_,i,e,~,jBd,~,i,e,~,j(X, Y), 

(l,j)EN, Ci. j)EN, 

r=l >.-., m, l=O,..., n + m, 

E(l) = E,!",g,'f_+,;? - E,!i;,"g,'fl,,, 
r 

g;f_+,‘? - g;!!,,, ’ 
Z=O,l,..., n, r=l,2 ,..., m, 

183 

(A.4b) 

(A.5a) 

(A.5b) 

As a result of these computations 

[N/D] I = Ez'. 

Since the solution p( x, y)/q( x, y) of (A.2) is unique due to the fact that the rank of (A.2) is m, 
the value Ez) . itself does not depend upon the numbering of the points within the sets N, D and 
H. But this numbering affects the interpolation conditions satisfied by the intermediate E-values. 
For I = 0, _ . . , n and r = 0,. . . , m we prove in [6] that 

E,“’ = [ N,/D~] N/U ((if+,, j,+,),... (i I ,,, in), (h,, klL....(hr-,+,, k,-,,+,I). 

r points 
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Appendix B. Tables 

The values E,“) and g!,? are stored as indicated below. 

E’o’ 
m 

. 

. 

E’“’ 
m 

I I . 
I I 

dl;+ m) 1 dy2+ m ) I (n+m) 
; go,, I I (n+“’ 

I I I g0.m 

The values EC’) for p = 0, 1 and the values hl’?_, are stored as indicated below. ‘.P 

E”’ 
0.0 

E(2) 
0.0 

E’o’ 
m.0 

E’o’ 
n+m.O 

,$“’ 
m.0 

E’o’ 
m.1 

. 
. . 

(B.1) 

(B.2) 

(B.3a) 

(B.3b) 

ET;+“) 
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h(o) 
0.3 

I 
I h’o’ 

I 
1.3 

h”’ I 
0.2 , 

,,‘I’ 
0.3 

I 
I 

h”’ 
1.3 

h(2) ; 
0.2 , 

h(2) 
0.3 

I 
I 
I 
I 

h(n+m) I hg3+“) 

h&+‘-” 
0.2 , 
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