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MATHEMATICS OF COMPUTATION 
VOLUME 38, NUMBER 157 
JANUARY 1982 

Numerical Stability of the Halley-Iteration for 
the Solution of a System of Nonlinear Equations 

By Annie A. M. Cuyt* 

Abstract. Let F: Rq -* Rq and x* a simple root in Rq of the system of nonlinear equations 
F(x) - 0. 

Abstract Pade approximants (APA) and abstract Rational approximants (ARA) for the 
operator F have been introduced in [2] and [3]. The adjective "abstract" refers to the use of 
abstract polynomials [5] for the construction of the rational operators. 

The APA and ARA have been used for the solution of a system of nonlinear equations in 
[4]. Of particular interest was the following third order iterative procedure: 

a2 
xi,= xi + 

2 il iai + -! F'`-'Fi"ai2 

with F,' the 1st Frechet-derivative of F in xi, ai = -F'-'Fi the Newton-correction where 
Fi = F(xi), Fi" the 2nd Frechet-derivative of F in xi where Fi"a2 is the bilinear operator Fi" 
evaluated in (ai, ai), and componentwise multiplication and division in Rq. For q - I this 
technique is known as the Halley-iteration [6, p. 91]. In this paper the numerical stability [7] 
of the Halley-iteration for the case q > I is investigated and illustrated by a numerical 
example. 

1. Numerical Stability of Iterations. We consider the numerical solution of the 
equation 

(1) F(x) = 0 

with F: Rq -Rq: x -- F(x), abstract analytic in 0 [5]. Assume that (1) has a simple 
root x*. 

We briefly repeat the definition of condition-number given by Wozniakowski [7]. 
The condition-number should measure the sensitivity of the solution (output) with 
respect to changes in the data (input). We assume that F depends parametrically on 
a vector d E RP, called data vector 

F(x) = F(x; d), 

and instead of the exact value F(x; d) we only have the computed value fl(F(x; d)) 
in t digit floating-point binary arithmetic. At best we can expect that fl(F(x; d)) is 
the exact value of a slightly perturbed operator at slightly perturbed data 

(2) fl(F(x; d)) = (I + AF)F(x + Ax; d + Ad), 
where I is the q x q unit-matrix and 

1AxII < CIp11xll, IlAdll -< C2PIJdll, 

IILAFII < C3p (A Faq X qmatrix), 
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172 ANNIE A. M. CUYT 

for constants Cl, C2, C3 (only depending on the dimensions of the problem) and 
with p = 2' the relative computer precision [8]. By introducing the Landau-symbol 
0, we could also write 

Ax = O(p), Ad = O(p), zF = O(p), 

where the constants in the Landau-notation depend on x, d and the dimensions. 
We will always, for a given F, define the data vector so that (2) holds and so that 
the condition number (see Definition 1.1) is minimized. Let fl(d) denote the t digit 
binary representation of the vector d in floating-point arithmetic 

Ilfl(d) - dll < Cplldll, i.e. fl(d) - d = O(p). 
Since d is represented by fl(d), we solve in fact F(x; fl(d)) = 0 instead of F(x) = 0, 
independent of the method used to solve (1). Let Fx' and F; denote the partial 
Frechet-derivatives of F, respectively with respect to x and d. 

Now F(x; fl(d)) = 0 has a root x* in the neighborhood of x* and x* -x* = 

O(p) if t is sufficiently large; thus, 

x* - x* = -F$(x*; d)-F;(x*; d)(fl(d) - d) 

+ higher order terms in x* - x* and fl(d) - d 

= -F,(x*; d)-'F;(x*; d)(fl(d) - d) + o(p2), 

where the constant in the Landau-notation depends on x*, d and F. 

Forx* 0 O: 1x* - x*II/IIx*II < IlFx(x*; d)-lF'(x*; d)JICplldllllx*ll + 0(p2). 
Definition 1.1. Cond(F; d) = IlFx(x*; d)-F;(x*; d)II * IIdII/IIx*II is called the 

condition number of F with respect to the data vector d. 
A problem is ill-conditioned if cond(F; d) >> 1. 
Let us now suppose that F(x; d) = 0 is solved by an iterative procedure 

4(xi, F), where F can use several Fj", thejth Frechet-derivative of F at xi (if j = I 
or 2, a single or double prime is used instead of the superscript j). If {xi) is the 
sequence of successive approximations of x*, we can at best expect xi to be the 
representation of a computed value for x*, 

llxi - x*1 < Kpjjx* 11 

So 

lixi - x*II < llxi - x*I + llx* - x*1I < Kpllx*ll + Cp cond(F; d) 1Ix*11 + o(p2) 

< Kp(IIx* - x*II + IIx*11) + Cp cond(F; d) IIx*II + o(p2) 

< [ Kp + Cp cond(F; d) ] *IIX*11 + o(P2). 

Definition 1.2. An iteration 1' is called numerically stable if 

lim llxi - x*ii < p i i1x*11 * (C cond(F; d) + K) + o(p2), 
l -00 

where the constants C and K depend on x*, d and F. 

[n practice we often want to find an approximation xi such that llxi - x*ii < 

ix*11. This is possible if the problem is sufficiently well-conditioned, i.e., 
cond(F; d) = 0(E). In floating-point arithmetic we have 

Xi+ = F(xi, F) + (i, where (i = fl1((xi, F)) - F(xi, F). 
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THEOREM 1.1. A convergent iterative procedure 4D(xi, F), i.e. 

rim II)(xi, F)-x*11 = 0, 
. >+00 

is numerically stable if limi--,c,IIII < pIIx*II(C cond(F; d) + K) + o(p2). 

Proof. We simply verify the definition. 

rim llx, - x*II < lim [ IID(xi- 1, F) - x*11 + 1j illI ] 
i > 00 * >+00 

= lim 1I4-1I < pIIx*II(C cond(F; d) + K) + o(p2). 
l -*00 

2. Abstract Pade Approximants (APA) and Abstract Rational Approximants (ARA) 
for the Solution of a System of Nonlinear Equations. Let xi be the ith approximant 
of the root x* in the iterative process, yi = F(xi) and the Newton-correction 

ai = -Fi'-'Fi. Using the Inversion Theorem [1, p. 381] we can see that 

(3) x* = x, + a,-j F'1 Fi"ai7+0(a?), 

where F'"a,2 is the bilinear operator Fi" evaluated on (ai, ai). The Newton-iteration 
results from approximating the series in (3) by its first two terms, i.e., the (1, 0)-APA 
[2]. 

In [7] Wozniakowski proves numerical stability of the Newton-iteration under a 
natural assumption on the computed evaluation of F. 

THEOREM 2. 1. If 

(a) fl(F(xi; d)) = (I + AF,)F(xi + Axi; d + Adi) = F(x,) + 1Fi, with 

8F, = 
AFXF(xX) 

+ F 
i(x,)Xx, 

+ Fd(Xi)Ad, + 0(P2), 

(b) fl(F'(xi; d)) = F'(xi) + JFi', with SFi' = 0(p), 

(c) the computed correction fl(ai) is the exact solution of a perturbed linear system 

(F'(xi) + SFi' + Ei)fl(ai) = -F(x,) - SF, with E, = 0(p), 

then the Newton-iteration is numerically stable. 

Proof. In [7]. 
Another way to approximate x* is to use the (1, I)-ARA [2] for the power series 

(3), i.e. 

a2 

(4) xi+ I= xi+ a. 
a ; + 2F ;' - X F ; ai; 

2' i 

where multiplication and division of the vectors in Rq in the numerator and 
denominator of (4) are componentwise. For q = I the iteration (4) is the well- 
known Halley-iteration. We will also use the name Halley-iteration for the case 
q > 1. We will now prove numerical stability of this iteration under assumptions 
similar to the assumptions for the Newton-iteration. We will also assume that the 
divisions in (4) are such that 

(5) 0(IIaiIIj-kPk+1( = + 2F ji 
ka, Fi'-'F7' ai J ' 0p) 



174 ANNIE A. M. CUYT 

Condition (5) takes care of the fact that the denominator of the correction-term in 
(4) does not become too small in comparison with O( Iai li-kpk). 

The assumption of (5) is a natural generalization of the following relations: 

a, forq= 1, lim a =1L 
i-oco ar, + 'F7'-Fl"a72 

(5a) and so 3L E N } Vi > L: 
a 

| I + D 

(case] = 1, k = 0, 1 = 0) with D E R+, 

in a convergent process (4): lim IIx* - xill = 0, and thus 

lim ai = O, i.e. 3M E N V Vi > M: ai = 0(p), 
. >00 

and so Vi > M: a72 = O(Ilaillp); also 
2 

lim ai = 0, i.e. 
i-ooii a+ ai 

2 

3N E N D- Vi > N: _ - 0 (p), 
(5b) a, 2 

a2 
and so Vi > max(N, M): i 

ai + 2 Fi'-F" 2 1 

= o(p) 
(casej = 1, k = 0, I = 1). 

THEOREM 2.2. If 
(a) fl(F(xi; d)) = (I + AFi)F(xi + Axi; d + Adi) = F(x,) + 8F, with 

= AF,F(x,) + Fx(x,)Axx + Fd(X,)Md, + (p 2), 

(b) fl(F'(xi; d)) = F'(xi) + 5Fi' with 8Fi' = O(p), 
(c) fl(F"(xi; d)) = F"(xi) + 6Fi" with 6Fi" = O(p), 
(d) the computed correction fl(ai) is the exact solution of a perturbed linear system 

(F'(xi) + SFi' + Ei,1)fl(ai) = -F(x,) - SF, with E,, = O(p), 

(e) analogously, 

(F'(xi) + 5Fi' + Ei,2)fl(bi) = (F"(xi) + SFi")fl(ai)2 

with Ej,2 = 0(p) and bi = F, Fi, 

and (5) holds, then the iteration (4) is numerically stable. 

Proof. Let F'(xi) + SFi' + Ei I = F'(xi)(I + Hi ), where 

Hi, = F'() '{fFi' + Ei,,) = 0(p) 

because of (b) and (d). So for small p, 

(I + Hi,)' = I - Hi, + O(p2). 
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Thus 

(6) fl(ai) = (I - H,1)Fi-(- Fi- F,). 

Analogously 

fl(bi) = (I -Hi,2)Fi (1 + 8Fi")fl(a)2 with Hi,2 = 0(P). 

Now 

(Fi" + 5F")fl(ai)2 = (F;" + 8Fl")[(I - 

HHi,1)F 
(-Fi -F 

= (Fi" + &Fi")ai2 + 2(Fi" + iF)")(F;'F> Fi -H F' + 0(p 2) 

= (Fi" + SFi")a2 - 2Fj"(a,, Fi'-'8Fi - HiFi'-'Fi) + o(p2). 

Thus 

fl(bi) = Fi'-'(Fi" + SFi")ai2 - 2F;''F"(aj, Fi''Fi -Hi,lF.'Fi) 

-Hi, 2Fi'-Fi" ai2 + o(P2). 

A computed approximation xi+ I satisfies 

X+= (I + 8hi14) Xi + (I + Si,2) fl(ai)2+ f(b,)] 

where II, I and 8i,2 are diagonal matrices and Ii, I = 0(p) and 8i,2 = 0(P). So 

(iI + Si,t Xi + (I + Si,2) 2 2a ( ai + 2) + Q(p2) 

where 

8ai = Fi'-'8F; + Hi1lai - 'Fi ai 

+ Hi,2 Fi' Fi "a2 + Fi'-'Fi" (ai, F;'- - Fi-Hi I Fi'- I F). 

Using (6), we find 

fl(ai) - a, + Hi,lai - H1 IFl'-'8F; = -Fj'-18F, 

and thus, for positive constants Di and D2, 

IIFV'-'8F;II < D2pjlaill since Ilfl(ai) - aill < Dlplla 
and 

llFji j 11* IlFill < JjFi'-'J IlFi'll * Ilaill. 
Thus 

8114x1 a,2 - 2a,(F,'-l i + HiJai) + 8i,2a,2 + 0(p2jjai,2) 
Xi+ I ( + aIi')0 

Xi 
ai +2ki - Sai + 0(P2) 

where 8i,2ai2 is the linear operator A8,2 evaluated in a72 (componentwise square of 
the vector ai). So 

(+4) + a-2-2a,(F;8F; + Hi jai) + 8, 2a72 + 0(p2f/aiJJ2) 
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with 

C, = 1 + 1 (.ai + O(p2)) + a( I ) O(jai2-kPk+2, k = 0, 1, 2) 

since Sai= O(pjla,jj); in ci we have used the notation 1 for the unit vector 
(1,..., 1). 

Using (5), we conclude 

a( l )O(tta tt2-kpk+2 k = 0, 1, 2) = o(p2). 

For (i = x+,~1- (xi, F), we have 

+ -2a,( Fi 8Fl + HiI,1,a) + dlI,2a,2 + O(p2tt ajt12) 
aa + b5 

2 

+a1i, I *ci + (p2). 

ai + 2bi 

So 

(i = 6l1x 2 + ( a, I )2O(Pttajtt3X p2jjaij2) + a(b O(p2tt aitt2) 

+ 1 (-2aFi'-'Fia + O(ptta,i2 p2IaiaCI2)). (1 + 0(p)) 

+ 0(p ). 

Thus 

2~ ~~-a 

ij < kIpj x xi j + k2pjjaijj3 + | '21 Fj 2F.1 + 0(p ), 

and since 

2 
F'-',F = 'b F>''(A\F,F(x,) + F/Ax, + FdAd, + 0(p2)) 

'i +'2bi a,+ 2b, 

1 2a 

=-ai+4 i O(pljai 2 2) F(x,) - 2 ' b AX 

2a 

-(' F'2F'Ad + 

we find that 

ln < pllxill p+ xIl(K + C cond(F; d)) + o(p2) 

i-~~~~~~oo1 

for 1imiOO a, = 0 = 1imiOo F(x,) in a convergent process and aJAx, = 0(pjja,jj) 
and a. = s(Pinacej) 
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3. Numerical Example. Consider the following operator: 

F: R 2*R2(x,Y)-(R with d, > 0 and d2 > 0. 

The operator F has a simple root x* = (-2 ln(dld2), 2 ln(dj/d2)). Clearly 
d = (d,, d2) 

is the data vector. Now 

f [ (E + ej)e( X- xA+Y+'y)(l+0O) - (d1 + A'1d)](l + Kj) 

[(1 + c2)e(`A`YA'y)(1+62) - (d2 + A'd) ](I + K2) I 

where fl(x) = x + A'x, fl(y) = y + A'y, fl(dl) = d1 + A'd, fl(d2) = d2 + A'd, 91 is 
caused by -fl(x) + fl(y), 02 is caused by -fl(x) - fl(y), e are caused by the 
exponential evaluations (i = 1, 2), Ki are caused by the subtraction of fl(di) 
(i = 1, 2). 

One can rewrite fl(F(x,y; d)) = (I + AF)F(x + Ax,y + Ay; d + Ad) with 
Ax = x91 + A'X( + 1), Ay = y9l + A'y(1 + #1), Ad = (Ad, A2d), 

Ad Ad - d, 
A ,d I 

1+ 1 

A2d d 2 2 
+ e + A[d +'X +Y +Y)(2 - 1) 

1 +c'2 l+ 2 

/F 1+ -,)(I + KI) - 0 

Th F (1+ )1 ) 
(1 + 

c2)(l 
+ 

K2)e(x+AX+Y+'Y)(992) 
- 

The inverse of the Jacobian matrix in the root x* is 

1 (-ad2 -dl an Fd=(7- I o 
2(d, * d2) d2 -di) and - = I 

The condition number of F with respect to the data vector d is 

I IFx'(x* d)-111 . 11(d,, d2) 1 

IIx*II 
Using the Schur-norm IAII Vy aij of a matrix A = (aij) and the 12-norm 

alI =ySI7 a of a vector a = (ai), the condition number is 

d,2 + d22 

VX d, d2 IIx*II 

Putting d, = d = d2, the root x* = (-ln d, 0) and the condition number is 
V2 /l1n dl. The problem is extremely well-conditioned if cond(F; d) < 1, i.e., 

d e]-,eV2] U[eV2 , +xo[. 

The problem is very ill-conditioned if d = ee with - very small. We will now check 
some of the conditions of Theorem 2.2. We already know fl(F(x, y; d)) = 
(I + AF)F(x + Ax,y + Ay; d + Ad). 

Now 

fl(F'(x, y; d)) = fl (e x-y e-x +Y ) 
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where 

fl(e-x+Y) - (1 + el)e(-x-A'x+Y+i'&Y)(l+ 
') - (1 + El)e-x+Ye-Ax+Y 

= e-+[ + El + (1 + ci)(e-&+' Y- 1)], 

fl(e-x-Y) = (1 + E2)e(x-A'x-Y-A'Y)(l+02) 

= (1 + e2)e-X-Ye-X-AYe(x+ 'x+Y+AY)(O9 -,92) 

- eX-Y[ 1 + E2 + (1 + E2)(e -A-&Ye(x+A'x+Y+AY)(9 -2)-91)]. 

So fl(F'(x, y; d)) = F'(x, y; d) + SF'(x, y; d) with 

SF'(x,y; d) 

El + (I + El)(e-Ax+AY-1) 0 

0 E2 + (1 + E2)(eaAYe(x+A'x+Y+A'Y)(OvO2) - 1)1 

F'(x,y; d) = O(p). 
We can write down an analogous formula for F"(x, y; d). 

k | cond(F; 

0 -O.10')'!000000000000(01) 0.3597855161523896(-18) 16 _7 

1 -0.10J0OD00O0000000(00) -0.2376055789464463(-17) 16 10V2 

2 -0.100000000000D001 (-01) -0.6397150159689099(-17) 15 102,/'2 

3 -O.0999999999999997(-02) 0.5077502606368951(-17) 15 103V'7 

4 -0.0999999999999844 (-03) 0.3913464269882279 (-17) 13 104v7 

5 -0.0999999999997470(-04) -0.3905797959965137(-17) 12 105V7 

6 -0.0999999999986935(-05) 0.5633677343553680(-17) 11 106V'7 

7 -0.1000000000174599(-06) -0.1058449777227516(-16) 10 107iV 

8 -0.100000000C)015281(-07) 0.4124494865312562(-17) 11 10817 

9 -0. 1000000007452433(-08) -0.2449359520991520(-17) 9 1094V 

10 -0.0999999914314586(-09) 0.4265833288825851(-17) 8 100v7 

11 -0. 1000000261210709(-10) -0.6446772724219823(-17) 7 1011VCt 

12 -0.0999980430668081(-11) 0.3302303528672576(-17) 5 1o12V/ 

13 -0.0999761308551817(-12) 0.1322187990417560(-16) 4 1013V 

14 -0.1000372750236664(-13) -0.1182870095748150(-16) 4 iO'45'7 

15 -0.0963108239652912(-14) 0.1398012990192197(-17) 2 101 5V 

16 -0.0868560967896870(-15) 0.3349523961106902(-17) 1 1io16Vl 

We remark that the algorithm even behaves considerably well for a condition number of the 
order of 1O or 10'. 

The two linear systems of equations are well-conditioned since the condition 
number of the linear systems in x* = limix. Xi is 

IIF((x*; d)'II IIF x*; d)II = 2. 

One can prove that the use of Gaussian elimination with row pivoting for this 
example satisfies the conditions (d) and (e) of Theorem 2.2. So we can expect to get 
a reasonable approximation of the solution of F(x, y; d) = 0 using the numerically 
stable iterative method (4); the numerical results illustrate this. Let us at the same 
time follow the loss of significant digits in the root x* as the problem becomes 
worse-conditioned. The calculations are performed in double precision (t = 56) on 
the PDP 11/45 of the University of Antwerp. We will solve the nonlinear system 
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F(x,y; d) = 0 for d = eIok, k = - , . . ., 16. The root x* = (l0-k, 0). For each d 
we give the 6th iteration-step (x6, Y6) in the procedure (4) starting from (x0, yo) = 

(2, 2), the number I of significant digits in x6, and the condition number 
cond(F; el10k). It is also important to know that the iterative procedure stops at the 
6th iteration-step, except for k = 7, 13, and 14 where, respectively, I = 1 1, 5, and 3 
in the last iteration-step (X7, y7). We have used the stop-criterion 

max(lxi,+ - xj, Iy,I+ - yil) < 1O-'5 max(Ixi,+ l Iy,+ II). 

Department of Mathematics 
University of Antwerp, U.I.A. 
Universiteitsplein I 
B-2610 Wilrijk, Belgium 
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