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Abstract: The univariate theorem of “de Montessus de Ballore” proves the convergence of column sequences of Pad6 
approximants for functions f(z) meromorphic in a disk, in case the number of poles of f(z) and their multiplicity is 
known in advance. We prove here a multivariate analogon for the case of “simple” poles and for the general order 
Pad& approximants as introduced by Cuyt and Verdonk (1984). 
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1. The univariate “de Montessus de Ballore” theorem 

Let the polynomials p(z) and q(z), respectively of degree N and M, solve the (N, M) Pad6 
approximation problem for the function f(z). In other words, for 

f(z) = ,$~ with ei = q, 

the polynomials 

p(z) = ; a,zi, q(z) = 5 b,Z’ 

i=O i=O 

are computed such that they satisfy 

tf4-P)(z)= C diZio 
i>N+M+l 

We denote this Pad6 approximant by [N/M]. Usually these Pad6 approximants [N/M] = 
p (z)/q( z) for different N and M are arranged in a table where the numerator degree is the row 
index and the denominator degree is the column index. The theorem of “de Montessus de 
Ballore” then proves convergence of column sequences of Pad6 approximants for functions f(z) 
meromorphic in a disk, in case the number of poles of f(z) is known a priori. The complete 
statement of the theorem allows the possibility of multiple poles for the function and is as 
follows. 
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48 A. Cuyt / Convergence of multivariate Pad6 approximants 

Theorem 1. Let f( z) be a function which is meromorphic in the disk B(0; R) = {z: 1 z 1 6 R}, with 
k poles at distinct points zl, z2, . . . , zk with 

O< lZll < 1Z21 < *** < IZkl -CR. 

Let the pole at zi have multiplicity pi and let the total multiplicity be M = CfCIpi. Then 

f (4 = $“, Dwfl 
uniformly on any compact subset of 

B(0; RI\{,+., zk}* 

Proof. For the proof we refer to Saffs short and elegant proof, which can, for instance, be found 
in [l, pp.252-2541. The uniform convergence is based on the error formula 

f (‘1 - LNIMl = (A) (qR;)(z) i,,c,,zi/;o, =R (fq;it?) dv, 

where 

R,(z)=(Z-Z,)"'...(Z-Z,)"". 

This expression tends to zero for I z I < R. 0 

2. Multivariate Pad6 approximants 

We restrict our description to the bivariate case, only for notational convenience, although we 
may use the term multivariate in the text. 

Given a Taylor series expansion 

f (x, y) = c 
(i&El+ 

c,,x’y’, with cij = $ $ ,,a;;ij (0, 0), 

we compute a Padt approximant p(x, y)/q(x, y) to f(x, y) where the polynomials p(x, y) 
and q(x, y) are given by 

p(x, y) = C aijxiyj, NCN2, q(x, y) = c bijxiyj, MC IV’, 
(i,.i)cN (i,j)EM 

and are determined by the following “accuracy-through-order” principle [6]. The finite sets N 
and M indicate the “degree” of p(x, y) and q( x, y). Let us denote 

#N=n+l, #M=m+l. 

It is possible to let p(x, y) and q(x, y) satisfy 

(fq-p)(x, Y> = C dijx?j, (1) 
(i, j)EN’\E 

if, in analogy with the univariate case, the index set E c t+J2 (Equations) is chosen such that 

NcE, (2a) 

#(E\N) = m = #M- 1, (2b) 

E satisfies the inclusion property, (2c) 
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meaning that if a point belongs to the index set E, then the rectangular subset of points 
emanating from the origin with the given point as its furthermost comer, also lies in E. 

Condition (2a) enables us to split the system of equations 

dij=O, (i, j) EE, 

in an inhomogeneous part defining 

i i Cpvbi-p,j-v = aij, 
/L=o v=o 

the numerator coefficients 

(i, j)EN, 

(3) 

and a homogeneous part defining the denominator coefficients 

i f: Cl”ybi-_ll,j-Y = 0, (i, j) E E\N. 
p=o v=o 

By convention 

b,,=O if (k, /)@M. 

Condition (2b) guarantees the existence of a nontrivial denominator q(x, y) because the 
homogeneous system has one equation less than the number of unknowns and so one unknown 

coefficient can be chosen freely. 
Condition (2~) finally takes care of the PadC approximation property, namely if q(0, 0) + 0, 

then 

( 1 
f- $ (x, y) = c eijx’_Y’. 

(i, j)EN’\E 

For more information we refer to [6,7]. We denote this multivariate PadC approximant by 

[N/Ml, and we can arrange successive PadC approximants in a table after fixing an enumera- 
tion of the degree sets N and M and the equation set E. Numbering the points in N2, for 

instance, as (0, O), (1, O), (0, I), (2, O), (1, I), (0, 2), (3, O), . . . and carrying this enumeration over 
to the index sets N, M and E, which are finite subsets of IV’, provides us with an enumeration: 

N= {(i,, j,),...,(i,, j,>>, Ha) 

M= {(do, %),...,(d,, e,)}, (4b) 

E=NU {(&+r, jn+l)Y...Y(in+mY j,+m>). (44 

With this numbering, we can set up descending chains of index sets, defining bivariate 
polynomials of “lower degree” and bivariate PadC approximation problems of “lower order”: 

N=N,I ... 3N,={(i,, j,,) ,..., (ik, jk)}3 *.* 3NN,= {(io, j,)}, k=O ,..., n, 

(54 

M=M,,,I a.. 1M,= {(do, e,),...,(d,, e,)} 3 .a. lMo= {(do, e,)}, 

l=O,.._,m, (5b) 

E=E,,+,x ... 3Ek+[= ((6, jO),...,(ik+l, j,+,)} 3 ..a lEo= {(i,, jo)}, 

k+l=O,...,n+m. (54 
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With these subsets we can compute the following entries in a “table” of multivariate PadC 
approximants: 

Remember that in order to set up (6), the enumeration of N and E should be such that all 
subsets Ek + I of E satisfy the inclusion property too. If we let n and m increase, infinite chains 
of index sets as in (5) can be constructed and an infinite table of multivariate PadC approximants 
results. Of course, in practice, only a finite number of entries will be computed. 

3. The multivariate “de Montessus de Ballore” theorem 

The univariate theorem deals with the case of simple poles as well as with the case of multiple 
poles. The former means that we have information concerning the denominator of the meromor- 
phic function while the latter means that we also have information on the derivatives of that 
denominator. We shall prove a multivariate analogon of the univariate “de Montessus de 
Ballore” theorem, for the case of “simple” poles. Each of the conditions of Theorem 1 shall have 
its multivariate counterpart in Theorem 2. Before stating the theorem we introduce some 
notations. By the set N * A4 we denote the index set that results from the multiplication of a 
polynomial indexed by N with a polynomial indexed by M, 

N*M={(i+k, j+l)I(i, j)EN,(k, 1)EM). 

Since the set E satisfies the inclusion property we can inscribe isosceles triangles in E, with top 
in (0, 0) and base along the antidiagonal. Let 7 be the largest of these inscribed triangles. 

On the other hand, because N * A4 is a finite subset of N*, we can circumscribe it with such 
triangles. Let T be the smallest of these circumscribing triangles. 

In Figs. 1 and 2. we call r, and r, the “range” of the triangles 7 and T, respectively. 

\ 
\T 

I \ 

M=C(O,O),( I ,O),(O, I ),( i, 1 )I 

0 l l 4 0.0 

0 0 0 0 l 0 0 0 0 0 

l =e==\-,, 
c rT 

Fig. 1. Fig. 2. 
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Theorem 2. Let f(x, y) be a function which is meromorphic in the polydisc B(0; R,, R2) = 

{(x7 Y): Ix I < RI, I Y I < RA meaning that there exists a polynomial 

R.&x> Y>= c 
d e- 

‘dex Y 3 rd,e,Xdl.f’, 

(d, ~)EMGN* i=O 

such that ( fRM)(x, y) is analytic in the polydisc above. Further, we assume that R&O, 0) f 0 so 

that necessarily (0, 0) E M. Let there also exist m zeros (x,, yh) E B(0; R,, R,) of R,(x, y) 

satisfying 

(fR,)(x,, yh)#O, h=l,...,m, (74 

and 

xld’yle’ . . . x,dm yl’- 

#O. 6% 

xzyz . . . x$y2 

Then the [N/M], = ( p/q)( x, y) Pad& approximant with M fixed as given above and N and E 
growing, converges to f (x, y) uniformly on compact subsets of 

((x9 Y): 1x1 <RI, IYI <R,, R,k Y>#% 
and its denominator 

q(x, Y) = 5 bd,e,Xd’Ye’ 
i=O 

converges to R,( x, y) under the following conditions for N and E: the range of the largest inscribed 
triangle in E and the range of the smallest triangle circumscribing N * M should both tend to infinity 
as the sets N and E grow along a column in the multivariate Pad; table. 

Proof. Let the polynomials p(x, y) and q(x, y), respectively of “degree” N and M, satisfy the 
Pad6 conditions (1). We also assume that the sets N, A4 and E’ are enumerated as in (4). Since 
the function fR, is an analytic function we can write, using Cauchy’s integral representation 

WI 

(fqR,)(x, y) = (&)2 c x’~iJ $ 
(fqRM)k ‘> dt du 

(i,j)GN* 
Ifl=R, Jul=R, 

ti+luj+l (8) 

The partial sum of this series containing the terms indexed by T circumscribing N * M, will be 
denoted by II, and because of the Pad6 conditions it is given by 

&(x, Y) = bRMh Y> 

c 
(i,j)E r\E 

Let us write 

(9) 

q(x, y)=R,(x, y) +A(x, y), with A(x, Y)= C 6ijxiYi. 
(i, /‘)EM 
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We know that the coefficients in R,( x, Y) are determined by m of its zeros ( xh, Yh) satisfying 
(7). We study I7,( xh, yh) and see how this affects A(x, y). On the one hand, 

fl&% Y/I > = (P%4)(%l~ Y/J 

and on the other hand, 

From this we conclude for A(x, y): 

The above equations are a linear system of m equations in the m + 1 unknown coefficients 6,, 
with (k, I) E M. Knowing that the set T satisfies the inclusion property and is triangular in 
structure, let us say of range I-, we can write for the coefficient of S,, in the hth equation of this 
linear system 

C:=,(YhN(X*/Ki 

b-Y/J 1 (f%,&, 4 dt du, 
which for Y + cc and for ( xh, yh) satisfying (7a), converges to 

( &)2/;,,=R,j;u,=R2 ;:“1’:#;($;; dt du =xhkY;(f%M)(xh, YI& 
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Similar computations can be made for the right-hand side of the hth equation in the linear 
system for the S,,. We have 

i 1 yh C:_,(Yh/u)‘(xh/t)‘-i(fRi )( -- 
tu b -Yd 

&f t, u t u, 
) d d 1 

which, for r + 00 and the range of 7 inscribed in E tending to infinity, converges to 

Hence for y1+ cc we have in the limit a homogeneous system of m equations in the unknowns 
6 doe,,’ . * * 7 6 d,e,, with coefficient matrix 

I 
X~Y,eowLA(Xl~ YA x~Yfw%4)b,~ YA 

\ 
. . * 

,x2Y2m;)(xrn, YJ * * * x2Y2hAxm YJ, 

A proper normalization of p and 4 can make 8&,, = 8, = 0 and leaves us with an m x m 
homogeneous system with coefficient matrix 

’ x?Y?mG4)h~ Yd . - * x~Ylw-hf)h~ YJ 
\ 

> 

\ X~Y2mk YJ * * * x2Y2m&m~ YJ 

which we know to be regular because of (7a) and (7b). Hence for n -+ cc the solution of the 
linear system governing the coefficients of A( x, y) = (R, - LJ)( x, y) converges to zero, in other 
words 

6 k[_O, (k, 1) EM, 

or the polynomial 4(x, y) being the denominator of the Pad6 approximant, converges to 
R,( x, y) because A( x, y) converges to 0. The uniform convergence to f( x, y) is based on the 
following error formula which is the multivariate counterpart of the univariate error formula in 
Theorem 1. From (1) and (8) we have 

(fqR,-p&)(x, y> = (A)= c 
N’\E 

,=R 
2 
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fb? Y) - LVMI E= (&)’ (qR,;(x y) c X’Y’ 
9 N*\E 

,dt du, 

which converges to zero for r, + cc and (x, Y) E B(0; R,, R2). 0 

4. Example and discussion 

In the above proof the main difficulty in comparison with the univariate theorem lies in the 
fact that in formula (9) 

I&(x, Y) + (&J(x, Y>, 

due to terms indexed by T\ E. In the univariate case we would have T = N * M = E. 

In order to illustrate Theorem 2, we consider the following example. Let 

ex+Y e x+Y 

fk Y> = 
(x - Q2 + (y - q2 - 1 = l-2(x+y)+x2+y2’ 

which is holomorphic in B(0; 1 - ifi, 1 - ifi) and meromorphic in B(0; co, co). Using the 

enumeration of N2 given before, namely (0, 0), (1, 0), (0, l), (2, 0), (1, l), (0, 2), (3, 0), . . . for the 
sets N, M and E, and setting up a table of PadC approximants as in (6) where Nk, Ml and Ek+/ 
respectively contain the first k, 1 and k + I points of N2, we find that the denominator index set 

for R,(x, y) is 

M= M, = { (0, O), (1, O), (0, l>, (2, O), (1, l), (0, 2)) 

= ((4, 4, (4, 4 @2, e2>, (4, 4, (4, 4, (4, 4>, 

#M=m+1=6. 

For the m points (xh, yh) satisfying (7a), (7b) we can take (see Fig. 3) 

C% Y,) = (l,O>, (x2, Y2) = (07 0, (X3> Y3) = (231L 

(x4, y4) = (l- :J-z, I+ ifi), (x,, y,) = (1+ :a, 1+ ifi). 

The respective values of the PadC approximants in the column [NJM,], n + 00 evaluated at 
(1, 1) can be found in Table 1. These values are converging to 

- e2 = - 7.389056098930 . . . . 

The respective coefficients of the denominators q(x, y) in the column [ NJM,], n + co can 
be found in Table 2. 

In order to point out the role of the enumeration of RJ2, we remark the following. A small but 

admissible permutation of the enumeration of lW2, namely (0, 0), (I, 0), (0, l), (2, 0), (0, 2), (1, l), 

(3, O), . . . implies that 

M=M,= ((0, O), (1, O), (0, I), (2, O), (0, 2)}, 
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Fig. 3. 

and that we have to look in the column [N/M,], n + CO. The set Ek + I still contains the first 
k + 1 points of N2, now according to the new enumeration. For the 4 points (xh, yh) satisfying 
(7a), (7b) we can take for instance 

(XI, A> = (13 (2, (x2, Y2) = @,a b,, Y3) = c&l>, (xl, Y4) = (L4. 

0 -0.271739.10' 
5 -0.997561.10' 
10 -0.625945.10' 
15 -0.686971.10' 
20 -0.722663.10' 
25 -0.730786*10' 
30 -0.734118 .lO' 
35 -0.737707.10' 
40 -0.738549.10' 
45 -0.738666.10' 
50 -0.739130~10' 
55 -0.738855.10' 
60 -0.738628.10' 
65 -0.738860.10' 
70 -0.738897.10' 
75 -0.738940.10' 
80 -0.738904.10' 
85 -0.738838.10' 
90 -0.738946.10' 

Table 3 

n [WM%I(L 1) 

0 -0.273684.10' 
5 -0.432800.10' 
10 -0.604486.10' 
15 -0.688903.10' 
20 -0.724014.10' 
25 -0.731819.10' 
30 -0.734785.10' 
35 -0.738730.10' 
40 -0.740896.10' 
45 -0.738716.10' 
50 -0.740747 .lO' 
55 -0.738885.10' 
60 -0.738946.10' 
65 -0.739063.10' 
70 -0.738898.10' 
75 -0.738988.10' 
80 -0.738904 .lO’ 

85 -0.738928.10' 
90 -0.738814.10' 
95 -0.738905.10' 
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Table 2 

n Denominator of [ N,/M,](l, 1) 

0 1.00000 + - 3.00000 x + - 3.00000 y + 3.50000 x2 + 5.00000 xy + 3.50000 y2 
5 1.00000 + - 2.13768 x + -2.13768 y + 1.19686 x2 + 0.48551 xy + 1.19686 y2 

10 1.00000 + - 2.01685 x + -2.00950 y + 1.02142 x2 + 0.03888 xy + 1.00653 y2 

15 1.00000 + - 1.99918 x + -1.99918 y + 0.99789 x2 + - 0.00456 xy + 0.99789 y2 

20 1.00000 + - 1.99980 x + -1.99976 y + 0.99963 x2 + - 0.00096 xy + 0.99955 y2 

25 1.00000 + - 1.99997 x + - 1.99995 y + 0.99995 x2 + - 0.00014 xy + 0.99981 y2 

30 1.00000 + - 1.99994 x + - 1.99996 y + 0.99990 x2 + - 0.00019 xy + 0.99994 y2 

35 1.00000 + - 1.99999 x + - 1.99999 y + 0.99999 x2 + - 0.00003 xy + 0.99998 y2 
40 1.00000 + - 1.99999 x + -2.00000 y + 0.99999 x2 + -0.00002 xy + 0.99999 y2 

45 1.00000 + - 2.00000 x + -2.00000 y + 1.00000 x2 + 0.00000 xy + 1.00000 y2 

50 1.00000 + - 2.00000 x + -2.00000 y + 1.00000 x2 + 0.00000 xy + 1.00000 y2 

The results for [N,/M,](l, l), n + co, and q( x, y) in the column [N/M,] can be found in 
Tables 3 and 4, respectively. 

We can even use an enumeration for the set M different from the one used for N and E and 
find similar convergence results. One can play around with these things as long as the conditions 
(7) are not violated. Especially for (7b) we refer the interested reader to [4] where the regularity 
of such generalized Vandermonde determinant is discussed. 

In the literature one can find similar attempts to generalize the theorem of “de Montessus de 
Ballore” to the multivariate case. Chisholm and Graves-Morris [3,8] give a highly technical 
multivariate convergence theorem for the Canterbury approximants [2,11]. They do not yet treat 
the material in such a general way as is done here. We have complete freedom of choice for the 
numerator (by setting N) and the equations defining the Pad6 approximation order (by setting 
E). Karlsson and Wallin [12] provide some counterexamples for a “de Montessus de Ballore” 
convergence theorem. These counterexamples serve to confirm their point of view that the several 
variable case is much more complicated than the one variable case. The reader can verify that the 
counterexamples in question deal with situations in which the conditions of Theorem 2 are not 
satisfied. It has also been shown by Graves-Morris and Roberts [9] that good convergence results 

Table 4 

n Denominator of [ N,/M,](l, 1) 

0 1 .ooooo 
5 1 .ooooo 

10 1 .ooooo 
15 1 .ooooo 
20 1 .ooooo 
25 1.00000 
30 1 .ooooo 
35 1 .ooooo 
40 1.00000 
45 1.00000 
50 1.00000 

+ -3.00000 x + 

+ - 2.02564 x + 
+ -2.00462 x + 
+ - 2.00033 x + 
+ - 1.99991 x + 
+ - 2.00000 x + 
+ - 2.00001 x + 
+ - 2.00000 x + 
+ - 2.00001 x + 
+ - 2.00000 x + 
+ - 2.00000 x + 

- 3.00000 y 

- 2.02564 y 
-2.00200 y 
-2.00033 y 
- 2.00019 y 
- 1.99998 y 
- 1.99999 y 
-2.00001 y 
- 2.00000 y 
- 2.00000 y 
-2.00000 y 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

3.50000 x2 + 

0.99145 x2 + 
1.00071 x2 + 
0.99959 x2 + 
0.99977 x2 + 
0.99998 x2 + 
1.00001 x2 + 
0.99999 x2 + 
1.00002 x2 + 
1.00000 x2 + 
1.00000 x2 + 

3.50000 y2 
0.99145 y2 
0.99540 y2 
0.99959 y2 
1.00039 y2 
0.99985 y2 
0.99998 y2 
1.00002 y2 
0.99999 y2 
1.00000 y2 
1.00000 y2 
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are in a way insensitive to the choice of Ek+,. This fact is clearly confirmed here and 

re-established in a very general setting. 
We believe that among the papers dealing with this type of convergence problem, the result 

obtained in the previous section is the most general and flexible to be found. It is our aim to 
further develop Theorem 2 as to include the multivariate analogon of “multiple” poles and the 
case of multivariate Newton-Pad6 approximation [5,6]. 
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