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A b s t r a c t .  

The problem of constructing a univariate rational interpolant or Pad~ approximant 
for given data can be solved in various equivMent ways: one can compute the explicit 
solution of the system of interpolation or approximation conditions, or one can start 
a recursive algorithm, or one can obtain the rational function as the convergent of an 
interpolating or corresponding continued fraction. 

In ease of multivariate functions general order systems of interpolation conditions 
for a multivariate rational interpolant and general order systems of approximation 
conditions for a multivariate Pad~ approximant were respectively solved in [6] and [9]. 
Equivalent recursive computation schemes were given in [3] for the rational interpola- 
tion case and in [5] for the Pad6 approximation ease. At that moment we stated that 
the next step was to write the general order rational interpolants and Pad6 approx- 
imants as the convergent of a multivariate continued fraction so that the univariate 
equivalence of the three main defining techniques was also established for the mul- 
tivariate ease: algebraic relations, recurrence relations, continued fractions. In this 
paper a multivariate qd-like algorithm is developed that serves this purpose. 

AMS Subject classification8 : 65D05, 41A21. 

1. A l g e b r a i c  r e l a t i o n s  a n d  R e c u r r e n c e  r e l a t i o n s .  

Let us restrict  everything to the  case of two variables for the sake of simplicity. 
Fur the rmore  we assume tha t  the finite in te rpola t ion  set I = {(i,j)lfij is given 
a t  (z~, yj)}  is s t ruc tured  so tha t  it  satisfies the inclusion property.  This means 
.that if a po in t  belongs to the da t a  set, t hen  the rec tangular  subset  of points  

Received October  1986. Revised November 1987. 
*) Senior Research Assis tant  N F W O  



A MULTIVARIATE QD-LIKE ALGORITHM 99 

emanating from the origin with the given point as its furthermost corner also 
lies in the data set. How this can be achieved in a lot of situations is explained 
in [6]. If none of the points in {(zl ,Yj)}( i j )ei  coincide then we are dealing 

with a rational interpolation problem and the values in {flJ}(id)ei are function 
values. If all the interpolation points coincide then the problem is one of Pad4 
approximation and it is well-known that the given data are not function values 
but Taylor coefficients. If some of the points coincide and some do not then 
the problem is of a mixed type and it is called a Hermite interpolation problem 
or a Newton-Pad~ approximation problem. In [6] is indicated how one should 
interpret the data flj: some of them are derivatives and some of them are 
function values. In the sequel of the text it does not play a role whether one is 
dealing with coalescent points or not since all the formulas remain valid in both 
cases and in the mixed case. Nevertheless we shall sometimes indicate how the 
formulas are to be read if some of the interpolation points coincide. 

Consider the following set of basis functions for the real-valued polynomials 
in two variables 

i-1 i-1 

Bij(z,V) = I I ( x  - xk) I ] ( Y  - Y')" 
k=O t = O  

Clearly Bij(x, y) is a bivariate polynomial of degree i + j .  Given the fir, we can 
write in a purely formal manner 

f ( z , y )  = E foi,ojBij(z,y) 
( i , j ) e / V  ~ 

where foi,oj are the bivariate divided differences 

Yo~,o~ = / [ so , . . . ,  s~] [yo,. • . ,  ys] 

given by 

y [~o, . . . , :~d [yo,- . . ,  us] = "f [ * ~ " ' "  sd  [yo, . . . ,  yj] - / [~o , . . . ,  s~_~] [yo . . . .  , ys] 
X i  - -  ~ 0  

o r  

y [so, . . . ,  s~] [yo , . . . ,  yj] = y [ so , . . . , , ~ ]  [y~, . . . ,  yj] - f [ so , . . . ,  s~] [yo , . . . ,  ys-~] 
Yj -- Yo 

with 

f [si] [yA = ks.  

Divided differences with coalescent points s i , . . . ,  zi+k and y j , . . . ,  yj+e are given 
by 

1 Ok/ 
/ [ s , . . . ,  si+k] [YA = kt &k r(-,,~) 
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and 
1 Or/ 

/ [~d M , - . - ,  uj+d = - - -  
t! Oy l l(~,v~)" 

In order to construct rational interpolants or Pad6 approximants for the given 
set I we choose two finite index sets N,  a subset of ! ,  and D~ a subset o f / N  2, 
which determine the "degree" of the numerator  and denominator and we put as 
in [6] 

p(x,y) = E aijBid(x,y) N from "numerator" 
(i,j)eN 

q(x, y) = E bijBiJ (x' Y) D from "denominator" 
(i,j)ED 

(1) (fq -- p)(x, y) = E cijBij(x, y) 
(i,j)e~2\z 

I from "interpolation conditions" 

The rational interpolant (p/q)(x, y) will then be denoted by 

[N/D]z. 

Let us introduce a numbering r ( i , j )  of the points i n / N  2 based on the enumer- 
ation 

(0,0), !1 ,0 ) , (0 ,1 ) .  ! 2 ,0 ) , (1 , ? ) , (0 ,2 ) , !3 ,0 ) , (2 ,1 ) , (1 ,2 ) , (0 ,3 )d . . .  
Y 

first diagonal second diagonal third diagonal 

so that  
r(i,j) = ( i + j ) ( i + j + l )  

2 + j - i .  
If we denote # N  = n + 1 then we can write 

N = O N I  
£ = 0  

with 

0 = N _ ~  C N o  c N ~  c . . .  c N,_~ C N , , = N  
# N t = t + l  

Ne\N~_~ = { ( G j t ) } ;  t =  0 , . . . , n  

In other words, for each t = 0 , . . .  , n  we add to Nt-1 the point (Q, j l )  which is 
the next in'line in N A 1772 according to the enumeration given above. Denote 
# D  = m + 1 and proceed in the same way. Then 

D =  U D I  
t = 0  
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with 

D-1 = O, ~:Dl = l + 1, Dt  \ Dr-1 = {(dt,  et)} ; ~ = O , . . . , m .  

Since (1) can be rewritten as 

(fq)oi,oi = POi,Oj "= aij, ( i , j )  E N 

(2) (fq)oi,oi = 0, (i, j )  e I \ N 

we will assume that  the interpolation set I is such that exactly m of the homoge- 
neous equations (2) are linearly independent. Degenerate cases can be avoided 
by adding interpolation data to the set I until the rank of (2) is equal to m. 
It is obvious that this condition guarantees the existence of a nontrivial solu- 
tion of (2) given by the following determinant expressions, because the number 
of unknowns in the homogeneous system is now one more than its rank. We 
group the respective m elements of I \ N that  supply the linearly independent 
equations in the set H and number them also following the enumeration given 
above ,  

H = O H t C _ I k N  
t-----1 

w i t h  

Ho = O, # H e  = t,  Ht  \ Ht-1  = {(ht ,  k t)}  ; £ = 1 , . . . , m .  

The polynomials p(z, y) and q(z, y) satisfying (1) are then given by [6] 

( 3 a )  = 

~( i , i ) eN  faoi , ,o iBi i (z ,y)  "'" ~ ( i , D e N  f a . . i , , - i B i J ( z , y )  

f~ohx ,eokt  "'" f~, , ,  41,e,,. kx 

f dohm ~eok,~ " " " f dm hm ~em km 

(3b) q ( z , y ) =  

where 

B~o,o(Z,y) . . .  Ba,, , , , , ,(z,y) 
faohx,eokx . . .  fa,~hx,e,,flc 1 

f~oh,,,,eok,~ . . .  f~,,,~,,,,e,.,k~ 

with 
fd~,e~ki  = 0  if a l l > h i  or e i > k j .  

In [5] these determinant formulas are given when all the interpolation points 
coincide and a lot of specific choices for N ,  D and I are described. In [4] is 
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illustrated that the covariance properties satisfied by these multivariate Pad6 
approximants are determined by the structure of the index sets N,  D and I.  

The  formulas (3) can be rewritten so that they can be computed recur- 
sively. Multiplying the ( l +  1)th row in p ( z , y )  and q ( x , y )  by Bhd ,~ (x , y )  ( t  = 
1 , . . . , m ) ,  and dividing the (£ + 1)th column by BdL~(z,Y) ( /  = 0 , . . . , m )  
results in 

p ( x , y ) =  

(4a) 

~ ( i , j ) E N  fdol,eojBdoi,eoJ( z '  Y) 

f doh,~,eok,~ Bdoh,~ ,eolt,,, ( z ,  Y) 

"'" ~ , ( i , j ) eN fd,~i,'e,~jBd,~i,e~j(=, y) 
• . .  fd, , ,h, ,e,~klBd,, .hl ,e, , .k,(z,y) 

• . .  Yd,,.,h,,,,e,,..k.,.,Bd,,,h . . . .  k , , , (x ,y)  

q(=,y) = 

1 *** 1 

f dohx ,eokxBdohx ,eok l (X ,y )  . . .  f , i . , ,h, , ,~. , ,k~B,~,. .h, ,e. , ,k~(z,y) 
: 

fdoh,~,eo~,~B,toh.,,,ok,,,(z,Y) . . .  fd,~h . . . .  k,,,Bd,,,h,,,,e~k,,,(x,y) 

(4b) 

where for k < i and £ _< j 

B~j(=, y) 
Bk i , t j ( x ,  y) = B k t ( x ,  y) 

and for k > i or t > j 

= ( =  - = , , ) . . .  ( =  - = ~ - ~ ) ( y  - y t ) . . .  ( y  - y j - , )  

For such a quotiel, ' of determinants the E-algorlthm is particularly suitable [3]: 

g(t) OW = 

( i,j)~N~ 

,~,(l) (t+~) ~,(t+l) (t) 
(5a) E ( f  ) = -e',.-Ig,.-1,,. - ~ ; - 1  g;.-1,,, t = O, 1 , . . . ,  n; 

g ( t + l )  _ . ( t )  
- - 1 , r  -Vr- - Iw 

- -  g r - l , s g r - t , r .  (5b) a(t) g(t)_l,sg(t_+ll,~ (t+l) (t) 

~7 )= ~ ~,...ojB,o,.,oj(~,y); l=o, . . . , .+m 
(ij) eN~ 

(i,j)ENt 
r =  1 , . . . , m ;  £ = O , . . . , n + m  

r = 1 , 2 , . . . , m  

s = r +  l , r +  2 , . . .  

The values E(r t) and g(~s ) are stored as indicated below. 

f k i J j  = O. 
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Table 1.  

Table 2. 

As a result of these computations 

Since the solution p ( z ,  y ) / q ( z ,  y )  of ( 2 )  is unique due to fact that the rank of ( 2 )  is 
m, the value E:) itself does not depend upon the numbering of the points within 
the sets N, D and X. But this numbering affects the interpolation conditions 
satisfied by the intermediate E-values. For L = 0,. . . ,n and r = 0,. . . , m [3] 
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2. C o n t i n u e d  f r ac t i on  r e p r e s e n t a t i o n  and  the  q d g - a l g o r i t h m .  

Let us now suppose for the sake of simplicity that the homogeneous system 
of equations (2) has maximal rank, in other words H = I k N .  As a consequence 
we have 

~ I = n + m + l .  

Hence we can write 

with 

n + m  

I = U h  
£=0 

It  = Nl; t = O, . . . , n 

In+l\I,~+L-1 = {(i,~+l,jr,+t)}; l = 1 , . . .  , m  

r ( i ,~+, , j ,~+t)>r( i~ , j , ) ;  n + l > r > n + l  

With the subsets Nl, D~ and II+r rational interpolants 

[NdD~]I,+. 

can be constructed which satisfy only part of the interpolation conditions and 
which are of lower "degree". To this end we assume that the numbering r(i~,j~) 
of the points i n / N  2 is such that the inclusion property of the set I is carried 
over to the subsets Il.  We can now fill a table with rational interpolants or Pad~ 
approximants. 

Table 3. 
[NolDo]xo [NolD,]I ,  [No/D~]I, . . .  

[N1/Do]rl [N1/D,]I= [N1/D2]x3 . . .  

[N2/Do]z~ [N2/DI]Is [N2/D211~ . . .  

where 
[N/D]I  = [N,/D,~]x,+,~. 

Our aim is to consider descending staircases in this table of multivariate rational 
functions: 

(6) 

[N,/Do]~. 

[N,+I/D.]I,+, [No+I/DI]z.+2 

[N,+2/DI]x.+~ [N,+2/D2]x.+, 
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and construct continued fractions of which the l th  convergent equals the l th  
interpolant on the staircase. We restrict ourselves to the case where every three 
successive elements in (6) are different. It  is well-known that  a continued fraction 
of which the £th convergent is the ~th element of a given sequence {Ct}te/v with 
every three successive elements different from each other, is given by 

C 1  - C o  1 
C o +  I 1 

C t - ~  - C t  I 

C t - 1  - C t - 2  1. I C t  - C t - 2  
l=2 C t - 1  __ C.~-2 

Let us compute the partial  numerators and denominators of this continued frac- 
tion for the elements 

Ct+~ = [Nt+o/D~]I ,+.+, ,  s >__ 0; £ + r  = 0 , 1 , 2 , . . .  

on the descending staircase (fi). In the notation of the previous section we 
already have 

c 0 =  /do,,oo;Bdo,,eo ( ,y) 
( i , j )eN,  

( i , j )eN.+l 

= f aoi.+~,~o~.+, Baoi.+,,~oj.+, (z, V) 
(i,DeN, 

We shall now distinguish between even and odd numerators and denominators. 
For this purpose we introduce the notations 

q(O+l) = C2t -1  - C 2 t  

- t C2t-~ - C2t-2 

_(,+~) C2t - C2t+~ 

-- ~t  = C 2 t  - C 2 t - 1  

for the partial  numerators.  Consequently we can write for the partial  denomi- 
nators 

_ (,+~) = C2t - C2t-2 
1 ~- qi C2t-1 - C2t-2 

1 + e~ °+~) = C ~ t + l  - C 2 t - 1  " 

C2t - C2t-1 

In q(S+l) the convergents l 

• • • ~ 2 l - - 2  

C2t-~ C'2t 
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of (6) are involved, in other words the rational interpolants 

or, in the notation of the previous section, 

Hence, by using (5a) 

In eSd+') the convergents 

of (6) are involved, in other words the rational interpolants 

or the values 

In this way we get 
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Combining (7) and (8) we find for g >_ 2 

q(,+l) (a+2) ~ t - 2  - -~ t -1  J 
g = e L - 1  C~i~(.+t) _ ~(8+L-1) 

(,+2) (,+2) = - - e £ - i  q£-i 

(.+2) (.+2) 
_ --eg-i qg-i 

(o+i) 
el-- i 

(,+~) (~+2) 
_ et-i qt-i 

(9) (.+i) 
el-- 1 

and for g > I 

gC ,+ t) 
l - - l , l  

g( .+ t+l )  _ 9 ( . + t )  
t - - l , t  t - - i , t  

(~(,+t) ~.(,+t-1)~ g(,+t) 
~£--2 -- ~t--2 ] £--1,1 

( ~ ( . + t )  ~(.+l--l)~ 9( .+ t+ l )  g(.+g) 
~ g - - i  - -  ~ t - - 1  ] i - - l , t  - -  £--I,£ 

(~(.+t) ~(.+t-1)~ (.+l) 
*~1--2 -- ~t--2 ] 91- l ,g  

t ~(,+t-1) _ ~(,+t-i)~ g(,+t+l) _ g(~+t) 
t ~ l - - 1  ~1.--2 ] g.--1,l £--1,l  

g(,+t) g(,+t-1) g(.+t) 
t--2,1--1 -- £--2,1--i t--l~£ 

( .+t- i)  _(.+t+l) 9(~+t) 
g f - 2 , t - i  . Y t - l , f  -- l - - l , l  

E ( , + t + i )  _ p(,+t) 
l ~ i - - i  (,+1) e t + 1  = E~ "+t) - ~t-~('+t) 
~(~+t+l) _ g(S+t) 

(10) = ~t-l,tg(8+t) t-l , t  \{q(~+2)t + 1) 
l--1,£ 

If we arrange the wlues q~.+l) and e~ "+I) in a table as follows 
Table g. 

e~ 1) 
q~2) q(1) 

e~ 2) e O) 

q~S) q~2) ... 

e~ s) e~ 2) 
q~4) q~S) ... 

" C : C 

where subscripts indicate columns and superscripts indicate downward sloping 
diagonals, then (9) links the elements in the rhombus 

e(a+l) l--1 
q(,+2) q~°+l) 

l--1 (,+2) 
e t _  1 
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and (10) links two elements on an upward sloping diagonal 

(~+1) 
e l 

q(S+2) 
l 

If starting values for q~S+l) were known, all the values in the multivariate qd- 
table could be computed. These starting values are given by 
(11) 

-0+1)  ~(~+1) g0+l) 
q~S+l)  = /~'I - - ~ 0  = --fdoG+~,eoj,+2Bdoi,+2,eoj~+2(a~,Y) 0,1 

E(S+l) _ E~) fdoi.+l.eojo+lBaoi.+ . . . .  j .+l(z ,y)  g(S+2) A~+I) 
0 0,I -- YO,1 

Finally, we can say that, given a descending staircase (6) of different elements, 
it is possible to construct a continued fraction of the form 

-q~"+~) / - e  ('+1) I [N.+I/DoIL+~ - [N . /Do]z .  l+ 
[N./Do]I,+ 1 II---+q~ s + l t +  1 +le~S+i)l+ 

-q2-O+1) I -e(~+l) 
(12) 1 + q~.+l) + 1 +2e~*+i) + "'" 

of which the successive convergents equal the successive elements on the de- 
scending staircase (6). Here 

[N,,/Do]_r, = E fd°i'e°jBd°i'e°J(x'Y) 
(i,j)eN, 

[N.+I/Do]_L+. = E fdoi,'ojBaoi,'oJ( x' Y) 
(i,j)eN.+~ 

_(,+1) O+1) and the coefficients '/t and et can be computed using (9-11). Since 
the qd-table given in table 4. needs the help-entries g(l! from table 2. we 
have baptised the rules (9-11) the qdg-algorithm. This new algorithm coin- 
cides with Rutlshauser's qd-algorithm for the computation of univariate Pad6 
approximants and with Claessens' generalized qd-algorithm for the computation 
of univariate Newton-Pad6 approximants. 

In analogy with the univariate P~d6 approximation case [8 p. 610] and the 
univariate rational Hermite interpolation case [2] it is also possible to give ex- 
plicit determinant formulas for the partial numerators in (12). Let us introduce 
the notations 

A t e ( g )  - -  f ~ .~+~ ,~ . j~+~Bd .~+~ ,~ . j~+ , ( x , y ) ;  r = 0 , 1 , . . .  

t~(o) = fe.~o,~.joB,~.~o,~.~o(~, y) 
£-1  

t,.(~) = t,(o) + ~ z~,.(O 
/=0  
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Remember  tha t  Ate ( l )  = 0 for il+l < d~ or J l+l  < e~. We also int roduce the 
notat ions  

Ho(h,  k) = 

A to(h) . . .  A t k - l ( h )  ] 

• : I ; A t o ( h + k - 1 )  . . .  ~ t k - l ( h + k - 1 )  

Ho(h,  0) = 0 

Hi(h,  k) = 

1 ° ° .  1 

A to(h) . . .  A t~(h) 

A t o ( h + k - 1 )  . . .  A t k ( h + k - 1 )  

; H i ( h , - 1 )  = 0 

H2(h,  k) = 

to(h) . . .  tk(h) 
A t o ( h )  . . .  A t k ( h )  

. 

A t o ( h + k - 1 )  . . .  A t k ( h + k - 1 )  

; H 2 ( h , - 1 )  = 0 

1 

t0(h) 
H z ( h , k ) =  A t o ( h )  

A to(h + k -  2) 

We know from (4) tha t  

, ° °  1 

. . .  t~(h) 

. . .  A t~(h) 

. . .  A t k ( h + k - 2 )  

; H 3 ( h , - 1 ) = 0  

n~(h,k)  
H i ( h ,  k )  - [ N h l D ~ ] x ~ + , .  

Besides the differences A t r ( t )  we can also consider 

and introduce the notat ions 

Go(h,k)  = 

~t0(h) 

8tk- l (h)  

. . .  8to(h + k - 1 )  

• .. 6 t k _ l ( h + k - 1 )  

Go(h,  0) = 0 

Gl(h,k) = 

1 

~to(h) 

~tk-l(h) 

. . .  1 ] 

. . .  ~to(h+k)  
• 

. . .  8 t~- l (h  + k) 

G l ( h , - 1 )  = 0 
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G2(h,k)  = 

G ~ ( h , k )  = 

to(h) . . .  t o ( h + k )  
~to(h) . . .  ~ t o ( h + k )  

: 

6t~_l (h)  . . .  ~ t ~ _ l ( h + k )  

1 . . .  1 
to(h) . . .  t o ( h + k )  

~ o ( h )  . . .  ~ o ( h + k )  
: 

5tk-2(h) . . .  5 t k -2 (h+k)  

; G ~ ( h , - 1 )  = 0 

; G ~ ( h , - 1 )  = o 

For the H-va lues  it is well-known by the  Schweins expansion [1 p. 43] tha t  

(13) g l ( h , k ) H 2 ( h , k  - 1) - Hl (h , k  - 1)H2(h,k) = H3(h,k)Ho(h,k) .  

For the G-values one can prove using the  Sylvester- ident i ty  [7] tha t  

(14) G l ( h - l , k ) G 2 ( h , k ) - G l ( h , k ) G 2 ( h - l , k )  = G 3 ( h - l , k + l ) G 0 ( h , k ) .  

(15) G l ( h - 1 ,  k)Go(h, k + l ) - G l ( h ,  k)Go(h-1,  k + l )  = G l ( h - 1 ,  k+l)Go(h, k). 

Some easy computa t ions  show tha t  the G-values are very related to the  H-values .  
For k >_ 1 we have 

Ho(h, k) = G3(h, k) 

Hs(h,k)  = Go(h,k) 

and for k >_ 0 
Hl(h ,k )  = Gl(h ,k)  

Hz(h,k)  = G2(h,k) 

Hence we know f rom (13) and  (14) t ha t  

(16) Gl(h ,k)G2(h ,k  - 1) - Gl(h , k  - 1)G2(h,k) = Go(h,k)G3(h,k).  

and tha t  for k > 1 also 

(17) Hl(h - 1 ,k)H2(h,k)  - H l ( h , k ) H , ( h -  1,k)  = Ho(h - 1 , k +  1)H3(h,k). 

By means  of these formulas  we can prove the following theorem.  

(s+l) 
THEOREM. For the partial numerators q~a+1) and e I in the continued 
fraction (12) of which the successive convergents equal the successive eJements 
on the descending staircase (6), the [ollowlng determinant formulas hold: 

(18) q(,+l) Ho(s + £, £)H1 (s + £ - 1, l - 1)Hs (s + £, £) 
e : Ho(s+£_l,OH1(s+l, OH3(s+£,l_l ) 
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(19) 
e(,+l) = Ho(s + g , g +  1)Hl(s + g , g -  1)Ha(s + g  + 1,g) 

Ho(s + t,e)H~(s + e + 1,t)H~(s + e,e) 

PROOF. We know from (7) and (4) that 

q~8+1) = E~ s+ l) -- ~ l -  s +  l )  

E(~+t) _ ~.(.+t-1) 
g--1 ~g.--1 

H2(s + t, t) 
H1 (S q- ~., t) 

H=(s + g,t  - 1) 
H ~ ( s + g , t  - 1) 

H2(s + g,g - 1) 
Hl(s  + g , g -  1) 

H = ( s + g -  1 , t -  1) 
Hl(s + g -  1 , g -  1) 

Using (13) and (17) we get 

q(,+l) H3(s+t,,f)Ho(s+t,l) / Ho(s+l.--1,g)H3(s+l,t--1) 
£ : --  H,(s+g.,g)H~(s+£,£--l) / H:t(s+g.,l.--1)Hl(s..bg.--1,g-1) 

Ho(s + g,g)H,(s + g -  1,g-- 1)Ha(s + g,g) 
Ho(s + g -  1,g)Hl(s + e,g)Ha(s + g , g -  1) 

(8+1) The formula for e l is proved in a completely analogous way. m 

Note that one can prove, using (14) and (15) that 

H~(h, k) _ E~h~ = V2(h, k) 
Hi(h, k) Gl(h, k) 

G 2 ( h , k - 1 )  Go(h + l ,k)  G2(h + l , k - 1 )  Go(h,k) 
= G l ( h , k - 1 )  G l ( h + l , k - 1 )  G l ( h + l , k - 1 )  G l ( h , k - 1 )  

Go(h + l,k) ao(h,k) 
Gi(h + l , k - 1 )  G l ( h , k - 1 )  

z(h) Go(h + 1,k) _ ~(h+l) G0(h,k) 
k-10;~TT, k71) -~-~ OKh, k - 1  ) 

Oo(h + 1, k) Go(h, k) 
Ol(h + 1 , k -  1) O l ( h , k -  1) 

Referring to (4a) we see that  

Go(h -t- 1, k) fib+l) 
Gl(h + 1,k - 1) = ~k-l,k 

a0(h, k) .(h) 
Gl(h,k - 1) - ~k-l,k 

Obviously the formulas from the recursive computation scheme and those of the 
qdg-algorithm are closely linked. This is to be expected if we want to develop a 
multivariate theory with the properties of the univariate theory. 
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