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M U L T I V A R I A T E  P A D I ~  A P P R O X I M A N T S  R E V I S I T E D  

ANNIE CUYT *) 

lnstitut J~r An#ewandte Mathematik der Universiti~t Bonn, Wegelerstrasse 6, 1)-5300 Bonn 1, BRD 

Abstract. 
Several definitions of multivariate Pad6 approximants have been introduced during the last decade. 

We will here consider all types of definitions based on the choice that the coefficients in 
numerator and denominator of the multivariate Pad6 approximant are defined by means of a linear 
system of equations. In this case a determinant representation for the multivariate Pad6 approximant 
exists. We will show that a general recursive algorithm can be formulated to compute a 
multivariate Pad6 approximant given by any definition of this type. Here intermediate results in the 
recursive computation scheme will also be multivariate Pad6 approximants. Up to now such a 
recursive computation of multivariate Pad6 approximants only seemed possible in some 
special cases. 

AMS classification code: 41 A 21 

1. General definition. 

The framework used to describe the group of definitions based on the use 
of a linear system of defining equations for the numerator and denominator 
coefficients, is greatly inspired by [10]. Given a Taylor series expansion 

with 

f (x, y) = ~ Cijxiy j 
(i,j) e ~z 

1 1 ~i+jf 
cij = i! j !  ~xi~yJl¢o.o, 

we will compute an approximant p(x,y)/q(x,y) to f (x ,y )  where p(x,y) and 
q(x, y) are determined by the accuracy- th rough-  order principle. 

The polynomials p(x, y) and q(x, y) are of the form 

p(x, y) = ~ aqxiy j 
(i,j)~ N 

q(x, y) = ~, bijxiy j 
(i,j)~ D 
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where N (Numerator) and D (Denominator) are finite subsets of ~z. The sets 
N and D indicate in fact the "degree" of p(x, y) and q(x, y). Let us denote 

# N  = n + l  

# D = m + l .  

It is now possible to let p(x, y) and q(x, y) satisfy the following condition for the 
power series (fq -p)(x ,  y), namely 

(1) (fq - p)(x, y) = ~ dijxiy j 
(i.j) ~ ~21E 

if, in analogy with the univariate case, the index set E (Equations) is such that 

(2a) 

(2b) 

(2c) 

N c _ E  

# (EIN) = , .  = # o -  1 

E satisfies the inclusion property 

meaning that when a point belongs to the index set E, then the rectangular 
subset of points emanating from the origin with the given point as its 
furthermost corner, also lies in E. 

Condition (2a) enables us to split the system of equations 

dij = O, (i,j)e E 

in an inhomogeneous part defining the numerator coefficients 

i j 

~ c~,bi-~,,j-,, = aij, ( i , j )eN 
g = O  v = 0  

and a homogeneous part defining the denominator coefficients 

i j 

(3) ~., ~ cuvb,_~,,i_ ~ = O, ( i , j )eElN.  
,u=O v=O 

By convention 

bkl=O if (k,l)¢D. 

Condition (2b) guarantees the existence of a nontrivial denominator q(x, y) 
because the homogeneous system has one equation less than the number of 
unknowns and so one unknown coefficient can be chosen freely. 
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Condition (2c) finally takes care of the Pad6 approximation property, namely 

( f -  ~ ) ( x , y )  = ~ eljxiy j. 
(i, j )  ~ ~421E 

For more information we refer to [5, 6]. 
Let us now introduce a numbering r(i,j) of the points in N z, based on the 

enumeration 

(0,0), (1,0), (0, 1), (2,0), (1, 1), (0,2), (3,0), (2, 1), (1, 2), (0,3) . . . .  

first second third 
diagonal diagonal diagonal 

So 

r(i,j) = ½(i+j) ( i+j+ 1)+j.  

Since the set N contains n + 1 points, we can write 

N =  O N t  
1=0 

with 

0 = N - 1  c N o c N 1 c ' " c N , , _ l  c N , , = N  

# N  t = l + l  

N,IN,-1  = {(it, j,)}; l = 0 . . . . .  n 

r(i~, jr) > r(ir, jr), 1 > r 

In other words, for each I =  0 . . . . .  n we add to N1-1 one point called (it, j~) 
which is next in line in N c~ N 2 according to the enumeration given above. 

The same can be done for 

D= ~)Di 
/ = 0  

with 

O - I  = O, DllOl-1 = {(dz, et)}, 1 = 0 . . . . .  m. 

For the sake of simplicity we assume that the homogeneous system of 
equations (3) has maximal rank. From numerical experiments we know that this 
is most often the case. However, what follows can be extended to the case when 
this is not true, by adding points to the set EIN until the rank deficiency has 
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disappeared, but at this moment this would only complicate the notation. As a 
consequence of (2a), and (2b), we know 

# E = n + m + l .  

Hence we can write 

n + m  

E =  ~ E 1  
/=0  

with 

E l ~ N D 

E,+llE,+t_ 1 = {(i,+~,j,+t) }, 

r(i,+t.j,+~ ) > r(i~.j~). 

l = 0,... ,  n 

l = 1 . . . . .  m 

n + l  > r > n +  l 

It was shown in [10] that a determinantal representation for 

and 

satisfying 

is given by 

(4a) ph(x, y) = 

(4b) 

p h ( x , y ) =  ~ aiixiy ~, O =  < h =< n 
(i,j)e Nh 

q k ( x , y ) =  ~ b i y Y  ~, O =< k =< m 
(i, j)~ Dk 

(fqk - Ph)(X, Y) = ~ di2xiy j 
(i,j) e N2/E,+~ 

i j 
Z (i,j)e Nh C i - d o , j - e o  X Y 

Cih+l --do,jh +, -eo  

Cih+~--do, Jh+k--eo 
xdo y eo 

qk(X,  y )  ---- Cih+,--do, jh+l--eo 

Cih+k--do,jk+k--eo 

"" " 2 (i,j)e N h C i - d k , j - e k  x i Y  j 

Cih+ l --dk, jh+ L --ek 

Ci~+k--d~,jh+k--ek 

. . .  x d  k ye  k 

• , . Cih+l 

th*g- -dk ,  Jh+~--ek  

where 

c ~ j = 0  if i < 0  or j < 0 .  
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A solution of the original problem (1) is then given by pn(x,y)/q,~(x, y) because 

N n = N ,  D m = D  and E , + , , = E .  

In order to show that this general setting can handle quite a number of 
previously given definitions of multivariate Pad6 approximations, we shall now 
give the sets N, D and E for several of these definitions. When we are dealing 
with Kartsson-Wallin [9] Pad6 approximants; we must choose v and /, in N 
and construct 

N = {(i,j)e N210 ~ i+ j  <-_ v} 

D = {(d,e)e N210 < d+e  ~ I*} 

which are triangular sets. In this way 

# N = n+  1 = ½(v+l)(v+2) 

# D  = m +  1 = ½(#+ 1)(/2+2). 

For Pad6 approximants introduced by Lutterodt [13], we have with vl, v2, 
/~1,/~2 fixed 

N = {(i,j)e W'2[0 _-< i =< Vl, 0 ~_ j ~_ IJ2} 

D = {d,e)e X210 < d < ~1, 0 < e </22} 

which are rectangular sets. Now 

# N = n + l  

# D  = m + l  

For these two types of multivariate 
the set E are the conditions (2a, b, c). 

= (vl + 1)(v2 + 1) 

= (/21 + 1)(/22+ 1). 

Pad6 approximants, the only demands for 

Multivariate Pad6 approximants of order (v,/~) introduced by Cuyt [3] appear 
to have numerator and denominator index sets given by 

N = {(i,j)EN2lv./2 <. i+ j  < v'/2+v} 

D = {(d,e)e N2tv-# < d+e  <= v'/z+/2} 

which resemble triangular sets. Here 

E = {(i,j)e N210 < i + j  < v'/2+v+/2} 
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The approximants introduced by the group working in Canterbury [2, 8] were 
constructed from 

N = { ( i , j ) e N 2 l O < i < v l =  = , 0 < j < v 2 } =  = 

D = {(d, e) ~ Nzl0 = < d = < Pl, 0 = < e =< #z} 

E =  N U D U {(i,j)6 N210< j=<min(vz,#2),  

Q) {(i,j)s N2{O < i < min(vl,/zl), 

max(v~ ,~)  < i =< v~+/z~, 

i + j  < v 1  - { - # 1  } 

max(vz,#z) < j < v2A7/~/2, 

i + j  <= v2 +/~z} 

with the additional requirements 

dv~+u~+l_l,t+dt, v:+m+l_t=O, l =  1,..., min(vl, ,ul, vz, #2). 

These additional requirements alter the determinantal representations (4a) and 
(4b) but the structure of the determinants remains the same. For more details 
we refer to [10]. We will show that in each of these cases the rational function 
p,,(x,y)/q,,(x, y) can be computed recursively, starting from po(xiy)/qo(x, y) and 

building intermediate values ph(x, y)/qk(x, y). 

2. Recursive algorithm. 

The algorithm which we shall give is a generalization of the e-algorithm, but 
a special case of the more general E-algorithm [1]. The formulas (4) can be 
rewritten as follows. Multiply the ( l + l )  th row in ph(x,y) and qk(x,y) by 
xi~+'y jh*~ ( l =  1, . . . ,k)  and afterwards divide the ( l + l )  th column by x'~y e  ̀

(t = 0 . . . . .  k). 
This results in 

(5a) 

p~,(x, y) = 

i - d o  j - e o  
2(i,j)~Nt~Ci-do,j-eo x Y 

Cin+ ~ - d o , i n ,  l _ e o  Xih+ ~ 
~ d o y  J~ ~ ~ ~ ~0 

• . i~,+t,-doujt,+~, - e o  
Ci~,+k--do,j~,+,~--eo x Y 

• , .  2 ( i , j ) e N h C i _ d k , j _ e k X i ' " d k y  j - e k  

x ih+ 1 - d t ,  vJh+ 1 - e i  
• " " Ci~,+~ -dk,j~,+~ - e k  ." 

Xtn+~, -- dk _. jh+t,--ek 
. . .  Cih÷k_d~,jh+~ _ e k  Y 

(5b) 

qk(x, y) = 

1 

c xi~+ 1 -doy),. ,. - eo 
ih+ l --do,  jh+ l --eo 

C xih+k--d°y jh+k-e° 
it,+k - -do , jh+k--eo  

" " " C .  - i h + l  " ~ - - e ~  
~ h + ~  --dk,jh÷~ --e~ x --&YJ'+ 

• " " C xih+k-d~y jh÷k 
ih+k--dt,,jl,+k--e~, 



MULTIVARIATE PADI~ APPROXIMANTS REVISITED 77 

We can easily const ruct  (k + 1) series of  which the successive part ial  sums 
can be found in the co lumns  of ph(x, y). Take  

t 0 (0 )  = C io _ do, Jo _ e o  x i °  - d° y j °  - e° 

A t o ( I -  1) = t o ( l ) - t o ( l - 1 )  = c x i ' - d ° ' ' j ' - e °  l 1 . . . . .  h + k  i~ - do, j~ - eo Y ~ = 

In this way 

to(h) ~ i -do j - e o  
~-  C i _ d o , j _ e o  X Y . 

( i , j ) e  Nh 

We remark  that  A t o ( l - 1 ) =  0 as long as il < do or Jz < eo(4 = 1 . . . . .  h + k ) .  

In this way we obta in  the first co lumn of ph(x,y) .  We can proceed in the same 
way for the other  columns.  Define for r = 1 . . . .  , k 

t,(0) io-d, jo-e, 
= C i o - d , , j o - e ,  X y 

A t r ( / - 1 )  = t r ( 1 ) - t , ( l - 1 )  = ci,_d,,j,_eX" d, yj, e,, 1 = 1 . . . . .  h + k .  

Hence  

E ~-,~, j-e, t,(h ) = C i _ d , , j _ e X  Y 
(i, j ) e  Nh 

and 

il < dr o r  Jz < er. 
Consequent ly  

the ( r + l ) t h  co lumn of ph(x ,y )  is obtained.  Again A t , ( / - 1 ) = 0  for 

(6a) p d x ,  y)  = 

(6b) qk(X, y)  = 

to(h) "'" &(h) 

Ato(h) " "  Atk(h) 

A t o ( h + k - 1 )  ""  A t k ( h 4 - k - l )  

1 " .  1 

Ato(h) " "  Atk(h) 

Ato(h + k - 1 )  ""  Atk(h + k - 1 )  

This quot ient  of  de terminants  can easily be computed  using the E-a lgor i thm [1] : 

e~ ) = to(t), 1 = 0 . . . .  , h + k 

9~!,  = t , ( l ) - t , _ l ( l ) ,  r = 1 . . . . .  k; l = 0 . . . .  h + k  
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Finally with h = n and k = m, i.e. with N h  = N, Dk = D and Eh+,  = E, we get 

while intermediate values in the computation scheme are also multivariate Pad6 
approximants since 

and thus 
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So we see that Pad6 approximants originally only introduced via defining 
equations, can now also be given via a recursive scheme. The next step is to write 
them as the convergent of a multivariate continued fraction. This will be the 
subject of further research. Then the univariate equivalence of the three main 
defining techniques for Pad6 approximants is also established for the multivariate 
case: algebraic relations, recurrence relations, continued fractions. Readers 
interested in a comparison of numerical results for the definitions of multivariate 
Pad6 approximants treated here are referred to [4, 7, 11]. 
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