Multivariate Padé-Approximants*

Annie A. M. Cuyt ${ }^{\dagger}$
Department of Mathematics, Universitaire Instelling Antwerpen, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Submitted by R. P. Boas

Abstract

For an operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$, analytic in the origin, the notion of (abstract multivariate Padé-approximant (APA) is introduced, by making use of abstract polynomials. The classical Pade-approximant $(n=1)$ is a special case of the multivariate theory and many interesting properties of classical Padé-approximants remain valid such as covariance properties and the block-structure [Annie A. M. Cuyt, J. Oper. Theory 6 (2) (1981), 207-209] of the Pade-table. Also a projectionproperty for multivariate Padé-approximants is proved.

1. Definition of Multivariate Padé-Approximant

Many attempts have been made to generalize the concept of Padéapproximant for multivariate functions. We refer to [1, 4-8].

Another generalisation is the following one. The Banach-space \mathbb{R}^{n} is normed by one of the Minkowski-norms; we write $0=(o, \ldots, o)^{T}$ and $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be analytic in the origin:

$$
\exists r>0: F(x)=\sum_{k=0}^{\infty} \frac{1}{k!} F^{(k)}(0) x^{k} \quad \text { for } \quad\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|<r,
$$

where $(1 / o!) F^{(o)}(0) x^{o}=F(0)$ and $F^{(k)}(0)$ denotes the k th Frechet-derivative of F in $0 ;(1 / k!) F^{(k)}(0)$ is a symmetric k-linear bounded operator: $\left.\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R} \mid 9, \mathrm{pp} .109-112\right]$ and is equal to

$$
\left.\sum_{k_{1}+\cdots+k_{n}=k} \frac{1}{k_{1}!\cdots k_{n}!} \frac{\partial^{k} F(x)}{\partial_{x_{1}}^{k_{1}} \cdots \partial_{x_{n}}^{k_{n}}}\right|_{x-0} \quad x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

DEFINITION 1.1. (a) $P: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \rightarrow P(x)=A_{m} x^{m}+\cdots+A_{0}$ is an

[^0]abstract polynomial if for $j=0, \ldots, m$ the A_{j} are symmetric j-linear bounded operators: $\left(\mathbb{R}^{n}\right)^{j} \rightarrow \mathbb{R}$, in other words, if
$$
A_{j} x^{j}=\sum_{j_{1}+\cdots+j_{n}=j} a_{j_{1} \cdots j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} \quad \text { with } \quad a_{j_{1} \cdots j_{n}} \text { in } \mathbb{R} .
$$
(b) $\partial_{0} P=m_{1}$ is the order of the abstract polynomial P if for $0 \leqslant k<m_{1}: A_{k} x^{k} \equiv 0$ and $A_{m_{1}} x^{m_{1}} \not \equiv 0$.
(c) $\partial P=m_{2}$ is the exact degree of the abstract polynomial P if for $m_{2}<k \leqslant m: A_{k} x^{k}=0$ and $A_{m_{2}} x^{m_{2}} \not \equiv 0$.
We say that $F(x)=O\left(x^{j}\right)$ if
$$
\exists J, r \in \mathbb{R}_{0}^{+}, o<r<1:|F(x)| \leqslant J \cdot\|x\|^{j} \quad \text { for } \quad\|x\|<r
$$

Definition 1.2. The couple of abstract polynomials
$(P(x), Q(x))=\left(A_{l m+1} x^{l m+l}+\cdots+A_{l m} x^{l m}, B_{l m+m} x^{l m+m}+\cdots+B_{l m} x^{l m}\right)$
such that the power series $(F \cdot Q-P)(x)=O\left(x^{l m+l+m+1}\right)$
is called a solution of the Padé-approximation problem of order (l, m).
The choice of order and degree of P and Q is justified in [2].
For every non-negative integers l and m a solution of the problem described in Definition 1.2 exists [2]. We call the quotient of two abstract polynomials $P / Q: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \rightarrow P(x) / Q(x)$ reducible if there exist abstract polynomials T, R, S such that $P=T \cdot R$ and $Q=T \cdot S$ and $\partial T \geqslant 1$. If (P, Q) and (R, S) are solutions of (1) (for l and m fixed), then $P(x) \cdot S(x)=$ $Q(x) \cdot R(x)$ for every x in \mathbb{R}^{n}. This "equivalence-property" of solutions of (1) justifies the following definitions.

Definition 1.3. Let (P, Q) be a couple of abstract polynomials satisfying (1), with $Q(x) \not \equiv 0$. Let P_{*} / Q_{*} be the irreducible form of P / Q such that $Q_{*}(0)=1$. If this form exists, we call it the normalized (abstract) multivariate Padé-approximant (APA) of order (l, m) for F (normalized ($l, m)-\mathrm{APA}$).

Remark that for the polynomial T such that $(P, Q)=\left(P_{*} \cdot T, Q_{*} \cdot T\right)$:

$$
\partial_{0} T=\partial_{0} Q-\partial_{0} Q_{*} .
$$

For the normalized $(l, m)-A P A$ we have

$$
\begin{aligned}
l^{\prime} & :=\partial P_{*} \leqslant l, \\
m^{\prime} & :=\partial Q_{*} \leqslant m, \\
\partial_{0} T & \geqslant l m
\end{aligned}
$$

Definition 1.4. Let (P, Q) be a couple of abstract polynomials satisfying (1), with $Q(x) \not \equiv 0$. If the irreducible form P_{*} / Q_{*} is such that $\partial_{0} Q_{*} \geqslant 1$, then we call P_{*} / Q_{*} the (abstract) multivariate Padé-approximant of $\operatorname{order}(l, m)$ for $F((l, m)-\mathrm{APA})$.

The (l, m)-APA is unique up to a multiplicative constant in numerator and denominator.

For the ($l, m)-\mathrm{APA}$

$$
\begin{aligned}
l^{\prime} & :=\partial P_{*}-\partial_{0} Q_{*} \leqslant l, \\
m^{\prime} & :=\partial Q_{*}-\partial_{0} Q_{*} \leqslant m, \\
\partial_{0} T & \geqslant l m-\partial_{0} Q_{*} .
\end{aligned}
$$

From now on we shall often consider the normalized $(l, m)-$ APA to be a special case of the $(l, m)-$ APA and not mention the specification normalized.

2. Existence of a Nontrivial Solution of (1)

(a) When $n=1$, the definition of the abstract Pade-approximant is precisely the classical definition [3].
(b) The problem (1) is equivalent with the solution of two linear systems of equations:

$$
\begin{array}{lr}
C_{0} \cdot B_{l m} x^{l m}=A_{l m} x^{l m}, & \forall x \in \mathbb{R}^{n}, \\
\vdots & \\
C_{l} x^{l} \cdot B_{l m} x^{l m}+\cdots+C_{0} \cdot B_{l m+1} x^{l m+l}=A_{l m+l} x^{l m+l}, \\
C_{l+1} x^{l+1} \cdot B_{l m} x^{l m}+\cdots+C_{l+1-m} x^{l+l-m} \cdot B_{l m+m} x^{l m+m}=0, & \tag{1a}\\
\vdots & \\
C_{l+m} x^{l+m} \cdot B_{l m} x^{l m}+\cdots+C_{l} x^{l} \cdot B_{l m+m} x^{l m+m}=0, & \\
\end{array}
$$

with $\quad B_{l m+j} x^{l m+j}=0 \quad$ for $j>m$,

$$
\begin{aligned}
& C_{k} x^{k}=(1 / k!) F^{(k)}(0) x^{k} \text { for } k \geqslant 0 \\
& C_{k} x^{k} \equiv 0 \quad \text { for } k<0
\end{aligned}
$$

The homogeneous system contains $N_{e}=\binom{n+l m+l+m}{l m+l+m}-\binom{n+l m+l}{l m+l}$ equations in $N_{u}=\binom{n+l m+m}{l m+m}-\binom{n+l m-1}{l m-1}$ unknown coefficients of the $B_{l m+j}$. For $n=2: N_{u}-N_{e}=1$ and so one unknown can be chosen and a nontrivial solution always exists. For $n>2$: the nontriviality of the solution is proved as follows. Suppose that the matrix

$$
\left(\begin{array}{ccc}
C_{l+1} x^{l+1} & \cdots & C_{l+1-m} x^{l+1 \cdots m} \\
\vdots & & \vdots \\
C_{l+m} x^{l+m} & & C_{1} x^{\prime}
\end{array}\right)
$$

of the homogeneous system (Ib) has rank k, in other words, that a vector x in $\mathrm{F}: n$ exists such that the determinant of a $k \times k$ submatrix is nonzero. In any case $0 \leqslant k \leqslant m$. The homogeneous system (1b) can now be reduced to a homogeneous system of k equations in $k+1$ of the unknown $B_{t m+, j} x^{\prime m \cdots ;}$ $(j=0, \ldots, m)$:

$$
\begin{align*}
& \grave{i}_{i=0}^{k} C_{l+h_{1}-j_{i}} x^{l+h_{1} j_{i}} B_{l m-j_{i}} x^{l m \cdot j_{i}}=0, \tag{1c}\\
& \sum_{i=0}^{k} C_{l+h_{k}-j_{i}} x^{l+h_{1}-j_{i}} B_{l m+j_{i}} x^{l m \cdot j_{i}}=0, \\
& \text { with } \quad 1 \leqslant h_{i} \leqslant m \text { for } i=1 \ldots . . k \text {, } \\
& \text { and } \quad 0 \leqslant j_{i} \leqslant m \text { for } i=0, \ldots . k \text {. } \\
& j_{0}<j_{1}<\cdots<j_{k} .
\end{align*}
$$

In fact we have removed ($m-k$) rows and ($m-k$) columns of the coef ficient matrix of system (1b) to obtain the coefficient matrix of system (1c). We will number the rows that we have removed $\bar{h}_{1}, \ldots, \bar{h}_{m k}$ and the columns that we have removed $\bar{J}_{1}+1 \ldots, \bar{J}_{m} k+1$ (notice that the rows that we have retained are numbered h_{1}, \ldots, h_{k} and the columns $j_{0}+1, \ldots, j_{k}+1$).
If $k=m$ then a solution of (1b) can be calculated by means of the following determinants.

$$
\begin{aligned}
& B_{l m} x^{\prime m}=\left[\begin{array}{clllll}
C_{1} x^{\prime} & & & C_{1.1}, x^{\prime \cdot 1} & m \\
\vdots & & & \vdots &
\end{array}\right],
\end{aligned}
$$

Let us introduce the following notations:

$$
\begin{aligned}
& D(x)=\left|\begin{array}{ccc}
C_{l+\bar{h}_{1}-\bar{j}_{1}} x^{l+\bar{h}_{1}-\bar{j}_{l}} & \cdots & C_{l+\bar{h}_{1}-\bar{j}_{m-k}} x^{l+\bar{h}_{1}-\bar{j}_{m-k}} \\
\vdots & & \vdots \\
C_{l+\bar{h}_{m-k}-j_{1}} x^{l+\bar{h}_{m-k}-\bar{J}_{1}} & \cdots & C_{l+\bar{h}_{m-k}-j_{m-k}} x^{l+\bar{h}_{m-k}-\bar{J}_{m-k}}
\end{array}\right| \\
& D_{j_{0}}(x)=\left|\begin{array}{ccc}
C_{l+h_{1}-j_{1}} x^{l+h_{1}-j_{1}} & \cdots & C_{l+h_{1}-j_{k}} x^{l+h_{1}-j_{k}} \\
\vdots & \vdots \\
C_{l+h_{k}-j_{1}} x^{l+h_{k}-j_{1}} & \cdots & C_{l+h_{k}-j_{k}} x^{l+h_{k}-j_{k}}
\end{array}\right|, \\
& D_{j_{i}}(x)=\left|\begin{array}{ccc}
C_{l+h_{1}-j_{1}} x^{l+h_{1}-j_{1}} & \begin{array}{c}
-C_{l+h_{1}-j_{0}} x^{l+h_{1}-j_{0}} \\
\vdots \\
C_{l+h_{k}-j_{1}}
\end{array} x^{l+h_{k}-j_{l}} & \cdots \\
\vdots & C_{l+h_{1}-j_{k}} x^{l+h_{1}-j_{k}} \\
-C_{l+h_{k}-j_{0}} x^{l+h_{k}-j_{0}}
\end{array}\right| \\
& \begin{array}{c}
\text { ith column in } D_{j_{0}}(x) \text { replaced by } \\
\text { this column }(i=1, \ldots, k)
\end{array}
\end{aligned}
$$

Then clearly, because of the Laplacian expansion of the determinant $B_{l m+j} x^{l m+j}$, for $j=j_{0}, j_{1}, \ldots, j_{k}$,

$$
B_{l m+j_{i}} x^{l m+j_{i}}=D(x) \cdot D_{j_{i}}(x)+\cdots
$$

where $D(x)$ is a p-linear bounded operator with $0 \leqslant p \leqslant l m+j_{0}$.
For $k<m$ a nontrivial solution of system (1b) is now given by

$$
\begin{array}{ll}
B_{l m+j} x^{l m+j}=0 & \text { for } j=j_{i}(i=1, \ldots, m-k) \\
B_{l m+j} x^{l m+j}=E_{p} x^{p} \cdot D_{j_{i}}(x) & \text { for } j=j_{i}(i=0, \ldots, k)
\end{array}
$$

with $E_{p} x^{p}$ a nontrivial symmetric p-linear bounded operator: $\left(\mathbb{R}^{n}\right)^{p} \rightarrow \mathbb{R}$, because one of the $D_{j_{i}}(x)$ is nontrivial. We also prove the following important theorem.

Theorem 2.1. Let P_{*} / Q_{*} be the (l, m-APA for F. Then there exists $s, l m-\partial_{0} Q_{*} \leqslant s \leqslant l m-\partial_{0} Q_{*}+\min \left(l-l^{\prime}, m-m^{\prime}\right), \quad$ and $\quad a \quad$ nontrivial symmetric s-linear bounded operator $D_{s}:\left(\mathbb{R}^{n}\right)^{s} \rightarrow \mathbb{R}$, such that $\left(P_{*}(x) \cdot D_{s} x^{s}\right.$, $\left.Q_{*}(x) \cdot D_{s} x^{s}\right)$ satisfies (1).

Proof. Because (1) is solvable for every $l, m \in \mathbb{N}$ we may consider abstract polynomials P and Q that satisfy (1) and supply P_{*} and Q_{*} with $Q(x) \not \equiv 0$. Because of Definition 1.4 or 1.3 , there exists an abstract polynomial T such that $P=P_{*} \cdot T$ and $Q=Q_{*} \cdot T$. Now $\partial_{0} T=$ $\partial_{0} Q-\partial_{0} Q_{*} \geqslant l m-\partial_{0} Q_{*}$. We write

$$
s=\partial_{0} T=l m-\partial_{0} Q_{*}+r \leqslant \partial T T^{\partial Q-\partial P_{*} \leqslant l m+l-l^{\prime}-\partial_{0} Q_{*}}
$$

with $\quad r \geqslant 0$. So $\quad l m-\partial_{0} Q_{*} \leqslant s \leqslant l m-\partial_{0} Q_{*}+\min \left(l-l^{\prime}, m-m^{\prime}\right)$. For $T(x)=D_{s} x^{2}+D_{s+1} x^{s+1}+\cdots:\left|\left(F \cdot Q_{*}-P_{*}\right) \cdot D_{s}\right|(x)=0\left(x^{l m+1+m+1}\right)$ because of the equivalence of (1) with (1a) and (1b).

We illustrate this theorem with an example. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}:\binom{x_{1}}{x_{2}} \rightarrow 1+\sin \left(x_{1}+x_{1} x_{2}\right)$. The (1,2)-APA is

$$
\frac{x_{1}-x_{2}+\frac{5}{6} x_{1}^{2}-2 x_{1} x_{2}}{x_{1}-x_{2}-x_{1} x_{2}-\frac{1}{6} x_{1}^{2}+x_{1} x_{2}^{2}+\frac{1}{6} x_{1}^{3}} .
$$

Theorem 2.1 holds with $s=1, \partial_{0} Q_{*}=1$ and $D_{1}\binom{x_{1}}{x_{2}}=x_{1}$.
When we compare this theorem with the similar one for the classical Pade-approximant we remark that the term $l m$ in s is due to the choice of the order of the couple of polynomials (P, Q) in Definition 1.2 and that the term $\left(-\partial_{0} Q_{*}\right)$ in s is due to the fact that sometimes the abstract Padeapproximant cannot be normalized as in Definition 1.3.

3. Covariance Properties

Several covariance properties can already be found in [3, pp. 204-206], where they are formulated for operator Padé-approximants (the multivariate Padé-approximants are a special case); normalized (l, m)-APA are transformed into normalized (l, m)-APA and $(l, m)-A P A$ are transformed into (l, m)-APA.

Another property, especially for multivariate Padé-approximants, is added and proved here.

Theorem 3.1. Let $y_{i}=a_{i} x_{i} /\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)$ for $i=1, \ldots, n$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$. Let the $(l, l)-$ APA for $F(x)$ be $P_{*}(x) / Q_{*}(x)$ and let

$$
\begin{aligned}
G(x) & :=F(y), \\
R_{*}(x) & :=P_{*}(y) \cdot\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{k}
\end{aligned}
$$

and

$$
S_{*}(x):=Q_{*}(y) \cdot\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{k}
$$

with $k=\max \left(\partial P_{*}, \partial Q_{*}\right)$. Then the (l,l)-APA for $G(x)$ is $R_{*}(x) / S_{*}(x)$.

Proof. Because of Theorem 2.1 there exists a positive integer s, $l^{2}-\partial_{0} Q_{*} \leqslant s \leqslant l^{2}-\partial_{0} Q_{*}+\min \left(l-\partial P_{*}+\partial_{0} Q_{*}, l-\partial Q_{*}+\partial_{0} Q_{*}\right)$, and a nontrivial symmetric s-linear bounded operator $D_{s}:\left(\mathbb{R}^{n}\right)^{s} \rightarrow \mathbb{R}$ such that $\left[\left(F \cdot Q_{*}-P_{*}\right) \cdot D_{s}\right](x)=o\left(x^{\prime 2+2 l+1}\right)$. We write

$$
D_{s}(y)=\frac{D_{s}\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)}{\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{s}}=\frac{\bar{D}_{s}(x)}{\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{s}}
$$

For $k=\max \left(\partial P_{*}, \partial Q_{*}\right):$

$$
\begin{array}{r}
\partial_{0}\left(R_{*} \cdot \bar{D}_{s}\right) \geqslant \partial_{0}\left(P_{*} \cdot D_{s}\right) \geqslant l^{2} \\
\partial_{0}\left(S_{*} \cdot \bar{D}_{s}\right) \geqslant \partial_{0}\left(Q_{*} \cdot D_{s}\right) \geqslant l^{2} \\
\max \left|\partial\left(R_{*} \cdot \bar{D}_{s}\right), \partial\left(S_{*} \cdot \bar{D}_{s}\right)\right| \leqslant k+s \leqslant l^{2}+l
\end{array}
$$

So

$$
\begin{aligned}
& {[(G \cdot} \\
& \left.\left.\quad S_{*}-R_{*}\right) \cdot \bar{D}_{s}\right](x) \\
& \quad=\left[\left(F \cdot Q_{*}-P_{*}\right) \cdot D_{s}\right](y) \cdot\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{k+s} \\
& \quad=O\left(y^{l^{2+2 l+1}}\right) \cdot\left(1+b_{1} x_{1}+\cdots+b_{n} x_{n}\right)^{k \mid s} \\
& \quad=O\left(x^{12+2 l+1}\right)
\end{aligned}
$$

And thus $\left[\left(G \cdot S_{*}-R_{*}\right) \cdot \bar{D}_{s}\right](x)=O\left(x^{l 2+2 i+1}\right)$.
We will now show that the irreducible form of $\left[R_{*} \cdot \bar{D}_{s}\left|(x) /\left|S_{*} \cdot \bar{D}_{s}\right|(x)\right.\right.$ is $R_{*}(x) / S_{*}(x)$. Suppose

$$
\begin{aligned}
& R_{*}(x)=\bar{U}(x) \cdot \bar{V}(x) \\
& S_{*}(x)=\bar{U}(x) \cdot \bar{W}(x)
\end{aligned} \quad \text { with } \quad \partial \bar{U} \geqslant 1 .
$$

Since

$$
\frac{a_{1} x_{1}}{y_{1}}=\frac{a_{2} x_{2}}{y_{2}}=\cdots=\frac{a_{n} x_{n}}{y_{n}}=1+\sum_{i=1}^{n} b_{i} x_{i}
$$

we know that

$$
x_{i}=\frac{a_{n} y_{i}}{a_{i} y_{n}} x_{n} \quad \text { for } \quad i=1, \ldots, n
$$

Consequently

$$
1+\sum_{i=1}^{n} b_{i} x_{i}=1+x_{n} \sum_{i=1}^{n} b_{i} \frac{a_{n} y_{i}}{a_{i} y_{n}}=\frac{a_{n} x_{n}}{y_{n}}
$$

or

$$
x_{n}=1 /\left(\frac{a_{n}}{y_{n}}-b_{n}-\sum_{i=1}^{n-1} b_{i} \frac{a_{n} y_{i}}{y_{n} a_{i}}\right) .
$$

So we can write

$$
x_{i}=y_{i} /\left(a_{i}\left(1-\sum_{i=1}^{n} b_{i} \frac{y_{i}}{a_{i}}\right)\right) .
$$

Thus

$$
\begin{aligned}
& R_{*}(x)=P_{*}(y)\left(1+\sum_{i=1}^{n} b_{i} x_{i}\right)^{k}, \\
& S_{*}(x)=Q_{*}(y)\left(1+\sum_{i=1}^{n} b_{i} x_{i}\right)^{k},
\end{aligned}
$$

implies that

$$
\begin{aligned}
& P_{*}(y)=\bar{U}(x) \cdot \bar{V}(x)\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)^{k}, \\
& Q_{*}(y)=\bar{U}(x) \cdot \bar{W}(x)\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)^{k}
\end{aligned}
$$

and thus

$$
\begin{aligned}
& P_{*}(y)=U(y) \cdot V(y), \\
& Q_{*}(y)=U(y) \cdot W(y),
\end{aligned}
$$

with

$$
\begin{aligned}
U(y)= & \bar{U}\left(y_{1} /\left(a_{1}\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)\right), \ldots, y_{n} /\left(a_{n}\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)\right)\right) \\
& \cdot\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)^{k^{\prime}}, \\
V(y)= & \bar{V}\left(x_{1}, \ldots, x_{n}\right) \cdot\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)^{k-k^{\prime}}, \\
W(y)= & \bar{W}\left(x_{1}, \ldots, x_{n}\right) \cdot\left(1-\sum_{i=1}^{n} \frac{b_{i}}{a_{i}} y_{i}\right)^{k-k^{\prime}}, \\
k^{\prime}= & \partial \bar{U}(\partial \bar{U}+\partial \bar{V} \leqslant k \text { and } \partial \bar{U}+\partial \bar{W} \leqslant k) .
\end{aligned}
$$

This contradicts the fact that P_{*} / Q_{*} is irreducible.

Since $\partial_{0} S_{*}=\partial_{0} Q_{*}$ and $S_{*}(0)=Q_{*}(0)$, the normalized (l, l)-APA for F is transformed into the normalized (l, l)-APA for G and the (l, l)-APA for F is transformed into the $(l, l)-\mathrm{APA}$ for G.

4. Projection-Property

We introduce the following notations:

$$
\begin{aligned}
j_{\tilde{x}} & =\left(x_{1}, \ldots, x_{j-1}, o, x_{j+1}, \ldots, x_{n}\right), \\
x_{j^{\prime}} & =\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)
\end{aligned}
$$

THEOREM 5.1. If the (l,m)-APA for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is P_{*} / Q_{*} and

$$
\begin{aligned}
j & \in\{1, \ldots, n\}, \\
S\left(x_{j^{\prime}}\right) & :=Q_{*}\left({ }^{j} \tilde{x}\right) \not \equiv 0, \\
R\left(x_{\prime^{\prime}}\right) & :=P_{*}\left({ }^{j} \tilde{x}\right), \\
G_{j}\left(x_{\prime^{\prime}}\right) & :=F\left({ }^{j} \tilde{x}\right),
\end{aligned}
$$

then the $(l, m)-\mathrm{APA}$ for $G_{j}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ is the irreducible form R_{*} / S_{*} of R / S.

Proof. Since the $(l, m)-\mathrm{APA}$ is $P_{*} / Q_{*}: \partial_{0}\left(F \cdot Q_{*}-P_{*}\right)=\partial_{0} Q_{*}+l^{\prime}+$ $m^{\prime}+t+1$ with $t \geqslant 0\left[3\right.$, p. 208]. Using a Minkowski-norm in $\mathbb{R}^{n}:\left\|{ }^{j} \tilde{x}\right\|$ in \mathbb{R}^{n} equals $\left\|x_{i^{\prime}}\right\|$ in \mathbb{R}^{n-1}. Thus $\left(F \cdot Q_{*}-P_{*}\right)(\tilde{x})=\left(G_{j} \cdot S-R\right)\left(x_{j_{j}}\right)=$ $O\left(x_{j,}^{\partial_{0} Q_{*}+l^{\prime}+m^{\prime}+t+1}\right)$. Now $\partial P_{*}=\partial_{0} Q_{*}+l^{\prime} \leqslant \partial P \leqslant l m+l$ and $\partial Q_{*}=$ $\partial_{0} Q_{*}+m^{\prime} \leqslant \partial Q \leqslant l m+m \quad$ imply $\quad l m-\partial_{0} Q_{*}+\min \left(l-l^{\prime}, m-m^{\prime}\right) \geqslant 0$. Take $s=l m-\partial_{0} Q_{*}+\min \left(l-l^{\prime}, m-m^{\prime}\right)$ and a symmetric s-linear bounded operator $D_{s}:\left(\mathbb{R}^{n-1}\right)^{s} \rightarrow \mathbb{R}$ with $D_{s} x^{s}{ }_{j}, \not \equiv 0$. The couple of polynomials ($R \cdot D_{s}, S \cdot D_{s}$) satisfies (1) for G_{j} since

$$
\begin{aligned}
\partial_{0}\left(R \cdot D_{s}\right) & =\partial_{0} R+s \geqslant \partial_{0} P_{*}+s \geqslant l m \\
\partial_{0}\left(S \cdot D_{s}\right) & -\partial_{0} S+s \geqslant \partial_{0} Q_{*}+s \geqslant l m \\
\partial\left(R \cdot D_{s}\right) & =\partial R+s \leqslant \partial P_{*}+s=l m+\min \left(l, m-m^{\prime}+l^{\prime}\right) \\
& \leqslant l m+l, \\
\partial\left(S \cdot D_{s}\right) & =\partial S+s \leqslant \partial Q_{*}+s=l m+\min \left(l-l^{\prime}+m^{\prime}, m\right) \\
& \leqslant l m+m
\end{aligned}
$$

$$
\begin{aligned}
\partial_{0}\left[\left(G_{j} \cdot S-R\right) \cdot D_{s}\right] & =\partial_{0} Q_{*}+l^{\prime}+m^{\prime}+t+1+s \\
& =l m+\min \left(l+m^{\prime}+t, m+l^{\prime}+t\right)+1 \\
& \geqslant l m+l+m+1 \quad \text { since } \\
& m \leqslant m^{\prime}+t, \quad l \leqslant l^{\prime}+t
\end{aligned}
$$

Also $\left(S \cdot D_{s}\right)\left(x_{\prime_{j}^{\prime}}\right) \not \equiv 0$ and if $Q_{*}(0)=1$ then $S_{*}(0)=1$.
We give some examples and illustrate that it is very well possible that if P_{*} / Q_{*} is the $(l, m)-\mathrm{APA}$ for $F(x)$, then R_{*} / S_{*} is the normalized (l, m)-APA for $G_{j}\left(x_{j_{j}}\right)$. Take $F: \mathbb{R}^{2} \rightarrow \mathbb{R}:\binom{x}{x 2} \rightarrow \frac{1}{2}\left(1+e^{x_{1}+x_{2}}\right)$. The normalized (1, 1)-APA for F is $1 /\left(1-\frac{1}{2}\left(x_{1}+x_{2}\right)\right)$. For $j-1$:

$$
\begin{aligned}
& x_{1}=o, \\
& G_{1}: \mathbb{R} \rightarrow \mathbb{R}: x_{2} \rightarrow \frac{1}{2}\left(1+e^{x_{2}}\right) \\
& \text { normalized } \quad(1,1)-\text { APA for } G_{1} \text { is } 1 /\left(1-\frac{1}{2} x_{2}\right)
\end{aligned}
$$

For $j=2$:

$$
\begin{aligned}
& x_{2}=o, \\
& G_{2}: \mathbb{P} \rightarrow \mathbb{R}: x_{1} \rightarrow \frac{1}{2}\left(1+e^{x_{1}}\right), \\
& \text { normalized }(1,1) \text {-APA for } G_{2} \text { is } 1 /\left(1-\frac{1}{2} x_{1}\right) .
\end{aligned}
$$

Take

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}:\binom{x_{1}}{x_{2}} \rightarrow \frac{x_{1} e^{x_{1}}-x_{2} e^{x_{2}}}{x_{1}-x_{2}}
$$

The (1,1 -APA for F is

$$
\frac{x_{1}+x_{2}+0.5\left(x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}\right)}{x_{1}+x_{2}-0.5\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)}
$$

For $j=2$:

$$
\begin{aligned}
& x_{2}=o, \\
& G_{2}: \mathbb{R} \rightarrow \mathbb{R}: x_{1} \rightarrow e^{x_{1}}, \\
& \text { normalized }(1,1) \text {-APA for } G_{2} \text { is }\left(1+0.5 x_{1}\right) /\left(1-0.5 x_{1}\right) .
\end{aligned}
$$

We also searched for a product property of the following kind. Let $\left(P_{1} / Q_{1}\right)\left(x_{1}, \ldots, x_{k}\right)$ be the $(l, m)-A P A$ for $F_{1}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and let $\left(P_{2} / Q_{2}\right)$ $\left(x_{k+1}, \ldots, x_{n}\right)$ be the $(l, m)-\mathrm{APA}$ for $F_{2}: \mathbb{R}^{n-k} \rightarrow \mathbb{R}$. Then is

$$
\frac{P}{Q}(x)=\frac{P_{1}\left(x_{1}, \ldots, x_{k}\right) \cdot P_{2}\left(x_{k+1}, \ldots, x_{n}\right)}{Q_{1}\left(x_{1}, \ldots, x_{k}\right) \cdot Q_{2}\left(x_{k+1}, \ldots, x_{n}\right)}
$$

the (l, m)-APA for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \rightarrow F(x)=F_{1}\left(x_{1}, \ldots, x_{k}\right) \cdot F_{2}\left(x_{k+1}, \ldots, x_{n}\right)$? In fact it is not obvious that the multivariate approximants should have this property. The following counterexample proves it.

Let $F_{1}: \mathbb{R} \rightarrow \mathbb{R}: x_{1} \rightarrow e^{x_{1}}$ and $F_{2}: \mathbb{R} \rightarrow \mathbb{R}: x_{2} \rightarrow e^{x_{2}}$. Then $F: \mathbb{R}^{2} \rightarrow \mathbb{R}:$ $\binom{x_{1}}{x_{2}} \rightarrow e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$. Take $l=1$ and $m=2$.

The (1, 2)-APA for F_{1} is

$$
\frac{P_{1}}{Q_{1}}\left(x_{1}\right)=\frac{1+\frac{1}{3} x_{1}}{1-\frac{2}{3} x_{1}+\frac{1}{6} x_{1}^{2}}
$$

and for F_{2} is

$$
\frac{P_{2}}{Q_{2}}\left(x_{2}\right)=\frac{1+\frac{1}{3} x_{2}}{1-\frac{2}{3} x_{2}+\frac{1}{6} x_{2}^{2}}
$$

The (1,2)-APA for F is

$$
\frac{1+\frac{1}{3}\left(x_{1}+x_{2}\right)}{1-\frac{2}{3}\left(x_{1}+x_{2}\right)+\frac{1}{6}\left(x_{1}+x_{2}\right)^{2}} \neq \frac{P_{1}\left(x_{1}\right) \cdot P_{2}\left(x_{2}\right)}{Q_{1}\left(x_{1}\right) \cdot Q_{2}\left(x_{2}\right)} .
$$

Another kind of product-property, however, has been proved in $|3|$.

References

1. J. S. R. Chisholm, N-variable rational approximants, in "Padé and Rational Approximation: Theory and Applications" (E. B. Saff and R. S. Varga, Eds.), pp. 23-42, Academic Press, London/New York, 1977.
2. A. A. M. Cuyt, "Abstract Padé Approximants in Operator Theory," pp. 61-87, Lecture Notes in Mathematics No. 765, Springer-Verlag, Berlin/New York, 1979.
3. A. A. M. Cuyt, On the properties of abstract rational (1-point) approximants, J. Oper. Theory 6 (2) (1981), 195-216.
4. R. Hughes Jones, General rational approximants in N-variables, J. Approx. Theory 16 (1976), 201-233.
5. J. Karlsson and H. Wallin, Rational approximation by an interpolation procedure in several variables, in "Pade and Rational Approximation: Theory and Applications" (E. B. Saff and R. S. Varga, Eds.), pp. 83-100, Academic Press, London/New York. 1977.
6. D. Levin, General order Padétype rational approximants defined from double power series, J. Inst. Math. Appl. 18 (1976), 1-8.
7. C. H. Lutterodt, Rational approximants to holomorphic functions in n-dimensions, J. Math. Anal. Appl. 53 (1976), 89-98.
8. C. H. Lutterodt, A two-dimensional analogue of Pade-approximant theory, J. Phys. A 7 (9) (1974), 1027-1037.
9. L. B. Rall. "Computational Solution of Nonlinear Operator Equations," Wiley, New York, 1969.

[^0]: * This report was written during the fellowship of N.F.W.O. (Belgium).
 ${ }^{\dagger}$ Aspirant Belgisch Nationaal Fonds voor Wetenschappelijk Onderzoek.

