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How well can the concept of Pad�e approximant be generalized
to the multivariate case?
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Abstract

What we know about multivariate Pad�e approximation has been developed in the last 25 years. In the next sections
we compare and discuss many of these results. It will become clear that simple properties or requirements, such as the
uniqueness of the Pad�e approximant and consequently its consistency property, can play a crucial role in the development
of the multivariate theory. A separate section is devoted to a discussion of the convergence properties. At the end we
include an extensive reference list on the topic. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Pad�e approximants and Taylor series

Given a function f(z) through its Taylor series expansion at a certain point in the complex plane,
the Pad�e approximant [n=m]f of degree n in the numerator and m in the denominator for f is de�ned
by (for simplicity we use the Taylor series at the origin)

f(z) =
∞∑
i=0

cizi;

p(z) =
n∑
i=0

aizi;
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q(z) =
m∑
i=0

bizi;

(fq− p)(z) =
∑

i¿n+m+1

dizi (1)

with [n=m]f equal to the irreducible form of p=q. Three essential remarks about this de�nition have
to be made.
First, a count of unknowns and conditions in (1) tells us that we have to compute n + m + 2

coe�cients ai and bi from n+ m+ 1 linear equations

di =
i∑
k=0

ckbi−k − ai = 0; i = 0; : : : ; n+ m:

This is always possible and choosing at least one of the unknowns b0; : : : ; bm in the homogeneous
system di = 0 for i = n+ 1; : : : ; n+ m does not change the rational function p=q. It only in
uences
the numerator and denominator polynomials p(z) and q(z) in the sense that they are in fact only
determined up to multiplicative factor. The irreducible form is usually normalized in such a way that
the denominator evaluates to 1 at the origin (or the point at which the Taylor series development
was considered).
Second, in order for [n=m]f to exist for all natural numbers n and m, one has to obtain the Pad�e

approximant from the polynomials p and q satisfying the linear conditions (1), rather than imposing
(1) directly on the numerator and denominator of [n=m]f. The reason for this is that when solutions
of (1) are reducible, the numerator and denominator of the irreducible form do not necessarily satisfy
(1) anymore [2, pp. 20–21]. However, one can show that

(fq− p)(z) =
∑

i¿n+m+1

dizi ⇒ (f − [n=m]f)(z) =
∑

i¿@pn; m+@qn; m+t+1

eizi;

where @pn;m and @qn;m respectively indicate the exact degree of the numerator and denominator of
[n=m]f and t¿0.
Third, [n=m]f as given above is well-de�ned because one can prove that all solutions of (1) reduce

to one and the same irreducible form, for �xed f, n and m [6, p. 68]. Although this property is
simple to prove in the univariate case, it causes great problems when de�ning multivariate Pad�e
approximants.
Let us now take a look at the multivariate problem. We shall not use standard multi-index notation

because it may obscure some points that we are trying to make. Given a Taylor series expansion (for
simplicity we describe only the bivariate case but the higher-dimensional case is only notationally
more di�cult)

f(x; y) =
∑

(i; j)∈N2
cijxiy j (2)

one can group the di�erent de�nitions for multivariate Pad�e approximants into four main categories,
depending on how one deals with the data cij.
Rewriting f(x; y) as

f(x; y) =
∞∑
k=0

cik jk x
ik y jk
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is done in what we call the equation lattice group of de�nitions. This group includes popular
de�nitions such as [23,43,50,52,47,38,46,30]. Another way to deal with the information is to rewrite
f(x; y) as

f(x; y) =
∞∑
k=0


 ∑
i+j=k

cijxiy j

 :

We will refer to this approach as the homogeneous approach, and some very interesting and at the
same time intriguing facts have to be told about it. A third group of de�nitions looks at the Taylor
series development as

f(x; y) =
∞∑
i=0


 ∞∑
j=0

cijy j

 xi =

∞∑
i=0

ci(y)xi

and treats the problem partly in a symbolic way. Interchanging the role of x and y does not nec-
essarily lead to the same results. De�nitions in this category can be found in [85,91]. This type
of de�nitions has not yet been studied extensively. A fourth approach builds on the link between
Pad�e approximants and corresponding continued fractions. Since the univariate Pad�e approximant
[n=m]f can be obtained as the convergent of a corresponding ordinary continued fraction, multivari-
ate de�nitions have been introduced that consider convergents of so-called corresponding branched
continued fractions. Because these de�nitions have been reviewed in separate papers on the subject
[95,100], we only include bibliographic material on these de�nitions here.
A few multivariate de�nitions are di�cult to categorize: in [1,3] the problem is treated as a

moment problem, in [4] as a model reduction problem and in [7] as a least-squares problem.

2. Univariate Pad�e approximants

In this section we list the properties of the univariate Pad�e approximant that we want to examine
for each of the multivariate generalizations below. It was already pointed out that we start from (1)
and not from conditions on [n=m]f itself and that [n=m]f is always and uniquely de�ned in that way.
The unicity of the irreducible form [n=m]f of the rational functions p=q with p and q satisfying (1)
will be a point of discussion in the sequel. In the univariate case it is based on the next theorem
that states that di�erent solutions of (1) reduce to the same rational function.

Theorem 2.1. Let p1 and q1 as well as p2 and q2 satisfy conditions (1). Then

(p1q2)(z) = (p2q1)(z):

Another point of discussion is the desirability of certain properties for the multivariate Pad�e
approximant. For instance, the univariate Pad�e approximant automatically satis�es a consistency
property because of the unicity of the irreducible form. This property means that for an irreducible
rational function f(z), given only by its Taylor series, the Pad�e approximation process reconstructs
the given rational function when calculating its appropriate Pad�e approximant. This consistency
property is in fact quite logical and hence very desirable.
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Theorem 2.2. If f(z) = g(z)=h(z) with h(0) = 1 and

g(z) =
n∑
i=0

gizi;

h(z) =
m∑
i=0

hizi;

then for f(z) irreducible and k¿n and l¿m we �nd [k=l]f = [n=m]f = f.

The univariate Pad�e approximant also satis�es a number of covariance properties. A number of
operators � exist that can work on the series development f and commute more or less with the
Pad�e operator Pn;m that associates with f its Pad�e approximant [n=m]

f:

�[Pn;m(f)] =Pn�;m�[�(f)]

with n� and m� depending on the considered �. It is easy to see that the operators � have to be
rational.
The most important covariance property is the reciprocal covariance. It allows one, for instance,

to mirror three-term recurrence relations among Pad�e approximants, that are valid only for n6m, to
the case m6n by switching from f to 1=f.

Theorem 2.3. Let f(0) 6= 0 and let [n=m]f = pn;m=qn;m. Then

[m=n]1=f =
qn;m=f(0)
pn;m=f(0)

:

Theorem 2.4. Let a; b; c and d be complex numbers with cf(0) + d 6= 0 and let [n=n]f = pn;n=qn;n.
Then

[n=n](af+b)=(cf+d) =
(apn;n + bqn;n)=(cf(0) + d)
(cpn;n + dqn;n)=(cf(0) + d)

:

Is there a multivariate de�nition that preserves all these properties or do we have to make a choice
among the multivariate generalizations depending on which theorems we want our approximant to
satisfy? Moreover, do we want the multivariate Pad�e approximant to satisfy a projection property,
reducing to the univariate Pad�e approximant when all but one variable are equated to zero in the
given function and its approximant? Discussion exists about a possible factorization property. Some
researchers desire that if f(x; y) = g(x)h(y), its multivariate Pad�e approximant is the product of
the univariate Pad�e approximants for g and h. We think however that this depends greatly on the
functions g and h in question. Consider, for instance,

g(x) = exp(x); h(y) = exp(y); f(x; y) = exp(x + y):
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Then

[1=2]f × [1=2]g= (1 + x=3)(1 + y=3)
(1− 2x=3 + x2=6)(1− 2x=3 + x2=6)

6= 1 + (x + y)=3
1− 2(x + y)=3 + (x + y)2=6 ;

where this last function is a much more logical candidate as a multivariate Pad�e approximant for
f = gh.
In the last century many convergence properties for univariate Pad�e approximants were given,

describing their approximation power for several function classes. It makes sense to approximate
locally meromorphic functions having only poles in a certain region, by rational functions whose
denominator degree equals at least the number of poles in the considered region. Functions with
a countable number of singularities, not necessarily poles, can very well be approximated by the
Pad�e approximants [n=n]f. Most of these results have one or other multivariate counterpart. The
theorems proven for the di�erent multivariate generalizations di�er slightly in the conditions they
impose on the multivariate function that is being approximated. More information on this can be
found in Section 6.
To top o� the discussion we shall comment in short on the computational algorithms that exist

for each of the multivariate de�nitions that are being discussed.

3. The equation lattice approach

3.1. De�nition

For f(x; y) given by (2), we can de�ne a multivariate Pad�e approximant p=q to f by determining
p(x; y) and q(x; y) from accuracy-through-order conditions as follows. Let the polynomials p(x; y)
and q(x; y) be of the general form

p(x; y) =
∑
(i; j)∈N

aijxiy j; (3)

q(x; y) =
∑
(i; j)∈D

bijxiy j; (4)

where N (for numerator) and D (for denominator) are nonempty �nite subsets of N2. The sets N
and D indicate in a way the degree of the polynomials p(x; y) and q(x; y). Let us denote

n+ 1 = #N; m+ 1 = #D:

In analogy with the univariate case we also choose a set of indices E (for equations) such that

N ⊆E; (5a)

#(E\N ) = m= #D − 1; (5b)

E satis�es the inclusion property: (5c)
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Here (5c) means that when a point belongs to the index set E, then the rectangular subset of points
emanating from the origin with the given point as its furthermost corner, also lies in E. In other
words,

(i; j) ∈ E ⇒ {(k; l) | k6i; l6j}⊆E:
We then impose the following accuracy-through-order conditions on the polynomials p(x; y) and
q(x; y), namely

(fq− p)(x; y) =
∑

(i; j)∈N2\E
dijxiy j: (6)

Condition (5a) enables us to split the system of equations

dij = 0; (i; j) ∈ E
in an inhomogeneous part de�ning the numerator coe�cients

i∑
�=0

j∑
�=0

c��bi−�; j−� = aij; (i; j) ∈ N (7a)

and a homogeneous part de�ning the denominator coe�cients
i∑

�=0

j∑
�=0

c��bi−�; j−� = 0; (i; j) ∈ E\N (7b)

and is not as essential as (5b). In fact, conditions (5a) and (5b) could be replaced by #N + #D =
#E + 1. By convention bkl = 0 if (k; l) 6∈ D. Condition (5b) guarantees the existence of a nontrivial
denominator q(x; y) because the homogeneous system has one equation less than the number of
unknowns and so one unknown coe�cient can be chosen freely. Condition (5c), together with the
Leibniz product rule, �nally takes care of the real Pad�e approximation property, namely

q(0; 0) 6= 0⇒
(
f − p

q

)
(x; y) =

∑
(i; j)∈N2\E

d̃ijxiy j: (7c)

If E does not satisfy the inclusion property, then (6) does not imply[
1
q
(fq− p)

]
(x; y) =

(
f − p

q

)
(x; y) =

∑
(i; j)∈N2\E

d̃ijxiy j

since in that case f − p=q also contains terms resulting from the multiplication of the holes in E
by (1=q)(x; y). We denote the set of rational functions p=q satisfying (6) by [N=D]fE and we call it
the general multivariate Pad�e approximant for f.
For a univariate function f(z) the above construction reduces to de�ning subsets N , D and E of N

to respectively index the numerator, denominator and approximation conditions (1). These univariate
index sets are then given by N = {0; : : : ; n}; D = {0; : : : ; m} and E = {0; : : : ; n+ m}. In going from
one to many variables a variety of choices for these index sets is now introduced.
Because of the freedom in choosing the sets N , D and E, the equation lattice de�nition covers a

variety of approximation schemes, sometimes with minor variations on the general de�nition above.
In [50–52,49,55,20,21] rectangular schemes are studied, in [22,21,29,46,38] triangular schemes, and
in [23,43–45] a combination of both. For more information we also refer to [47,36].
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In general, uniqueness of the general multivariate Pad�e approximant, in the sense that all rational
functions in [N=D]fE reduce to the same irreducible form, is not guaranteed, unless the index set
E\N supplies a homogeneous system of linearly independent equations. It is obvious that at least
one non-trivial solution of (6) exists because the number of unknown coe�cients bij is one more
than the number of conditions in (7b). But it is not so (unlike in the univariate case) that di�erent
solutions p1; q1 and p2; q2 of (6) are necessarily equivalent, meaning that (p1q2)(x; y)=(p2q1)(x; y).
Hence p1=q1 and p2=q2 may be di�erent functions. In general, one can only say that

(p1q2 − q1p2)(x; y) =
∑

(i; j)∈N×D\E
eijxiy j;

where

N × D = {(i + k; j + l) | (i; j) ∈ N; (k; l) ∈ D}:
One way to enforce a unicity property is to choose the index set E as large as possible, by adding
conditions as soon as there are linearly dependent equations in (7b), but this is not always possible.
This in fact amounts to weakening (5b) to #N + #D6#E + 1.
This phenomenon basically also explains why the equation lattice de�nitions do not satisfy a

consistency property, unless again the index set E\N supplies a homogeneous system of linearly
independent equations.

3.2. Consistency property

The consistency property would mean that for an irreducible rational function

f(x; y) =
g(x; y)
h(x; y)

=

∑
(i; j)∈N gijx

iy j∑
(i; j)∈D hijxiy j

and for a solution p(x; y)=q(x; y) ∈ [N=D]fE we want to �nd that p=q and g=h are equivalent. In other
words,

(ph− gq)(x; y) = 0:
It is clear that this is the case if the general multivariate Pad�e approximation problem to f has
a unique solution, because then both p=q and g=h satisfy the approximation conditions (6). If the
solution is non-unique we can get into trouble because of the nonunicity of the irreducible form of
the Pad�e approximant as pointed out in the previous section. A solution of the form

2− �− (1 + 2�)x + 2�y
�− 2 + �x + (1− �)y

has 3 di�erent irreducible forms:

�=−1: − 1;

�=0:
2− x

− 2 + y ;

�=1:
1− 3x + 2y
− 1 + x :
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These irreducible forms cannot all together coincide with g=h. In the context of the consistency
property the relations k¿n and l¿m in Theorem 2.2 have to be interpreted as Nk ⊇N and Dl⊇D
where N and D respectively index the numerator and denominator polynomial of the irreducible
f(x; y).

3.3. Covariance properties

Chisholm, Hughes Jones, Graves-Morris and others who studied the equation lattice de�nition
extensively, emphasized that the index sets should be chosen so as to maximize the number of
desirable properties for the multivariate Pad�e approximant. Covariance properties fully rely on the
inclusion property (5c) of the equation lattice E and hence apply to most of the de�nitions in this
group (some de�nitions drop condition (5c) in order to obtain computational advantages [20,50,45]).

Theorem 3.1 (Abouir and Cuyt [14]). Let p=q ∈ [N=D]fE which is the general multivariate Pad�e
approximant to f(x; y) as de�ned above and let g(x; y) = (1=f)(x; y) with f(0; 0) 6= 0. Then

q=p ∈ [D=N ]gE:

If also D⊂E then the split into (7a) and (7b) can also be done for [D=N ]gE . When we study the
homographic function covariance of the general multivariate Pad�e approximant, we cannot consider
denominator index sets D di�erent from the numerator index set N , just like in the univariate case.
Indeed, when transforming the function f into the function f̃ = (af + b)=(cf + d), a general Pad�e
approximant p=q ∈ [N=D]fE transforms into

ap+ bq
cp+ dq

(x; y) =

∑
(i; j)∈N∪D ãijx

iy j∑
(i; j)∈N∪D b̃ijxiy j

which cannot necessarily be written in the form p̃=q̃ ∈ [N=D]f̃E .

Theorem 3.2 (Lutterodt [52] and Hughes Jones [43]). Let p=q ∈ [N=N ]fE which is the general mul-
tivariate Pad�e approximant to f(x; y) and let f̃ = (af + b)=(cf + d); then

p̃=q̃ ∈ [N=N ]f̃E
with

p̃(x; y) = ap(x; y) + bq(x; y);

q̃(x; y) = cp(x; y) + dq(x; y):

3.4. Projection property

The general equation lattice de�nition usually also reduces to the univariate de�nition as a special
case. The projection property below is valid for the multivariate Pad�e approximants de�ned in
[23,43,52] but in general not for those de�ned in [47,38,46,50,20,21].
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We introduce, for a �nite subset S of N2, the notations

Sx =max{i | (i; j) ∈ S};
Sy =max{j | (i; j) ∈ S}

and the two particular projection operators

Px(f) =f(x; 0);

Py(f) =f(0; y):

Theorem 3.3 (Karlsson and Wallin [46]). If Ex¿Nx + Dx; then the univariate Pad�e approximant
[Nx=Dx]

Px(f) equals the irreducible form of Px([N=D]
f
E). If Ey¿Ny + Dy; then the univariate Pad�e

approximant [Ny=Dy]
Py(f) equals the irreducible form of Py([N=D]

f
E).

Even when the conditions stated in Theorem 3.3 are satis�ed, it should be noted that two general
multivariate Pad�e approximants of di�erent degree and order, [N 1=D1]fE1 and [N

2=D2]fE2 , can be pro-
jected on a univariate Pad�e approximant of the same order. This easily follows from the fact that
for di�erent index sets S1 and S2, one can have S1x = S

2
x .

3.5. Algorithms

Concerning the algorithmic aspect, we have to make a distinction between on the one hand
algorithms for the very general case, where the index sets N , D and E can be chosen freely as long
as (5) is satis�ed (with a possible exception for (5c)), and on the other hand algorithms that apply
to speci�c N , D and E such as the ones given in [23,43,20].
Let us �rst treat the latter. In [43] N and D are rectangular,

N = ([0; n1]× [0; n2]) ∩N2; D = ([0; m1]× [0; m2]) ∩N2

while the construction of E, which we do not repeat here, depends on the relation of n1; n2; m1 and
m2 with respect to min(n1; n2) and min(m1; m2). The logic of the construction can be understood in
terms of the so-called prong method for the computation of the approximants [44]. The ith prong is
de�ned as the vector

Bi = (bi+1; i ; bi+2; i ; : : : ; bm1 ; i ; bi; i+1; bi; i+2; : : : ; bi;m2 ; bi; i);

where the bij are the denominator coe�cients of the multivariate Pad�e approximant. Here b00 is
already normalized to be 1 and we assume that the homogeneous system of linear equations (7b)
has maximal rank. Calculating B0 is then equivalent to calculating Pad�e approximants to f(x; 0) and
f(0; y), and it turns out that the computation of Bi only requires the values of Bk for k=0; : : : ; i−1.
In short, the prong method reduces the computation of the bij to solving a linear system with a
block lower triangular coe�cient matrix.
In [20] for instance the sets N , D and E do not satisfy (5c) since they are chosen as

N = ([0; n1]× [0; n2]) ∩N2; D = ([0; m1]× [0; m2]) ∩N2;

E = N ∪ [
([n1 + 1; n1 + m1 + 1]× [n2 + 1; n2 + m2 + 1]) ∩N2]\(n1 + m1 + 1; n2 + m2 + 1):
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This choice has the drawback that the order of approximation is not higher than in the case of
polynomial approximation of f(x; y) by p(x; y) indexed by N . But it has the advantage that �-like
and qd-like algorithms can be developed for these approximants and hence that they are easily
computable.
With respect to the former we refer the reader to [30] where the well-known �-algorithm for Pad�e

approximants is generalized to the calculation of general multivariate Pad�e approximants [N=D]fE .
The essential idea behind the �-algorithm is to start o� with a sequence of polynomial approximants
for f and to rationalize these approximants by slightly increasing the degree of the denominator one
step at the time until one reaches [n=m]f. This idea is preserved in [30] but with a slightly harder
rationalization process than in the �-algorithm because of the generality of the approximant.
A similar generalization exists for the qd-algorithm that allows one to obtain Pad�e approximants

[n=m]f in continued fraction form. Here the general multivariate Pad�e approximants [N=D]fE are still
obtained as convergents of an ordinary continued fraction [32], but the rhombus rules to compute the
partial numerators and denominators in the continued fraction are more complicated as a consequence
of the general formulation of the approximation problem.

4. Homogeneous Pad�e approximants

4.1. De�nition

In order to avoid any confusion about the role of the degrees n and m; we switch to the use of �
and � in the discussion of the homogeneous case. For the de�nition of the homogeneous multivariate
Pad�e approximant [�=�]f we introduce the notations

Al(x; y) =
∑

i+j=��+l

aijxiy j; l= 0; : : : ; �;

Bl(x; y) =
∑

i+j=��+l

bijxiy j; l= 0; : : : ; �;

Cl(x; y) =
∑
i+j=l

cijxiy j; l= 0; 1; 2 : : : :

For chosen � and � the polynomials

p(x; y) =
�∑
l=0

Al(x; y);

q(x; y) =
�∑
l=0

Bl(x; y)

are then computed from the conditions

(fq− p)(x; y) =
∑

i+j¿��+�+�+1

dijxiy j; (8)
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which can be rewritten as

C0(x; y)B0(x; y) = A0(x; y);

C1(x; y)B0(x; y) + C0(x; y)B1(x; y) = A1(x; y);
...

C�(x; y)B0(x; y) + · · ·+ C�−�(x; y)B�(x; y) = A�(x; y);

(9a)

C�+1(x; y)B0(x; y) + · · ·+ C�+1−�(x; y)B�(x; y) ≡ 0;
...

C�+�(x; y)B0(x; y) + · · ·+ C�(x; y)B�(x; y) ≡ 0;
(9b)

where Cl(x; y) ≡ 0 if l¡ 0. This is exactly the system of de�ning equations (1) for univariate Pad�e
approximants if the term clxl in the univariate de�nition is substituted by

Cl(x; y) =
∑
i+j=l

cijxiy j; l= 0; 1; 2 : : : :

A simple count of unknowns and conditions in (9) shows that in the bivariate case the number of
equations is one less than the number of unknowns, just like in the univariate case. But in the general
multivariate case the system (9) is overdetermined. Nevertheless, it has been proven that a nontrivial
solution also exists in the multivariate case [71, pp. 60–62]. It is therefore unnecessary to consider
the linear conditions (8) in a least squares sense. This inherent dependence among the homogeneous
Pad�e approximation conditions is still not fully understood and may lead to new developments. The
homogeneous analogue of equation (7c) is discussed in [82].
For the homogeneous Pad�e approximants we can also prove a multivariate analogon of Theorem

2.1.

Theorem 4.1 (Cuyt [71, p. 14]). If p1 and q1 as well as p2 and q2 satisfy condition (9); then

(p1q2)(x; y) = (p2q1)(x; y):

The homogeneous multivariate Pad�e approximant [�=�]f for f(x; y) can then be de�ned as the
unique irreducible form of a solution p(x; y)=q(x; y) of (9). Several suitable normalizations are
possible. This unicity of the irreducible form is a distinctive characteristic of the homogeneous
approach.

4.2. Consistency property

For the homogeneous Pad�e approximants the consistency property also holds.

Theorem 4.2 (Cuyt [71, p. 65]). For an irreducible rational function

f(x; y) =
g(x; y)
h(x; y)

=

∑�
i+j=0 gijx

iy j∑�
i+j=0 hijxiy j
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with h00 = 1; the homogeneous Pad�e approximant [�=�]
f with �¿� and �¿� is given by [�=�]f =

[�=�]f = g=h.

This consistency property is an important advantage of the homogeneous multivariate Pad�e ap-
proximants over the general multivariate Pad�e approximants. Or rather, the unicity of the irreducible
form, on which the property is based, is a big advantage.

4.3. Covariance properties

Because of the close similarity between the homogeneous multivariate Pad�e approximants and the
well-known univariate Pad�e approximants, a lot of classical properties remain valid.

Theorem 4.3 (Cuyt [71, p. 24]). Let f(0; 0) 6= 0 and let [�=�]f = p�;�=q�; �. Then
[�=�]1=f =

q�;�=f(0; 0)
p�;�=f(0; 0)

:

Theorem 4.4 (Cuyt [71, p. 25]). Let a; b; c and d be complex numbers with cf(0; 0) + d 6= 0 and
let [�=�]f = p�;�=q�;�. Then

[�=�](af+b)=(cf+d) =
(ap�;� + bq�;�)=(cf(0; 0) + d)
(cp�;� + dq�;�)=(cf(0; 0) + d)

:

4.4. Projection property

The homogeneous multivariate Pad�e approximants satisfy a stronger projection property than the
one given in Theorem 3.3.

Theorem 4.5 (Cha�y [65]). Let (x; y) = (�1z; �2z) with �i ∈ C for i = 1; 2 and let f�1 ; �2 (z) =
f(�1z; �2z). Then

[�=�]f�1 ; �2 (z) = [�=�]f(�1z; �2z):

4.5. Algorithms

It must be clear from the above that the homogeneous Pad�e approximants are very similar to the
univariate Pad�e approximants. This is even more apparent from the list of valid algorithms below. For
instance, the univariate �-algorithm can immediately be applied to the computation of homogeneous
Pad�e approximants [66], after substituting the univariate starting values

n∑
i=0

cizi

by the multivariate homogeneous expressions
n∑

i+j=0

cijxiy j:
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In the same way, the univariate qd-algorithm remains valid [69], after replacing the starting values

cn+1zn+1

cnzn

which in the univariate case reduce to (cn+1=cn)z, by

Cn+1(x; y)
Cn(x; y)

=

∑n+1
i+j=0 cijx

iy j∑n
i+j=0 cijxiy j

:

Both algorithms above are only useful in the multivariate case if one wants to compute the value of a
homogeneous Pad�e approximant. They do not deliver the coe�cients in numerator and denominator
of the approximant unless polynomial arithmetic is used in the �- and qd-algorithms. The denominator
coe�cients bij can also be obtained from (9b) as follows. When we introduce the vectors and matrices
(T denotes the transpose)

B��+i = (b��+i;0; b��+i−1;1; : : : ; b1; ��+i−1; b0; ��+i)T;

Hij =




ci0 0 : : : 0
...
. . .

...

c0i 0

0 ci0
...

. . .
...

0 : : : 0 c0i




(i + j + 1)× (j + 1) matrix

the system of homogeneous equations (9b) de�ning the denominator coe�cients bij looks like


H�+1;�� H�;��+1 : : : H�+1−�;��+�
H�+2;�� : : :
...

...

H�+�;�� : : : H�;��+�






B��
...

B��+�


 :

Since this coe�cient matrix has displacement rank at most � + 2 [71, pp. 66–67], meaning that it
is near-Toeplitz, the system can be solved in only O[(�+ 2)(#D− 1)2] operations where #D− 1 is
the system size, if we put, as in (4)

D = {i + j | ��6i + j6�� + �}:

5. Symbolic-numeric Pad�e approximants

5.1. De�nition

Given a bivariate function f(x; y) in the form (2); this function is treated as a univariate func-
tion, with the remaining variables being parameters. The main publications on this approach are
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[84,85,89] with [90] being a variation of [84,85,89]. Let us therefore recall this de�nition. The
series development (2) is rewritten as

∞∑
i=0

ci(y)xi (10)

with

ci(y) =
∞∑
j=0

cijy j:

Of course, the role of the variables x and y can be interchanged, with x being the parameter and y
being the remaining variable. This is a drawback rather than an advantage, because the approximation
process does not treat the variables of f in a symmetrical way. A univariate Pad�e approximant
for (10) can be computed in the usual way. We denote by [n=m]fx the irreducible form of px=qx
where

px(x; y) =
n∑
i=0

ai(y)xi;

qx(x; y) =
m∑
i=0

bi(y)xi;

(fqx − px)(x; y) =
∑

i¿n+m+1

di(y)xi:

(11)

If we develop [n=m]fx into a series

[n=m]fx (x; y) =
∞∑
i=0


i(x)yi; (12)

then the functions 
i(x) are rational functions of x. A univariate Pad�e approximant for (12) can be
computed in the same way. Let us denote by [ñ=m̃]fy ◦ [n=m]fx the irreducible form of py=qy where

py(x; y) =
ñ∑
i=0

ãi(x)yi;

qy(x; y) =
m̃∑
i=0

b̃i(x)yi;

([n=m]fx qy − py)(x; y) =
∑

i¿n+m+1

d̃i(x)yi:

(13)

It is clear that

[ñ=m̃]fy ◦ [n=m]fx 6= [n=m]fx ◦ [ñ=m̃]fy :
Also the numerator and denominator of [ñ=m̃]fy ◦ [n=m]fx are respectively of degree ñ and m̃ in y,
but in general not of degree n and m in x anymore. When rephrased in terms of the equation lattice
approach, we can say that

(fqy − py)(x; y) =
∑

(i; j)∈N2\E
dijxiy j
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with

E⊃([0; n+ m] ∩N)× ([0; ñ+ m̃] ∩N):
In [85] the author also explains the connection with the approximation technique using branched
continued fractions: here too the variables are dealt with in an unsymmetrical way and a univariate
approximation step is used per variable while the remaining variables at that time are treated as
parameters.

5.2. Properties

Not too many properties of symbolic-numeric Pad�e approximants can be found in the literature.
The following covariance and projection property have been given in respectively [85,90].

Theorem 5.1. Let f(x; y) = g(z̃) with z̃ = x(cy + d); c 6= 0 or z̃ = (ax + b)y; a 6= 0: Then
[n=m]fx ◦ [n+ m=0]fy (x; y) = [n=m]g(z̃)

and

[n=m]fy ◦ [n+ m=0]fx (x; y) = [n=m]g(z̃):

Theorem 5.2. For x = 0 or y = 0

[n=m]fx ◦ [ñ=m̃]fy (0; y) = [ñ=m̃]f(y) = [ñ=m̃]fy ◦ [n=m]fx (0; y);
[ñ=m̃]fy ◦ [n=m]fx (x; 0)= [n=m]f(x) = [n=m]fx ◦ [ñ=m̃]fy (x; 0):

A consistency property cannot be given in general. Not all rational functions can be reconstructed
by this type of approximation process. The given rational function has to be of the same form as its
approximant [ñ=m̃]fy ◦ [n=m]fx . And we have already pointed out that the numerator and denominator
degree of this symbolic-numeric Pad�e approximant do not depend in a straightforward way on the
parameters n; m; ñ and m̃.

5.3. Algorithms

The approximants de�ned above can of course be computed using standard univariate techniques.
The main di�erence is that one has to deal with the data in a symbolic way. The univariate algorithm
also has to be called as many times as the number of variables.
In [91] a slight variation of the above de�nition is proposed, allowing the use of non-symbolic

algorithms: the denominator coe�cients of the symbolic-numeric Pad�e approximant are computed
directly from linear systems arising from the univariate subproblems.

6. Convergence results and numerical example

When discussing convergence results of Pad�e approximants, one compares a sequence of approx-
imants in the Pad�e table with the given function f. The selection of an appropriate sequence is
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possible using information about f. If a univariate function has a �xed number of poles in a certain
region, it makes sense to consider a sequence of Pad�e approximants with �xed denominator degree,
in other words a column in the table. If the function has a countable number of singularities, it is
wiser to consider a diagonal or ray in the table. We shall now list a number of famous theorems
that have also been generalized to the multivariate case.
In comparing the results we have to distinguish between ‘uniform’ convergence, which is an overall

convergence with the Chebyshev norm of the error tending to zero, and convergence in ‘measure’
or ‘capacity’, where one has convergence except for an area of disruption of which the location
is usually unknown but of which the size can be made arbitrarily small. In this text we restrict
ourselves to the notion of measure only, to avoid the discussion of multivariate generalizations of
the notion of capacity later on. If more general results hold however, we shall refer the reader to
the literature. We denote

B(0; r) = {z ∈ C: |z|¡r};
B(0; r) = {z ∈ C: |z|6r};
B((0;0); r) = {(x; y) ∈ C2: ‖(x; y)‖¡r};
B((0;0); r) = {(x; y) ∈ C2: ‖(x; y)‖6r};
B((0;0); r1; r2) = {(x; y) ∈ C2: |x|¡r1; |y|¡r2};
B((0;0); r1; r2) = {(x; y) ∈ C2: |x|6r1; |y|6r2}

and �4 for the Lebesgue-measure in C2.

Theorem 6.1 (de Montessus [8]). Let the function f(z) be meromorphic in B(0; r) with poles zi
in B(0; r) of total multiplicity M: Then the sequence {[n=M ]f}n∈N converges uniformly to f on
compact subsets of B(0; r)\{zi} with zi attracting zeros of the Pad�e denominator according to its
multiplicity:

lim
n→∞ ‖[n=M ]f − f‖K = 0 compact K ⊂B(0; r)\{z1; : : : ; zM}:

Theorem 6.2A (Zinn-Justin [12]). Let the function f(z) be meromorphic in B(0; r) with poles zi in
B(0; r) of total multiplicity M: Then the sequence {nk=mk}k∈N with mk¿M and limk→∞ nk=mk =∞;
converges in B(0; r) in measure to f:

∀�; �; ∃�: |f(z)− [nk=mk]f(z)|¡� for k¿� and z ∈ B(0; r)\E with �2(E)¡�:

Theorem 6.2B (Karlsson and Wallin [46]). Let the function f(z) be meromorphic in B(0; r) with
poles zi in B(0; r) of total multiplicity M: Then for m¿M there exist points �1; : : : ; �m−M in C
and there exists a subsequence of {[n=m]f}n∈N that is uniformly convergent on compact subsets of
B(0; r)\({z1; : : : ; zM} ∪ {�1; : : : ; �m−M}).

In short, when one is approximating a meromorphic function and one chooses the denominator
degree of the approximant equal to the total number of poles within a distance of at most r, then
one can expect uniform convergence of the Pad�e approximants in that region. If one chooses the
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denominator degree slightly too large, then one can only expect convergence in measure (and capacity
[2]) or one can only expect a subsequence to converge uniformly.

Theorem 6.3 (Nuttall [9] and Pommerenke [11]). Let the function f be analytic in C except for a
countable number of isolated poles and essential singularities. Then the sequence {[nk=mk]f}k∈N
with �¡nk=mk ¡ 1=� for 0¡�¡ 1; converges to f in measure on compact sets:

∀�; r ¿ 0: �2({z ∈ B(0; r): |f(z)− [nk=mk]f(z)|¿�})→k→∞ 0:

This last theorem is a simpler version of the original one which proves convergence in capacity.
Since the number of singularities of f is now countable, one has to let the denominator degree
increase unboundedly, and hence column sequences make an inappropriate choice. The exceptional
set that is excluded from the region of convergence is for instance caused by unwanted pole-zero
combinations in the Pad�e approximant.

6.1. Results for the equation lattice and the symbolic-numeric approach

The uniform convergence theorem of de Montessus de Ballore has been generalized both for the
equation lattice and the symbolic-numeric approach. For each of the de�nitions that are a special
case of the very general de�nition (6) or the symbolic-numeric approach (11) and (13), di�erent
versions of what can be called a multivariate de Montessus de Ballore theorem can be found in
[39,46,53,33,88,90]. We restrict ourselves here to outlining the di�erences between these theorems
and the reason for the existence of these di�erences. This contributes much more to the understanding
of multivariate Pad�e approximation than a dry list of results. In all generalizations locally uniform
convergence is obtained for a function f(x; y) that is such that there exists a multivariate polynomial
s(x; y) (not series, hence of �nite degree) such that (fs)(x; y) is analytic in some neighbourhood
of the origin. The theorems di�er in the speci�cation of the additional constraints, which have to
safeguard you from getting close to troublesome points in C2. These troublesome points are a direct
consequence of the way the Pad�e approximant is de�ned: in other words, a direct consequence of the
numerator and denominator polynomials (or for that matter the index sets) of the Pad�e approximant.
The following two cases illustrate this.
Let us �rst look at the equation lattice uniform convergence theorems by presenting a typical case.

In [39], the polynomial s(x; y) describing the singularities of f(x; y) in a polydisc B((0;0); r1; r2) is
of the form

s(x; y) =
m1∑
i=0

m2∑
j=0

bijxiy j:

Hence it is natural to look at approximants [N=D]E with denominator q(x; y) indexed by D=([0; m1]
× [0; m2])∩N2. For the numerator the index set N =([0; n1]× [0; n2])∩N2 is chosen. Without going
into details we also mention that

E⊃{(i; 0) | 06i6n1 + m1} ∪ {(0; j) | 06j6n2 + m2}:
This choice for E enforces a projection property of the multivariate Pad�e approximant on the x-axis
and the y-axis. Consequently, the poles of s(x; 0) and s(0; y), and especially their moduli, play
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a crucial role in the formulation of the theorem and the speci�cation of the region of uniform
convergence. As a result the formulation of the conditions under which the theorem holds, are rather
technical and depend very much on the form of the approximant.
If we look at [88] a similar conclusion holds. In this approach the variable y is treated as a

parameter in the �rst step of the approximation process. Consequently the theorem includes the
condition that s(x; y0) should not have multiple x-roots unless for a �nite number of y0-values. This
is because s(x; y), which is of the form

s(x; y) = xM +
M−1∑
k=0

bk(y)xk

is also rewritten in the form

s(x; y) = (x − �1(y)) : : : (x − �M (y)):
Moreover, in a certain polydisc B((0;0); r1; r2), the polynomial s(x; y0) should have exactly M x-roots
for every y0. The number M determines the denominator degree of [n=M ]fx which is constructed in
the �rst step of the symbolic-numeric Pad�e approximation process. In addition, for x0 ∈ B(0; r1), the
polynomial s(x0; y) should have at most a certain number of y-roots in B(0; r2). This last number
determines the denominator degree M̃ of [ñ=M̃ ]fy ◦ [n=M ]fx which is being constructed in the second
step. It is clear that again the �nal formulation of the theorem depends very much on the nature of
the computed numerator and denominator polynomial of the Pad�e approximant.
Whereas we will also have to stay away from a small set of troublesome points in the homogeneous

Pad�e approximation approach, this set will clearly be unavoidable and will not depend so much on the
construction of the homogeneous Pad�e approximant. It will contain points in C2 that are exceptional,
even while the very strong projection property given in Theorem 4.5 is valid. For more information
we refer to the discussion below.
Convergence results in measure have not been obtained for the symbolic-numeric approach. The

oldest result for the equation lattice approach is only valid for a speci�c choice of the numerator,
denominator and equation index sets N , D and E:

N :=N (k) = {(i; j) | 06i + j6k};
D = N;

E :=E(k)⊃{(i; j) | 06i + j6b
√
2kc+ 1}:

Theorem 6.4 (Gonchar [38]). Let the function f(x; y) be analytic in C2\G where the analytic set
G={(x; y) ∈ C2: g(x; y)=0} with g(x; y) entire. Then the sequence {[N (k)=N (k)]fE(k)}k∈N converges
on compact sets in measure to f.

More recently, results have been formulated for the general de�nition (6). We now respectively
give generalizations of the Zinn-Justin convergence theorem and the Nuttall–Pommerenke conver-
gence in capacity. After each theorem we translate the conditions to the univariate case, so that it
becomes clear why those conditions are natural generalizations of the ones in the univariate the-
orems. This is also very helpful because the conditions under which the theorems hold, are again
rather technical. For sequences of general index sets {Nk}k∈N; {Dk}k∈N; {Ek}k∈N and an index set M
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we denote by

Nk ∗M = {(i; j): i = i1 + i2; j = j1 + j2; (i1; j1) ∈ Nk; (i2; j2) ∈ M};
iDk =max{i: (i; j) ∈ Dk};
jDk =max{j: (i; j) ∈ Dk};
@Dk =max{iDk ; jDk};
!Ek =min{i + j: (i; j) ∈ N2\Ek}:

Theorem 6.5 (Cuyt et al. [34]). Let the function f(x; y) be meromorphic in the polydisc B((0;0);
r1; r2) in the sense that there exists a multivariate polynomial

s(x; y) =
∑
(i; j)∈M

sijxiy j

such that fs is holomorphic in that polydisc. For Nk; Dk and Ek satisfying

Nk ∗M ⊂Ek;
lim
k→∞

!Ek=@Dk =∞;
the sequence of approximants {[Nk=Dk]Ek}k∈N converges in B((0;0); r1; r2) in measure to f.

In the univariate case the sets Nk; Dk and Ek equal

Nk = {0; : : : ; nk};
Dk = {0; : : : ; mk};
Ek = {0; : : : ; nk + mk}:

Hence

@Dk =mk;

!Ek = nk + mk + 1;

and the conditions in the above theorem amount to

Nk ∗M ⊂Ek ⇔ nk +M6nk + mk ⇔ mk¿M;

lim
k→∞

!Ek
@Dk

=∞ ⇔ lim
k→∞

nk
mk
=∞

which are the standard univariate conditions.

Theorem 6.6 (Cuyt et al. [34]). Let f(x; y) be such that for each � there exists a polynomial
s�(x; y) such that (fs�)(x; y) is analytic in the polydisc B((0;0); �; �). Let lk =max{@Nk; @Dk} and

Cbkc = {(i; j) ∈ N2: 06i6bkc; 06j6bkc}:
For Nk; Dk and Ek satisfying

lim
k→∞

lk =∞;
Nk ∗ Cb�lkc ⊂Ek;
Dk ∗ Cb�lkc ⊂Ek
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with 0¡�¡ 1; the sequence of approximants {[Nk=Dk]Ek}k∈N converges on compact sets in mea-
sure to f.

In the univariate case these conditions translate to the following:

lk =max{nk ; mk};
Nk ∗ Cb�lkc ⊂Ek ⇔ nk + �lk6nk + mk ⇒ �nk6mk;

Dk ∗ Cb�lkc ⊂Ek ⇔ mk + �lk6nk + mk ⇒ �mk6nk :

These last conditions amount to

�6nk=mk61=�:

The last two theorems also hold if we replace the notion of measure by capacity as detailed in [34].

6.2. Convergence results for homogeneous Pad�e approximants

Owing to the projection property mentioned in Theorem 4.5 the following convergence results
were obtained. We do not cite them in their most general form. For this the reader is referred to
the original reference. We introduce for (�1; �2) in C2:

B(�1 ; �2)(0; r) = {z ∈ C: ‖(�1z; �2z)‖¡r};
f(�1 ; �2)(z) = f(�1z; �2z):

Theorem 6.7 (Cuyt and Lubinsky [75]). Let the function f(x; y) be meromorphic in the ball
B((0;0); r) in the sense that there exists a polynomial s(x; y) of homogeneous degree M such that
fs is holomorphic in B((0;0); r): If we denote

W = {(�1; �2): ‖(�1; �2)‖= 1 and f(�1 ; �2) has less than M poles in B(�1 ; �2)(0; r)};
S= {(x; y) ∈ C2: s(x; y) = 0};
E= {(�1z; �2z): (�1; �2) ∈ W; z ∈ C};

then the sequence {[�=M ]fH}�∈N converges uniformly on compact subsets of B((0;0); r) not intersecting
E∪S: Outside W each zero of s(�1 ; �2)(z) attracts zeros of the projected Pad�e denominator accord-
ing to its multiplicity.

The set W denotes the set of exceptional directions, meaning that for (�1; �2) in W the univariate
convergence theorem of de Montessus de Ballore applies to a column di�erent from that for the
vectors outside W : for all vectors (�1; �2) outside W one has to consider the M th column. Note that
one does not have convergence in (0; 0), the point at which the series development for f was given,
because it is always contained in E ∪ S! The following example due to Lubinsky illustrates very
well why this is the best one can expect.
Let h be an entire function and de�ne

f(x; y) = h(x) + h(y) +
y − x
x − 1 :

It is easy to see that f(�1 ; �2) has poles of total multiplicity 1 unless �1 = �2 or �1 = 0. So

E= {(x; x) | x ∈ C} ∪ {(0; x) | x ∈ C}:
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For �1 = �2,

f(�1 ; �2)(z) = 2h(�1z)

and for �1 = 0,

f(�1 ; �2)(z) = h(�2z) + h(0)− �2z
Thus the {[�=1]fH}�∈N Pad�e sequence to f will not converge locally uniformly in any neighbourhood
of any point of E provided the ordinary Pad�e approximants to h do not converge locally uniformly in
any neighbourhood of any point of C. There are many well-known examples of such entire functions
h, going back at least to [10].

Theorem 6.8A (Cuyt and Lubinsky [75]). Let the function f(x; y) be meromorphic in the ball
B((0;0); r) in the sense that there exists a polynomial s(x; y) of homogeneous degree M such that
fs is holomorphic in B((0;0); r): Then for m¿M the sequence {[�=m]fH}�∈N converges in B((0;0); r) in
measure to f.

This theorem nicely generalizes the univariate result obtained by Zinn-Justin while the next theorem
generalizes the univariate result of Karlsson and Wallin. Both deal with a denominator choice that is
again slightly too large. For the next convergence result we assume that the sequence {[�=m]fH}�∈N
with �xed m¿M has an in�nite number of elements [�h=m]

f
H that are not singular at the origin.

Remember that due to the term �� in (8), the denominator of an approximant [�=�]fH may evaluate
to zero at the origin. We denote this subsequence of well-de�ned entries by {[�h=m]fH}h∈N.

Theorem 6.8B (Cuyt [72]). Let the function f(x; y) be meromorphic in the ball B((0;0); r) in the
sense that there exists a polynomial s(x; y) of homogeneous degree M such that fs is holomorphic
in that ball. Then for m¿M there exists an analytic set T⊃S and there exists a subsequence
of {[�h=m]fH}h∈N that converges uniformly to f on compact subsets of B((0;0); r)\T.

Let us now turn to a generalization of the Nuttall–Pommerenke result, for homogeneous Pad�e
approximants.

Theorem 6.9 (Cuyt et al. [74]). Let the function f(x; y) be analytic in C2\G where the analytic set
G= {(x; y) ∈ C2: g(x; y) = 0} with g entire. Then the sequence {[�k=�k]fH}k∈N with �¡�k=�k ¡ 1=�
for 0¡�¡ 1; converges on compact sets in measure to f.

6.3. Numerical example

When comparing the di�erent de�nitions for multivariate Pad�e approximant on numerical examples,
it is easy to come to the following two conclusions:
(1) the adaptiveness of the equation lattice approach to the data ci1 ;:::; ip is a clear advantage; if

one of the variables in the multivariate problem is dominant, then one can adapt both the rational
function given by (3) and (4) and the system of de�ning equations given by (6) to the situation;
(2) the homogeneous approach has such a strong projection property, delivering the well-known

univariate Pad�e approximant on every one-dimensional slice {(�1z; : : : ; �pz) | z ∈C}, that the
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quality of the approximation is comparable to that of the best tailor-made general multivariate Pad�e
approximant.
The most important testproblem is probably the Beta-function because it has been used by al-

most all researchers active in multivariate Pad�e approximation theory and hence it allows an easy
comparison of numerical results between the di�erent generalizations. This function is de�ned by

B(x; y) =
�(x)�(y)
�(x + y)

;

where � is the Gamma-function. The Beta-function is meromorphic in C2 with poles at x=− k and
y =− k and zeros at y =− x − k, for all k = 0; 1; 2; : : :. The interested reader is referred to:
(1) [37, p. 292] for the description of an optimally tailored general multivariate Pad�e approximant

[N=D]B(x;y)E to the Beta-function;
(2) [48] for numerical results using other general multivariate Pad�e approximants;
(3) [71, pp. 89–93] for the numerical calculation of homogeneous multivariate Pad�e approximants

to the Beta-function;
(4) [41] for numerical results using the equation lattice de�nition given in [43] for the Beta-function;
(5) [5] for numerical results using interpolatory branched continued fractions for the Beta-function.

7. References not cited in the text

[13,15–19,24–28] [31,35,40,42,54,56–62] [63,64,67,68,70,73,76–81] [83,86,87,92–94,96–99,101,
102][103,104]
A more complete list of references on the topic of multivariate Pad�e approximation can be obtained

electronically at http://www.uia.ac.be/u/cuyt/. Go to the bibliography �le and select the keyword
Multivariate Pad�e Approximation.
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