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RATIONAL HERMITE INTERPOLANTS



ABSTRACT

In the past two decades, several attempts were made o introduce multi-
variate Padé approximants and multivariate rational interpolants. We re-
fer to [CHISc, GRAVa, HUGH; KARL, LUTTb, CUYT{, MURP, SIEM,
CUYTj, CUYTk, KUCH, SKOR|. Each author used his or her own ap-
proach and no unifying theory existed except for the multivariate Padé
approximants defined in [CUYT{]. In this work we present a definition of
multivariate rational interpolants which was for the first fime introduced
in [CUYTi] and which fills a number of gaps in the results obtained up
to now.

First of all the definition is a very general one in that sense that a lot
of previously given multivariate Padé approximants are rediscovered as
special cases, including the one given in [CUYT{]. The well-known uni-
variate results in the theory of Padé approximation and rational Hermite
interpolation are also found again.

Secondly the definition allows several equivalent approaches: one can set
up a linear system of defining equations for the unknown numerator and
denominator coeflicients, one can start a recursive computation scheme to
compute the value of the multivariate rational interpolant, one can write
down a continued fraction and obtain the interpolant as a convergent.

This much more coherent theory of multivariate rational Hermite inter-
polation has a number of practical applications as well.

Some multidimensional convergence accelerators, introduced in the past,
result from the use of these interpolants and hence profit from the new
computational techniques. Some new convergence accelerators are born
which improve the existing methods.

For the soliition of systems of nonlinear equations a whole variety of non-
linear iterative procedures seems to be possible, by the fact that the itera-
tion can be adapted to the available information for each of the nonlinear
equations. By this we mean the possibility to evaluate or differentiate the
equations easily. As is to be expected these nonlinear iterative procedures
are to be preferred in the neighbourhood of singularities.
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State of the art

1. STATE OF THE ART.

In the field of rational approximation and interpolation, many general-
izations exist. We list a number of tools that have been created in the
past years. They all make use of rational functions, but the approxima-
tion property they satisfy, is different. We shall also distinguish between
the univariate and the multivariate case and indicate which new type of
approximant is introduced here.

Let the univariate coniplex-va.lued function f be given by its series ex-

pansion around zg
0

f(z) =) cilz — mo)*

1=0

or by some function values f; in distinct complex points z; (1 =0,1,2,...)."

For n and m chosen we construct polynomials

1
p(z) = Z iz’
i=0

and ,‘
m Y
g(%) = Z by’
=0
such that [CUYTY, pp. 129-155]
(fg—p)(z:) =0 i=0,...,n+m (1.1.1)

It is clear that problem (I.1.1) always has a nontrivial solution for p(z)
and q(z) since it is a homogeneous system of n+m+1 linear equations in
n+m-+2 unknowns a; and b;. Hence at least one unknown can be chosen
freely: This problem is called the rational interpolation problem for
f of order (n,m).

Suppose that in the sequence of interpolation points several subsequent
points coincide. Let z; occur r; + 1 times in a row (i =0,1,2,...). Then
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State of the art

problem (L.1.1) is reformulated as follows. Let n and m be chosen such
that
k

ﬁ+m+1=2(i‘;+1)

1=0

Tind polynomials p(z) and g(z) such that [WUYT)
(fa—-p)P(z:)=0 F=0,...,m 1=0,...,k (I.1.2)

This is called the rational Hermite interpolation problem for f of
order {n, m).

The limiting case is when all the interpolation points coincide with one
single point zo. The conditions for the polynomials p(z) and g(s) then
amount to [CUYT], pp. 63-95]

[e.o)

(fa—p)(za)= D> di(z—mo) (1.1.3)

t=ndmi1

Problem (L.1.3) is called the Padé approximation problem for f of
order {n,m). Note that the linear system resulting from (I.1.3) uses the
Taylor series expansion of f. This is because having several data in one
single point is interpreted as knowing higher derivatives of that function
in the point considered.

It [CLAED] the rational Hermite interpolation problem is reformiilated
as a Newton-Padé approximation problem. In a formal manner we
can construct with the data f; the Newton interpolating series

f(z) = Zf[fcm vou s Ty) By ()

where

Bi(z) = 1:_[(3: ~15;)  By(z) =1

6



State of the art

and f[zo, ..., zi] is a divided difference with possible coalescence of points.

We redefine N
= Z a; Bi(z)
=0

and
q(z) = Zb,-B,-(a;)

and compute the coefficients a; and b; such that
o0

(fg—p)=)= >, | d; Bi(z) (1.1.4)

t=n+m+1
It is easy to see that the problems (I.1.2) and (L.1.4) are equivalent.

For each of the foiir problenis considered it 18 always trile that if y and g
satlsfy any of the conditions (I.1.1-1.1.4) and if ps and ¢z satisfy the same
condition, then the rational fitictions constriucted with these polyniomials
are equivalent, meaning that

P19z = Pz2q1

In this way the irreducible form of a solution of any of the four problems
is unique and hence we can define it to be the (n,m) rational inter-
polant for f if we are dealing with problem (I.1.1), the (n,m) rational
I-Iermlte interpolant or the (n,m) Newton-Padé approximant if
we're dealing with the problems (I.1.2) or (1.1.4) and the (n,m) Padé
approximant for f if we are dealing with problem (1.1.3). In each of
the four cases we shall denote the irreducible form by 74 m.

Up to now we have considered linear conditions. The rational function
Tn,m Can be considered as the root of the linear equation

qTn,m~—p=20

where p and ¢ are determined by any of the interpolation or approxima-
tion conditions (I.1.1:1.1.4). Instead of such linear equations one can also
consider algebraic equations

k

Z T::ng,...,mkpi = 0

i=0



State of the art

where the polynomials p; of degree m; are determined by
k ‘ o0
ST F(e)pi(s) = diBi(z)  t=mo+...+mp+k+1 (ILL5)
=0 i={

An extensive study of this type of problems is made in [DELL] and
[LUBBJ]. When k = 2 and all the interpolation points coincide, the ra-
tional function 7y, m,,m, 18 called the quadratic approximant for f
[SHAF] since it is the root of the quadratic equation
rrznmmumzpz + TmoamlstP]- +p0 = 0
with
[+.0)

FA(z)pa(z) + f(z)p1(2) + po(z) = > diz

i=mo+mitmz+3

Up to now we have also only used the basis functions z* or B;(z) to span
the polynomial ring that contains the elements p(z) and ¢(z). One could
also use linear combinations

p(z) = aigi(z)

=0

and _
a(z) = 3 bigi(=)

of basis funictionis g;(s) , Which weé call generalized polynomials, and stidy
the generalized interpolation or approximation problem

(fa—p)Nz)=0 =0,...,7s $=0,...,k (1.1.6)

Examples of such interpolation problems can be foutid it [MUHL] and
ILOI].

Padé approximants are in fact a special case of so-called Padé-type ap-
proximants [BREZe]. In this type of problem a rational function 7,
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with numerator and denominator respectively of degree at most n and m
is computed such that

(fg—p)(e) = Y dilz — o)’ (1.1.7)

t=n+1

Condition (I.1.7) supplies us with a linear system of n 41 equations in
n+ m + 1 unknowns. The remaining m + 1 free parameters are used to
insert some extra information about f if it is available, for instance some
knowledge about singularities of f.

So far for the univariate one-dimensional case. Some of the above notions
have been generalized to the multivariate case, some to the multidimen-
sional case.

The problem is multidimensional when we are working with a k-tuple of
univariate functions.

The problem is multivariate when a complex-valued function depends on
k variables.

Multidimensional Padé approximants can be found in [DEBR], multidi-
mensional rational interpolants in [GRAVb] and [WYNN].

Of multivariate Padé approximants several definitions exist. In [CUYTc]
their advantages and drawbacks are discussed. Here we shall prove that
some of them result as the limiting case of the multivariate rational Her-
mite interpolants we are going to introduce. In the past years an attempt
has also been made to introduce multivariate quadratic approximants
|[CHISa, CHISb| and multivariate Pade-type approximants [BREZd]| but
the number of papers on the subject is very limited.

Our main aim is not to introduce another new councept but to establish a
unifying theory that admits to see the wood for the trees again. That’s
why we have chosen the following reasoning.

it is well-known that univariate Padé approximants, which are a special
case of univariate rational interpolants by letting all the interpolation
points coincide, can be obtained in several equivalent ways: one can
write down the system of linear equations that must be satisfied by the
numerator and denominator coefficients, one can start a recursive compu-
tation scheme, one can consider convergents of corresponding continued
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fractions. Each of these three defining techniques is generalized by differ-
ent authors to the multivariate case. However, the equivalence between
the defining techniques is then lost [CUYT¢] by the way in which the
getieralization was formtilated. Let us stiidy this matter in more detail.

When the technique of the defining equations [CHISc, HUGH, KARL,
LEVIa, LUTTD] or the continued fraction approach [MURP, SIEM] is
ised to definé miltivariate Padé approxiiaits, theii the set of equations
or the form of the continued fraction can be chosen so that many of the
univariate properties carry over to the multivariate case. In fact you can
force your approximant to satisfy a certain property by adding the right
equations to your system or the right terms to your continued fraction.
But it is not possible to give a linear system and a continued fraction
expansion that generate the same rational approximant. Depending on
what sort of approximant you want, you have to make your choice. On
the other hand, if the quotient of determinants which can be computed
recursively by means of the epsilon-algorithm, is preserved in the gener-
alization [CUYT{, CUYTg], then it is possible to establish a link between
different approaches [CUYTc|. For such multivariate Padé approximants
based on a recursive scheme, one can give an equivalent linear system of
defining equations and a corresponding continued fraction representation.

In this text we shall see thit recursive schemes will again play an impor-
tant role.

When we treat some special cases of the newly introduced multivariate
rational Hermite interpolants, we shall prove that multivariate Padé ap-
proximants defined by means of a linear system of equations for their
numerator and denominator coefficients, can be computed recursively by
means of a generalization of the epsilon-algorithm [CUYTe]. Remember
that the epsilon-algorithm is commonly used for the recursive computa-
tion of univariate Padé approximants.

We shall also see that multivariate Padé approximants that result from
a defining system of Iinear equations can after ail be obtained as the suc-
cessive convergents of a continued fraction. We note that the computed
continued fraction has a different form than the ones used up to now in
multivariate interpolation and approximation theory: it is not branched.
Both these results are due to the fact that our definition of multivariate
rational Hermite interpolants enables a very univariate-like determinant

10
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representation which is of vital importance for the preservation of recur-
sive epsilon-like algorithms. It is to be expected that these results create
a whole lot of new algorithmic possibilities.

As a result of all this the equivalence of the three main defining techniques
for univariate Padé approximants is re-established in the multivariate
theory. While the reader makes his or her way through the next sections
he or she will notice that this unification is not limited to the case of
multivariate Padé approximants but that it is only a side result of the
equivalence of the three main defining techniques in this new theory of
multivariate rational Hermite interpolanis.

11



Muléivartate interpolation problems

2. MULTIVARIATE INTERPOLATION PROBLEMS.

For the sake of simplicity we restrict ourselves in the sequel of part I to
the casé of two variables. The generalization to the case of more than two
variables will appear to be straightforward and only notationally more
difficult. Let us first describe the conditions which have to be fulfilled
by the multivariate data set before the interpolants can be constructed.
Since we allow coalescence of interpolation points, we shall also point out
how to deal with such a situation.

Consider for instance the following picture in IN? of the data set (z:,v,),
where a circle indicates that in addition to fi; = f(z;,y;) also 0f/0z is
given and a square indicates that also 8f/dz, 9f/8y and 82 f/0y? are
provided.

e
@
3 —>
1
Figure 1.2.1

This situation can be considered as the limit situation of a data set with
non-coalescent interpolation points where we let z3 — =, 24 — 2,

¥a — ¢1 add ¥4 — ¥,

12



Multivariate interpolation problems

2 °

4

3

1 e o o o

0 ° *—>

Figre 1.2.2

If we want to intérpolaté thesé (%:,¥;, fi;) by means of the téchiiqiie
described in the following chapters, then the data f;; and the numbering
of the z; and y; have to be such that

(I.2.1a)

(1.2.1b)

(1.2.1¢)

zo is that z-coordinate for which the number of y-coordinates
at which data are given is maximal, z; is the one of the leftover
points for which the same is true, and so on |
yo is that y-coordinate for which the number of z-coordinates
at which data are given is maximal, y, is the one of the leftover
points for which the same is true, and so on

the data set has the inclusion property, meaning that when a
point belongs to the data set then the rectangular subset of
points emanating from the origin with the given point as its
furthermost corner also lies in the data set.

13



Multivariate interpolation problems

Note that (1.2.1a) and (I.2.1b) do not necessarily imply (I.2.1c). This is
easily understood if one considers the data set {(2o, y0), (£1,91), (32,2}
We shall comment on the importance of condition (1.2.1c} in section 3.
For the picture above this is clearly not the case. So we try to renumber
the interpolation points such that these three conditions are satisfied. Let
us introduce a new numbering (z},y;) with

!
h=1zg 2| =20 ThHh=g zh=124 Ty=733

and _
H | r ! P
Yo=Y1 Y1 =Y Ya=Y2 Y3 =Ys Y4 =Y

We then get the following picture in IN? of the data set.

Figure 1.2.8

The interpolation problems that can be reduced to this situation are
of course not the most general ones but they already represent quite 3
number of situations that can be dealt with. In the sequel of the text
we assume that the given data set is already structured such that the
conditions (I1.2.1) are fulfilled. This will enable us to adopt the notation
(z:,y5) again instead of (zf, 7).

14



Multivariate interpolation problems

Let the complex function values fi; be given in the complex points (s, y;)
with (4,7) € I C IN?, where I satisfies the inclusion property, meaning
that when (4,7) belongs to I then (k,£) belongs to I for £k < 7 and
£ < j. We know from the pictures above that a data set with coalescent
interpolation points can be replaced by an intermediate data set where
only function values are given. For a bivariate function f(z,y) we define
the following divided differences

f[zollyol = f(%o;¥o)
f[-’ﬂo][yls- ) yk] - f[Q:O][yOs ' “ayk-—ll

Flzo]lgos - 9e) =

Y — Yo
f[Q;O)---;kayO] _ f[icl,...,iﬂk][yo] — f[ﬂ:{),- --;mk—l][yOI
T — &g
flzoy - 2&) (Yo, - -+, ye] =
flzoy -y el[yt, - yel = fl2o,- - zxllyo, - - - Ye1]

- (1.2.2a)

or equivalently
‘f[:c(): vo- :xk][y(h v 7y-3] =

f[ﬂ?l,. ..,xk][yO;' --;yl} _ f[:EU"' -,xk—lj[yO:" ’ ’yt] (IZZb)
T — %o

One can easily prove that (1.2.2a) and (1.2.2b) give the same resuls.

LEMMA 1.2.1. The divided difference flzo,...,ok|[¥o,. .-, ¥e] is ifide-
pendent of the order of the points %q, ..., & aid ¥o,..., Y. '

PROOF: The proof is only a modification of the proof for univariate
divided differences. =

\When certain interpolation points coincide; we must bear in mind the
following remarks. Let r; be a positive integer indicating that ry + 1 of
the z-coordinates in I coincide with z; and let s; indicate that s; + 1
of the y-coordinates in I coincide with y; . These coalescent z- and
y-coordinates are not necessarily consecutive. To indicate which z- or

15



Multivariate interpolation problems

j-coordinates respectively coincide with z; or y; we can introduce the
following notation. Let
i(O), veny ?J(T,‘)

denote the indices of the z-coordinates coinciding with z;, and analo-
gously let

j(0)1"':j(sj)
denote the indices of the y-coordinates coinciding with y;. For the cal-
culation of the divided differences we then need the starting values

1 9kf
flzio)s -y wiw)l9s) = 155 Moy OS k<

1 8 f
f[xi][yj'(()): tee ;yj(?.)] = Ea—yg |($i1yj) 0<£< 85

11 3k+ﬂf
flasg)s -+ mi)l¥i(0)s s ¥s(0) = i gamgyt (o)

0<k<r, 0<L£<s

For the polynomials in two variables we consider the following set of basis

functions:
¢

3
Bii(z,y) = [[ (= — me—1) [ (¥ — ve-1)
k=1 =1
This basis function is a bivariate polynomial of degree ¢ 4+ j. With
coio; = flzo,---,zil[yo,...,y;] we can now write in a purely formal

thatinér [BERE]

f(z,y) = Z coi,05 Bij (2, ) (1.2.3)

(1,7)eN?

Hence we have constructed with the data a bivariate Newton interpo-
lating series and we can start approximating it using bivariate rational
functions. The next chapter will generalize condition (1.1.4.) and its
‘goliitioh to thié bivariate case.

The following lemmas about products of basis functions By;(z,y) and

about bivariate divided differences of products of functions will play an
important role in the sequel of the text.

16



Multivariate interpolation problems

LEMMA 1.2.2. For k+¢> i+ j the product Bij(z,y)Bre(z, y) is given
by

i 7
Bij.(:c‘l y)BkC(:C: y) == Z Z /\uv Bk+ﬂ,£+v (:E: y)

p=0r=0

PROOF: We write Biy(z,¥) = Bio(z,y)Boj(z,y). Since Bio(z,y) is a
polynomial in = of degree i we can write

t kt+p—1
Bio(z,y) = Z QU H (z — z4)
p=0 4=k
and
J t4v—1
Boj(z,y) = D Pu | 1] (=)
v=0 y=£

with the convention that an empty product is equal to 1. Consequently
Bi'.?'(wi y)BkE(i:) y) = [Bkg(.%', y)BiO(:C: y)]BOJ'(f‘B: y)

= [Z &#Bk+u,g(.'ﬂ,y)i\ BOj(x;y)

£=0

i ¢
=3 auBy Betuttv(:Y)

v=0 up=0
which gives the desired formula if we put Ay = opfy. W
A figure in IN? will clarify the meaning of this lemma. If we multiply

B;;(z,y) by Be(=, y) and k+£2 i+ § then the only occuring By (%, 9)
in the product are those with (g, v) lying in the shaded rectangle.

17



Multivariate interpolation problems

b
€+j F------ %
e [ . i
‘. :
I :
] E
j Y |
P :
i i 1 >
kK i K+

Figure 1.2.4
LEMMA 1.2.3.

(fQ)[:EO)---:zi][yO: 1y.7]

= Z S Fl50r- o5l 50s - r 9] Al s 5l -84

p=0p=0

PROOF: The proof is by induction and analogous to the proof of the
univariate case. m
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Determinant representation

3. DETERMINANT REPRESENTATION OF GENERAL ORDER
MULTIVARIATE RATIONAL HERMITE INTERPOLANTS.

The definition of multivariate Newton-Padé approximants which we shall
give is a very general one. It includes the univariate definition and a lot
of the definitions for multivariate Padé approximants as a special case.
With any finite subset D of IN*® we associate a polynomial

Z biyBij(z,y)

(1.? €D

Given the double Newton series

f(:c,y) = z .001:‘03"81'.?'(:5: y)

(t,7)eN?

with cos05 = flzo,. .., zi][¥o,-. ., ¥;], we choose three subsets N, D and
I of IN* and construct an [N/D|r Newton-Padé approximant to f(z,y)
as follows:

p(z,y) = Z aij Bis(z, y) (N from “pumerator”)

(‘.y.?')EN
(1.3.1a)
q(z, ) Z bijBii(z,y) (D from “denominator”)
(3,5)eD
(1.3.1b)
(fq—p)(=,y) = Z diy Bij(z, y) (I from “interpolation
(£,5)emN2\I
conditions”) (1.3.1¢)

In analogy with the univariate case; we select N, D and I such that
D has m + 1 elements, numbered (do, e0),. .., (dm,em)
NcI
I satisfies the rectangle rule:
if (7,7) € I then (k,8) € Ifork<iand £<j

19



Determinant representation

I\N has at least m elements.
Clearly the coefficients d;; in

(fq - p)(:r;, y) = Z d!'J'BiJ'(x: y)
(t,7)eN?

dz’j = (fq —p)[iﬂo, . -.,ﬁi][yo, e 'Jy.’f]

So the conditions (I.3.1c) are equivalent with

(fg—p)lzos-- s zillyo,--- 951 =0  (4,5) €[ (1.3.2)

Because N C I, the system of equations (I.3.2) can be divided into a
nonhomogeneous and a homogeneous part:

(fq)[:cO: vy xi][yOJ ey y.?’] = p[$0) vy xi][yﬂla e y.'f] (":3 j) cN
(1.3.3a)

(fD)lzoy. .., %Yo, 4] =0  (2,7) e \N (1.3.3b)

Let’s take a look at the conditions (I.3.3b). Suppose that I is such that
exactly m of the homogeneous equations (1.3.3b) are linearly independent.
We number the respective m elements in I\ N with (hy, k1), .., (hm,km)
and define the sef

H={(hi,k1),...,(hm, km)} CI\N (H from “homogeneous

equations”)
By means of lemma 1.2.3 we have

(fq)[—'co,---,xfllyo,---,y_j] = (gf)[zo0s- -+, =:]{yo, - -, 93]

= Z ZQ[%,---:-’Uﬂ][yo:---:yu]f[xm“'swf”yw“"yf]

p=0v=0

Since the only nontrivial g[zo, ..., %.][%0,- - .,y | are the ones with {u, )
in- D we can write

(ffi')[fco, e xs'][yO; v '1y.1'] = Z bMVf[xﬂ: *- 'Jxl'][yva AR y.‘f]
(p,v)ED

20



Determinant representation

Remember that flz,,...,z]lyw;...,9;) = 0if p > 7 or v > j. So the
homogeneous system of m equations in m + 1 unknowns looks like

Cdohy,eok " Cdpbhyenk: bdo,co 0
=1 (1.3.4)
Cdohm,eokm e Cdmhm,emkm bdmoem 0

because

D= {(dol 60): R (dm; em)}
As we suppose the rank of the coefficient matrix to be maximal, a solution
q(z,y) is given by

BdOeO (m’ y) vee 'Bdmem (IJ y)
cdohl,eok]_ b Cdmhl,emkl

q(z,y) = : : (1.3.5a)
Cdohm,ﬂokm v cdmhm,emkm

By the conditions (I1.3.3a) and lemma 1.2.3 we find
p(z, y) Z aij Biz(z,y)
(¢,5)eN

= Z plzo, -5 ][0, - . ., Y5] Bij (=, ¥)
('::JI)EN

Z (Qf)[:l:OJ ey T'i][y(): ey yj]B;'j(l-', y)

(1.1.7')€N

Z buv Z CpiwiBij(z,y)

(#'JV)ED (':J)GN

Consequently a determinant representation for p(z,y) is given by

E Cdot, coJ ( :y) Z Cd temJ ( :y)
(1.5)eN (s7)EN
p(x’y) —_ cdoﬁl.;eo’h Tt cdmhl:ﬂ?mkl
cdohm!eﬂkm . vt Cdmhm:e‘mkm

(1.3.5b)
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Determenant representation

If for all &k, £ > 0 we have q{zk, y¢) # 0 then —( ,¥) can be written as
1
~(z,y) = Z eij Biz(z,y)
1 (isJ.)ElNz

with e;; = %[Eo, .oy %i][¥0, - - -, ¥;]. Hence by the use of lemma 1.2.2 and
since [ satisfies the inclusion property

VPO PPN DR
(f~;)(m,y)—[q(fq p)](,y)— S dyBi(e )

(4, )ENZ\I

If I does not satisfy the inclusion property, as in the next figure,

G

Figure 1.3.1

Y

then
(fq = p)(‘-ﬂ, y) = Z dt'sz'j(xJ y)

(,7)EN\I

does not imply

(f— g)(wa y) = Z szBtJ( ' ¥)

(£,7)ENZ\I
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Determinant representation

since in that case f — p/q also contains the terms that result from mul-
tiplying the “hole” by %(.’L‘, Y).

.

Figure 1.8.2

The following theorem describes exactly which interpolation conditions
are satisfied by p/q.

THEOREM 1.3.1. If q(zk,ye) # O for (k,£) in I and if coinciding x- and
y-coordinates have consecutive numbers

Th = Tht1 = .. = Bhopr,
Ye = Yetr1 = oo = Yoq8,
then p
grtv f Y
ax”ayu (:ckﬂyﬂ) = axuayy (mklyZ)
for

(k) € E = {(1,0) |0 < s < 7y 0 S v < s} {(y ) | (ks 4v) €1}

If . = 0 = s, this reduces to
P
HERNES (E)(‘Uk:yt)
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Determinant representation

PROOF: Given r and s, for fixed (zg, y¢), consider the following situa-
tion for the interpolation points, with respect to I and define

pr = max{y | Ty, = zrand(k + p, L) € I}

v; = max{V | ye4, = yeand(k, £+ v) € I}

pe =max{p |Vv,0<v <vr:(k+pl+v)el}
ve =max{v | Vu,0 < p < pr:(k+put+v)el}

vy 7 |
3
S % (
& fo--e- i : i
}i k:wc ki“‘ }
Figure 1.8.8

Using these definitions we rewrite E as
E = E1 U Eg

with '
By ={(mv)|0<p<p,0<v <wp}

Bs = {(pv) |0 £ p < pg,0 <v < vi}
Because q{wzk, y¢) # 0 for (k,£) in I we have

(f - g)(xs y) = Z Jij-Bij(msy)

({,7)ENZ\I
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Determinant representation

To check the interpolation conditions we write

8"tV By 9"t¥( By Boy)
dztdy¥  OzHdyY

o av
:6—3,4; WBioBoj

_ 0" By 3" By,
~ Jz+  Byv

If we cover IN?\T with three regions

A={(i,7) € N°\I|i> pr}
B ={(i,) e IN*\I|j > vr}
C ={(,5) € IN°\I| pc <i < pr,ve <j <vr}
then for (4,7) in A and (g,») in E
8" By

gh |(@490)= 0

because Bjo(x,y) contains a factor (z — zx)*’ !, and for (4,7) in B and
(,v) in E

0¥ Byo
_6?— |(wk=y£): 0

and for (¢,7) in C and (g, v) in E,

Finally for (i,v) in E and (k,£) in [

o+ (f =)
axﬂayy |($kxy£): 0
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Determinant representation

The most general situation for the interpolation points with respect to [
is slightly more complicated but completely analogous to the one given
in figure 1.3.3. We illustrate this remark by means of figure 1.3.4.

L)
€+88—1 -
7
|
F //
A )
k k+I’k- 1 ’
Figure 1.8.4

The proof in this case is performed in the same way as above. m

From the determinant representations (I.3.5a) and (I.3.5b) we can obtain
the determinant representation given in [CLAEc] for univariate Newton-
Padé approximants. Consider the Newton interpolating series for f(z,0)
and choose

D = {(d,0) |0<d < m}
N ={(:,0)|0< 1< n}
I={{:,0)|0<i<n+m}

1t the points {{2,0) | n 4+ 1 < ¢ < n + m} supply linearly independent
equations, then the determinant representations for p(z,0) and ¢(z,0)
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Determinant representation

are
m—1
1 (z—2z0) ... [l (z—=k)
k=0 )
q(x,O) — | Con+rt,o0 €l nt+1,00 Cm nt+1,00
Co n+m,0 0 Cl ntm,00 - Cn n4m,0 0

t—1

n i—1 n
> €01,00 H (z — ff"k) Y Crmi,00 II (z - Tk)
i=0 k=0 1=0

k=0
p(;‘r;,{]) — €0 n+1,0 0 Cm nt+1,0 0
¢o n+m,0 0 ce Cm n4+m,0 0

Let us now illustrate this multivariate setting by calculating a Newton-
Padé approximant for

flz,y) =1+ 4 sin{zy)

xr
01—y
with
.’E,‘zi‘\/ﬂ? 1=0,1,2,...
yj:(j_"l)ﬁ j=0,1,2,...

The Newton interpolating series looks like

1 10
=1t
flz,y) =1+ o.1+ﬁ“’+ 0_1+ﬁw(y + V) +

10 .
—z(y + \/E)y + Z CO.-,O_,--Bij(way)

0.0l —m L
i+52>4

Choose
D= {(0, 0): (1: 0): (0: 1)}
N= {(01 0): (1:0): (0: 1): (1: 1)}
I= {(2:0): (2: 1)a (Os 2)’ (11 2)}

Writing down the system of equations (1.3.3b), it is easy o check that

H = {(2: 1)1 (1: 2)}
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Determinant representation

The determinant formulas for p(z,y) and gq(z,y) yield

1 z Y+ /r
q(z,y) = | co2,01 Ciz,11  Co2,11
Co1,02 ©€11,02  Co1,12

100 (1 1
0.0l — 01+VF

y*—vrﬁ)

Noo(z,y) Nio(z,y) N01(93:y)

p(w, y) = €02,01 €i12,11 Coz,11
€01,02 C11,02 Cp1,12

with

Noo ,y) chm 07 13(33 y)

i=0 7=0
10

z
:1+o1+f+01+ﬁ
N]_O chlz 07 23(1: y)

w(y + /)

=0 5=0
0.14 2/ JT
_'0L+V# =¥ m1+wﬂaﬂy+v?)
NOI ZZCO' IJB:J Jy
1=0 7=0
= (y +v/7) + 102(y + V)
Finally we obtain
N/ Dy, 9) = Do) = Sp YT L2 V)
_0l+z—y
01—y
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Recursive computation

4. RECURSIVE COMPUTATION,

In order to construct rational interpolants that satisfy the interpolation
conditions described by the set I C IN?, we have chosen two finite index
sets N, a subset of I, and D, a subset of IN?, and we have put

p(z,9) = D ai;Bi(z,y)

(i.7)eN
¢(z,9) = Y bi;Bij(z,9)
(1,5)eD

(fa-p)(zy)= D> ciBij(z,9)

(:',j)e_ﬂ\]’z\f

Let us now introduce a numbering (4, §) of the points in IN? based on
the enumeration

(0,0), (1,0),(0,1), (2,0),(1,1),(0,2),(3,0), (2, 1), (1,2),(0,3), .

first di’a,gona,l second diagonal third dTagona.l
so that G4 )itit1)
o 1+7)t+ g+ N
r(i;5) = 2 +7—1
If we denote
#N=n+1
then we can write .
N=|]JnN
£=0

with L N 3 y 3 B
®=N_1CN0CN1C...CN_1CN",=N

#Ne=£+1
NE\NC—lz{('iZ:jC)} £=0,1,...,n
r(ie, ge) > rlie, Je)  €>k
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Recursive computation

In other words, for each £ = 0,...,n we add to N¢—; the point (2, j¢)
which is the next in line in N N IN? according to the enumeration given
above.

Denote
#D=m+1

and proceed in the same way. Hence
m
D= U D,
£=0

with
D_;=0 D¢\ De—1 = {(de,e0)} £=0,..,m

We have assumed that the interpolation set I is such that exactly m of
the homogeneous equations are linearly independent. It is obvious that
this condition guarantees the existence of a nontrivial solution because
the number of unknowns in the homogeneous system is one more than
its rank. We have also grouped the respective m elements in I\ N that
supply the linearly independent equations in the set H. If we number
them according to the enumeration given above, we get

H=GH5§I\N

£=1

with
Ho=10 He\ Hey = {(hg,kg)} £=1,...,m

To obtain a recursive algorithm, the determinant formulas (I1.3.5) for the
polynomials p(z;y) and g¢(z;y) are rewritten as follows. Multiply the
(£+ 1)** row in p(z,y) and ¢(=,y) by Br,k,(%,y) (£=1,...,m), and then
divide the (£+ 1)** column by Ba,e,(z,¥) (£=0,...,m). This results in
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Recursive computation

p(z,y) =

E Cdof,ﬁgj.Bdof,eoj(m) y) e E cdmiaemﬂlem"oemJ‘(mJ y)
(f,7)EN (i,7)eN

Cdohheoledohl,eok1($iy) s cdmh.hcmledmhlscmkl(x’y)

Cdohm,eokm Bdohm:eokm(x’ y) ‘o cdmhmsemkm Bdmhm:emkm(xi y)

g(z,y) =
1 i
cdohl,eoledohl,eokl (:E: y) A Cd-m hl,emk:l Bdmhj_,emk]_ (x) y)

Cdohmseokm Bdohm yeokm (3:, y) e Cdmhm em Koo, Bdmhm vem K (w’ y)
where for k <iand £< 3

Bij(z,9)
Bkﬂ(ws y)

and for k> ztor£> 7

Bieie5(z,y) = =(z—2k) .. (T —zim)(y —¥e) - (¥ — ¥5-1)

Cki e = 0

We can now easily construct (m + 1) series of which the successive partial
siums can be found in the columins of p(z,y). Take

to (0) = Cdoto,e0do Bdol'o,eo.?'o (:B, y)

Ato(€—1) = 1o(8) — to(€— 1) = Cagicseqso Bdoie,coi (%) ¥) £=1,..,n

Then
tﬁ(n) - Z Cagi,éoj'Bdoi,éof(x! y)
(‘I’J-)EN

\

The next terms are given by

= cdohz,eokthohueokz(ms y) £=1,...,m
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Recurstve computation

Note that Ate(£—1) = 0 aslongas ¢ < do or j¢ < eo and Atg(n+£—1) =
0 as long as hy < dy or k¢ < eo. In this way we obtain the first column

of p(EJ y)'

We can proceed in the same way for the other columns. Define for
r=1,....m
tr(O) = CdrianrjO Bdr-fmer.‘fo(m! y)
Atp(L—1) = t(€) — (£ — 1) = Carip,erseBasice,se(5,¥)  £=1,...4n
At(n+2—-1) =t (n+8 —ti(n+£L-1)
= cdrhherkt‘BdrhC)erkt(x) y) Z = 11 tre m

Hence

t,.(n)z Z Cd,.i,e,.de,.i,e,-J'(xay)
(i,7)EN

and the (r + 1)** column of p(z,y) is obtained. Again At (£~ 1) =0
for 4 < dr or jo < €, and At.(n+£—1) = 0 for hy < d; or ke < e,.
Consequently

to(n) t(n)
O B f) . B () .
Ato(ntm—1) ... Atm(ntm—1)
1 1
¢(z,y) = . t?(n) " . tf'(n) (1.4.15)
Atolntm—1) .. Atm(ntm—1)

This quotient of determinants can easily be computed using the E-algo-
rithm [BREZb|:
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Recursive computation

EO —to(8) £=0,.,n+m
g(()?' :t*.(ﬂ) —tr_l(E) r=1,.,m = 0',--éjn+m

E(f,) (e+1) E(£+1)g(5)
£ r—1J9r—1,r r—1 r—1,r _ .
EO = D ¢=01,.,n r=12,.,m
Jr—1,0 — 9r_1,r
(I.4.2a)

( g(ﬂ)l g(5+11) _ g(ﬂ-kll)g(i)l
£y _ Jdr—1,89r—1,r r—1,89r—1,r .
glt) = 0 s=r+1,r+2,... (1.4.2b)

r—1,r ~ Ir—1,r

| The values E,(-Z) and g£f;.? are stored as in table [.4.1 and table 1.4.2.

B
foi
BV
B B
B :
' Eplm
Ew)
E£n+m-—1)
E((]n+m)
Table 1.4.1
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Recursive computalion

W T— i
(1+u)P

wtI—tp

(0)

(ur)

Wt
(n?

w'p
Evm

& 7T 2190l

0f

. (o)

z'1

@ |
_

z'0 1‘0
Em | Em
|

‘0
mam | heo.
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Recursive computation

We obtain
[N/D); = EY

Sincé the solution ¢(z, y) of (I.3.1c) is unique, the value Bl itself does
not depend upon the numbering of the points within the sets N,D and
H. But this numbering affects the interpolation conditions satisfied by
the intermediate E-values.

THEOREM 1.4.1. For£=0,..,n and r=0,...,m

ESC) = [NZ/Dr]Ntuf("c+1|J'e+1)=---a("naJ'n)v(hl=k1)'""(hr—“"“’k"”“"")}J

—

r points

PROOF:: Thé proof is obvious since we know from [BREZb] that

to(2) e (2)
A to(2) . At (2)
B Ato(ﬂil—r—l) Atr(ﬂll—r—-l)
N
Ato(,eirr—n At,.(ﬂil-r—l)

and from [CUYTj] that
[Nt/Dr]NLU{(i£+1|.'1"t+1):---1(':ns.?.n):(hhkl),---s(hr—n+t.1kr—n+£)} =

E(I',j)ENL cdoi'eOJ.BT:J.(IJ y) e E(l‘,j')ENg Cd’ri;eerij(ml y)

Cdotrr1,60Tet1 s Cd tep1.erfeta

Bayeo(ziy)  :++ Bas (z;9)

Cdoteqr1.€0deq1  *° " Cdptrqr,erfet
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Recursive computation

If # — £ > r then the interpolation set does not contain points of H but
only the points {(io, Jo)- - - (8¢ Je), (S41, e 1)s o5 (B )} @

If N is enlarged with elements of H ot if D is enlarged, thei sufficierit
points of IN? should be added to I so that H is enlarged with the same
number of points as N or D. The enumeration of the points in NV, D and
H can be adapted so that the first (m+ 1) columns of the E-table remain
unchanged and only subsequent columns or diagonals must be computed.

If N or D are completely changed, then it may be necessary to restart
the algorithm.

If N and D contain the origin and satisfy the inclusion property them-
selves, then the structure of the g-table simplifies since

t.(£) =0 ezo,...,(d"Jre’")(‘i’"Jre’Jrl)+e,,—1

We can tell from table 1.4.3 that we get a band structure instead of a
triangular table.

0
0
0
gt(~—?1,r
0
(r—2) (n+m—r+1)
gl,r r—1,r
2
(nt+m—1)
1,r
g(():i;‘+m)
Table I.4.8
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gdg-algorithm

5. CONTINUED FRACTION REPRESENTATION
AND THE QDG-ALGORITHM.

Let us now suppose for the sake of simplicity that the homogeneous sys-
tem of equations (1.3.3b) has maximal rank, in other words H = I\N.
As a consequence we have '

#I=n+m+1

Hence we can write

with

Iy = Ny £=0,...,n
In+g\fn+g_1 = {(Z'n_;_e,].n_;_g)} L= 1,...,m
r(tnte, Jnye) > 7(8rs Jr) nt+l>rzn+l

With the subsets Ny, D, and Ipy, rational interpolants

[NE/DT]IHs-
can be constructed which satisfy only part of the interpolation conditions
and which are of lower “degree”. To this end we assume that the num-
bering r(4y, jr) of the points in IV 2 is such that the inclusion property of

the set I is carried over to the subsets I;. With these functions we can
fill up a table of rational interpolants :

[No/Dolr, [No/Dilt, [No/Delr,
[N1/Dolz, [Ni/Dilr, [Ni/Dolr,

[ﬁz/,ﬁo]h [NQ/'ﬁljfa [NQ/D2]I4

Table 1.5.1
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qdg-algorithm

where [N/D}; = [Nn/Dml1, 4., - Our aim is to consider descending stair-
cases of multivariate rational interpolants in table I1.5.1

[Ns/Dols,

[Now1/Dolr,y,  [Now1/Dilry, (1.5.1)

[Not2/Dilrys  [Nogz/Dalr,y,

and construct continued fractions of which the £* convergent equals the

2% interpolant on the staircase. We restrict ourselves to the case where
every three successive elements in (1.5.1) are different. It is well-know that
a continued fraction of which the £ convergent is the ££* element of a
given sequence {Cy}ecpy with every three successive elements different
from each other, is given by

Cpr_1 — Cy

C1—Co | 00 kad Cgl——Cg_
Co +

o+ l +Z — Cp—g

Ce 1~C'ez

Let us compute the partial numerators and denominators of this contin-
ued fraction for the elements

Cz+f‘ = [NE+3/DT]I£+,.+E & Z 0 £+T=O, 1,2,...
on the descending staircase (1.5.1).

In the notation of the previous section we already have

Co = to(s) = Z Cdo-',eo,'Bdo.'.eo;(Es y)
(¢,7)EN,

Cl Atﬂ( ) = Cd0£c+1180.7's+1‘Bd01.3+1,eo.?.t-l-l(m’ y)
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qdg-algorithm

We shall now distinguish between even and odd numerators and denom-
inators. For this purpose we introduce the notations

(s+1) _ Coe—1 — Cge

T " Capy — Cop_n
ety Cae — Capyy
¢ Coe — Capy

for the partial numerators. Consequently we can write for the partial

denominators C o
1+q£s+1) . 28 2£—2

~ Cge—1— Cap—g
C. — Cao_
1+e§8+1) _ o 2¢—1
Cap — Coe—)
In qgsﬂ) the convergents
Cae—2
Coe-1 Cge

of (1.5.1) are involved. In other words the rational interpolants

[Nevs—1/De—1l12040ms
(Nevs/Deiltyepo_y [Newo/ Doy,

or, in the notation of the previous section,

Bt

84-£ s+£
Eg_'*l‘) E§+)

Hence, by using (1.4.2a)
B

 Cat—1 —Cyg  EYY _ glottY)

~(s41) Cop — Coe—1
)

(B — BPTHYy gt
(B2LO — BPLYy gl i) — gt
(1.5.2)
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qdg-algorithm

(

In e;“) the convergents

Cot—1  Cog
Caeq1

of (I.5.1) are involved. In other words the rational interpolants

[Nevs/De—1)12040-1 [Nevs/Delry,,,
[N£+1+3 /DE]I2L-|-1+9

or the values
E{(:_—I;E) E£3+£)
E§8+€+1)

In this way

fot1) Caer — Car _ EPHHHY) — g0
- _ - a4 +£
Ca¢ — Cap_y Eé +e) _ EES_I )

(1.5.3)

Combining (1.5.2) and (1.5.3) we find for £ > 2

s+£ 84-£ s+¢&
2+ = gle+2) (BEEY — BRLY) git )
£ T YE-1 P) 34— 3 )
(BEYD — BEY gl — gfet)
8 s+€— s+£
(842) (3+2) (Et(!—;e) “Eg—;e 1)) gg-:'i,g

= "1 91 (Eész) _ Egs_-il-ﬂ—l)) g(s+z+1) (s+2)

| e-1,6 T Y12
2 2 s+t — +¢
I R ¢ O o seao) IR vy S
_ +1 +é—1 +£—1 +&+1 3L
e£8—1 ) (E£i1 ) _‘Eés—z )) 9?—1;!; )~ 9§—1;3
+¢ +2—1 +¢
. egf:liZ)qga—-liz) g£i21g_1 - ggs—Q,l—-l) ggil,g (I 5 4)
- (s+1) (s+€-1) (s+£+1) (s8) V77
€1 9¢—2.6—1 Ge—1.6  —Te—1,¢
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qdg-algorithm

and for £> 1

E(s+£+1) E.(s+e)

(84+1) 4 it |
e +1
s+£ s+¢€
HT B
(s+8+1)  (s+8)
Je-1,e "~ 9e—1,2 [ (s+2)
- " (4 +1) (1.5.5)
Je—1,¢
If we arrange the values qE”l) and egs"H) in a table as follows
0
e
gt 0!
o) 50
gt as?
eg3) (2
q£4) qé3)
SCEEERNO
Table 1.5.2

where subscripts indicate columns and superscripts indicate downward
sloping diagonals, then (I1.5.4) links the elements in the rhombus

6(8+1)
£—1
g% gi" Y
(s4-2)
€r1

and (1.5.5) links two elements on an upward sloping diagonal
e£8+1)
q£s+2)
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qgdg-algorithm

(s4+1)

If starting values for g, were known, all the values in table 1.5.2 could
be computed. These starting \fa.IUes are given by
s+1
o EH e
q1 - E(£3+1) _ E(()s) Ato(s) g(()?;rz) _ gg(ffrl) 0.

Finally, we can say that, given a descending staircase (1.5.1) of different
elements, it is possible to construct a continued fraction of the form

[Nos1/Dolrys — No/Dols, | —q*™ | —ef*V |
[Ns/DO]I3+ + — + 8 '
| L PSRN PO
_(s+1) _(s+1)
LD | ) |_|_ (1.5.7)

+
[14 g0 {14 el

of which the successive convergents equal the successive elements on the
descending staircase (1.5.1). Here

[No/Dolr, = D Cdoieos Bioieos (%, ¥)
(£,7)EN,

[Nox1/Dolr,,, = Z Cdoi,e0i Bdoi,eos (%1 Y)
(i)j)ENG—I—l

and the coefficients qgs"'l) and egsﬂ) can be computed using (1.5.4-6).
In analogy with the univariate Padé approximation case [HENR p. 610)
and the univariate rational Hermite interpolation case [CLLAEa] it is also
possible to give explicit determinant formulas for the partial numerators
in (1.5.7). Let us introduce the notations

Ato(h) . A to_1(R) |

Holh, k) = E s Ho(h,0) = 0

Atoh+k—1) ... Atg_y(h+k—1) |

1 1 |

H; (h, k) = Mf’(h) Atf"(h) Hy(hy—~1) = 0
Ato(hll—k—l) Atk(h.—l—k—l)
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to(h)
A tg(h)
Hg(h,k) = .

Ato(h 4k — 1)

1
to(h)
Hs(h, k) = Ato(h)

Ato(h+ k —2)
We know from (L3.5) that

Hy(h, k)
H,(h, k)

-algorithm

t(R)
A ti(h)

Atk(h—i—/ﬂ—l)

1
te(h)
A ti(h)

Atg(h+ k— 2)

= [Nh/Dk]Ih—i-k

Besides the differences At,(£) we can also consider

§t,:(8) = trp1(2) — ,(0)

and introduce the notations

St (h)
Go(h, k) = ;
6ti—1(h)

1
Gy(h, k) = 6t0-(h)

5tk__.1 (h)
to (%)

Calh K) = 5t0.(h)

6tk_'1 (h)

Stolh + k — 1)
5tk_1(h.+ k — 1)

1
5to(h + k)

6tp—1(h + k)
to(h + k)
§tg(h + k)

6te—1(h + k)

43
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gqdg-algorithm

1 1
to(h) . tolh+ k)
Gg(h,k) — 5t0(h) 6t0(h+k) Gg(h,—].) -0
5tk__.2(h) . (Stk_g(.h + k)

For the H-values it is well-known by the Schweins expansion [BREZa p.
43] that

Hy(h,k)Hy(hyk~1) — Hy(h,k — 1)Ha(h, k) = Hs(h, k) Ho(h, k) (1.5.8)
For the G-values one can prove using the Sylvester-identity that

Gi1(h —1,k)Go(h, k) — G1(h, k)Ga(h — 1,k) = Ga(h — 1,k + 1)Go(h, k)

(1.5.9)

G (h—1,k)Go(h, k1) —Gy1(h, k)Go{h~1,k+1) = G1(h—1,k+1)Go(h, k)

(1.5.10)

Some easy computations show that the G-values are very related fo the
H-values. For k > 1 we have

Ho(hyk) = G3(h, k)
Hs(h, k) = Go(h, k)

and for k>0 |
Hy(h, k) = Gy (h,k)

Hﬁ(h: k) =G, (hs k)
Hence we know from (1.5.8) and (1.5.9) that also
Gi(h,k)Ga(h k—1)— Gi(h,k—1)G2(k, k) = Go(h,k)G3(h, k) (1.5.11)
and thé.t for k> 1

Hi(h —1,k)Hy(h, k) — Hy(h,k)Ho(h — 1,k) = Ho(h — 1,k + 1)Hs(h,k)
(1.5.12)
By means of these formulas we can prove the following theorem.
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THEOREM 1.5.1. For the partial numerators qgsﬂ) and e£s+1) in the

continued fraction (1.5.7) of which the successive convergents equal the
successive elements on the descending staircase (1.5.1), the following de-
terminant formulas hold:
(s41) _ Ho(s+ 6, ) Hy(s+£—1,£— 1)H3(s + £,£)
% T T H(s+e—1,0H (s+ 6O Ha(s + £, 1)
G(31) CHo(s+ 4,6+ 1H (s + 4,6 1)Hy(s + £+ 1,4
£ Ho(s + L, 0)H (s + 2+ 1,8 Hy(s -+ £, £)

PROOF: We know from (I1.5.2) and theorem I1.4.1 that

£ £
(s+1) _ Ef(is+ ) - éi—*l— )

q = ot f—
GG

Hy(s+ 2,2
 Hi(s+4,¢
Ha(s +6,0—1
Hi(s+24,0-1
Using (1.5.8) and (1.5.12) we get

(s+1) _ Ha(s+£,8Ho(s+E,8) Ho(s4+£8—1,8)Ha(s+8E—1)
e = T H (st GO H 1 (s+6E—1) | Hy(s+€E—1)Hy(s+E—1,6—1)

_ Ho(s+ 4, OH(s+£—1,£—1)H3(s + 4,4
© Ho(s+£—1,0)H (s +£,8)Ha(s+ £,£~ 1)

The formula for egs"'l) is proved in a completely analogous way. B

(1.5.13)

(1.5.14)

HZ(S"I_E’E_I)
H1(S+e,e—1)
Hy(s+£-1,£—-1)
Hi(s+£—1,£-1)

S’ | St | Nt | N

Note that one can prove, using (1.5.9) and (I.5.10) that
H2(h's k) E(h) _ Go (h'a k)

Hl(h1 k) kT Gl(h'jk)
Galhk—1) Golh+1,k)  Ga(h+1,k—1) Gol(hk)
_ Gi(hk—1) Gi(h+1L,k—1) Gi(h+1,k—1) Gy(hk—1)

Go(h+1;k)  Go(h;k)
Gi(h+1L,k—1} Gi(hk-1)
E(h) Go(h + l,k) . E(h_|.1) Go(h, k)
U Gy(h+L,k—1) T Gi(hk—1)
Go(h+ ]'Jk) GO(h’ k)

Gi(h+1,k—1) Gi(hk—1)
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Referring to (I.4.2a) we see that

Gg(h+ l,k) _ (h+1)
Gilh+1,k—1) etk
GO(h‘!k) (k)

Gi(h, k— 1)  Je—ik

Obviously the formulas from section 4, involving recursive computation
and those of section 5, involving continued fraction representation, are
closely linked. This is to be expected if we want to develop a multivariate
theory with the properties of the univariate theory.
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6. SPECIAL CASES.

This multivariate theory, in which a rational interpolant can be obtained
explicitly by means of the formulas (1.3.5) or by its values via the algo-
rithm (1.4.2) or as a convergent of the continued fraction (I.5.7), includes
a number of interesting special cases.

(a) Univariate rational interpolants of degree n in the numerator and m
in the denominator can be obtained by choosing

D ={(d,0)|0<d<m)

N ={(5,0)]0<i<n)
HCI\N={(h,0)|n+1<h<n+m+s, s20}

where the integer s is the number of linearly dependent interpolation
conditions in I\ N. The E-algorithm then simplifies to an e-like algorithm
[CLAEd, CUYTj| and the gdg-algorithm simplifies to the generalized qd-
algorithm [CLAEa].

(b) As a consequence of the previous remark univariate Padé approxi-
mants also result as a special case by letting all the interpolation points
coincide in the univariate formulation. The FE-algorithm now reduces
to Wynn’s e-algorithm [WYNN] and the gdg-algorithm to Rutishauser’s
qd-algorithm [HENR].

(c) The multivariate Padé approximants of order (v,u) introduced in
[CUYTd, CUYT(], which prove to satisfy a large number of the classical
univariate properties, can already be calculated recursively by means
of the e-algorithm [CUYTg| and can also be represented in continued
fraction form using the gd-algorithm [CUYTI]|. To this end the At,.(£—1)
and At.(n+ £— 1) are homogeneous forms af degree £ —rand n4£—r
respectively given by

Atr(ﬂ- 1) = E éoi,OJ'Bt'J'(:b: y)
i+5=t—r

At,.(n + £ — 1) = Z CO:’,OJ'BEJ'(m: y)
i+j=n+i—r
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where .
11 8ttaf

i 71 8zt oy7

|(0,0)

Coi, 05 —

These approximants can now be obtained by following a different ap-
proach and the computations can be performed in a different way by
constructing Af, as described in section 4. To this end we choose

D= {(d;e) | nm < d+e < nm+m}

N = {(3,7) | nm <i+j < nm+n}
Hc{(rk)|nm<h+k<nm+n+m+s, >0}

where the integer s is related to the block-size of this multivariate Padé
table. For more details see [CUYTb]. Explicit determinant formulas for
these index sets, involving near-Toeplitz matrices, are given in [CUYTD).
The case s =0 and H = I\N is treated in more detail further on.

(d) Last but not least, a great number of multivariate Padé approxi-
mants defined in the last decade, can now also be computed recursively
and represented in continued fraction form by letting the multivariate in-
terpolation points, used in the previous sections, coincide with the origin.
The bagisfunctions and divided differences become
Bkz’,lj(xj y) = :Bz.—kyj—l
ai—k+3’—lf
Chi s = Bxi—kgyi—t |(0,0)

We shall consider here all types of definitions based on the use of a linear
system of defining equations for the numerator and denominator coeffi-
cients of the multivariate Padé approximant. Definitions of this type can
be found in [CHISc, CUYTd, HUGH, KARL, LEVIa, LUTTa, LUTTD].
The framework used to describe this group of definitions, is greatly in-
spired by [LEVTIa).

Given a Taylor series expansion

Flzy)= D coiosz'y’

(i,7/)EN?Z
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Wwith _
11 9ty

l(0,0)

we shall compute an approximant p(z, y)/q(z,y) to f(z,y) where p(z,y)
and ¢(z, y) are determined by the accuracy-through-order principle. The
polynomials p(z, y) and g(z,y) are of the form

ple,y)= ), ayz'y’

(‘-1.7.)EN
q(m,y): Z bt'jxiyj
(itjl)ED

where N and D are finite subsets of IN?. The sets N and D indicate the
degree of the polynomials p(z,y) and ¢(z,y). Let us denote

#N=n+1

#D=m+1

It is now possible to let p(z, y) and ¢(=, y} satisfy the following condition
for the power series (fq — p)(z,y), namely '

(fe—p)(my)= ), diyz'y’ (I.6.1)

(,7)EIN2\I

if, in analogy with the univariate case, the index set I is such that

NCI (1.6.2a)
#(I\N)=m=#D -1 (1.6.2b)
I satisfies the inclusion property (1.6.2¢)

meaning that when a point belongs to the index set I, then the rectangu-
1af siubast of poitits etianating fron the ofigii With the givei poiiit a8 its
furthermost corner, also lies in I. Condition (I.6.2a) enables us to split
the system of equations
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in an inhomogeneous part defining the numerator coefficients

t 7
Z Z COP‘:OVbi”PuJ"—V = Gy (i:j) eN

n=0v=0
and a homogeneous part defining the denominator coefficients

i 7
Z Z Cop,0vbi—p,j—v = 0 (4,7) € \N (£.6.3)

p=0vr=0

By convention
bke=0 (K, ¢D

Condition (I.6.2b) guarantees the existence of a nontrivial denominator
q(z,y) because the homogeneous system has one equation less than the
number of unknowns and so one unknown coefficient can be chosen freely.
Condition (1.6.2¢) finally takes care of the Padé approximation property,
namely

(f— g)(miy) = Z 62'3'331:93

(£,5)eIN?\TI

For more information we refer to [CUYTc, CUYTd).

For the sake of simplicity we assume that the homogeneous system of
equations (I.6.3) has maximal rank. From numerical experiments we
know that this is most often the case. However, what follows can be
extended to the case when this is not true, by adding points to the set
I\ N until the rank deficiency has disappeared, but at this moment this
would only complicate the notations. Using the numbering r(%,7) of the
points in IN?, based on the enumeration given in section 4, we can write

n
\ N=_J N
¢=0
m
D=|) D,
: £=0
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r=wo (U It)

£=n+41

where N¢, Dy and I; are defined as in the sections 4 and 5. It was shown
in [LEVIa] that a determinant representation for

ph(xﬂy) = Z a'ijxiyj 0<h<n

(iaJ.)ENh.
and
(z,9) = »_ byz'y’ 0<k<m
(hJ)EDk
satisfying

(fax — pu)(z,y) = Z dijfciyj

(£,7)EIN*\In 4k

is given by

.. i
z Ci—do,7—e0 oy .. E Ci—dy,g—ep® y’
(£,7)EN, (4,.5)ENR
Cq - Y — P Cy — y —er
ph(mj y) — Th: do 1wJh4+1—€0 tht1 dk:.?h—l—l €
Cippn—do,Jnpr—e€0 v Cipgn—di,Intk—ek
(1.6.4a)
xdo yeo . :cd.l;- yck
Cipgr—do,gngr—eo  *++ Cinpi—dr,ghpi—ex
ak(z,y) = : _ (1.6.4b)
Cinrx—do,dnyk—€o *+*  Cingpr—dr,datn—en
where

CO."OJ':O 1< 0 or ]<0

A solution of the original problem (1.6.1) is then given by

pnlz,y)
Qm(miy)
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because
N, =N
D,, =D
In+m =T

In order to show that this general setfing can handle quite a number
of previously given definitions of multivariate Padé approximations, we
shall now give the sets N,D and I for several of these definitions.

When we are dealing with Karlsson-Wallin [KARL] Padé approximants,
we must choose v and p in IV and construct

N={(:)eN?|0<i+j<v)

D={(d,e)cIN* |0<d+e< u}

which are triangular sets. In this way

#N:n+1:%(v+1)(u+2)

#D=m+1=(s+1)(n+2)

+%(u+ )+ 2) - 1 points

Y

Figure 1.6.1
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For Padé approximants introduced by Lutterodt [LUTTh], we have with
Vi, V2, ph, po fixed

N={(Gj)eN?|0<i<v, 0<7 <)
D={(de) e N* |0<d < py, 0<e< pig}
which are rectangular sets. Now

#N=n+1= (v +1)(ve + 1)

4D =m+1= (41 + (pa + 1)

For these two types of multivariate Padé approximants, the only demands
for the set I are the conditions (I.6.2a—c).

I

+ (py+ D{u,+ 1) -1 points

Y

Figure 1.6.2

- Multivariate Padé approximants of order (v,u) introduced by Cuyt
[CUYTd] appesr to have nutherator afid denomiiiator index sets givet
by
N={(i,)eN* |vp<i+j<vu+v}
D={(de)c N’ |vp<d+e<wvp+p}
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which resemble triangular sets. Here
I — Il U .[2
Li={()elN" |vp<it+j<vp+v+p}
L={(j7)e N°|0<i+7j<wvu)

where the conditions in I; are automatically satisfied by the choices of
N and D.

I
PU+V+ U
vy /
LU P+ + L >
Figure 1.6.8

The approximants introduced by the group working in Canterbury
[CHISc, HUGH] were constructed from
N ={(i,j) EN? | 0< i< v, 0L5 < v}
D={(d,e) e N* |0<d< py, 0<e< ug)
I=NUDUL UL
with
L= {(i,7) € IN* | 0 < j & iniii(i, jia),
Max(th, i) K E X 4, 1+ 7 L+ e}
I; = {(4,5) € IN? | 0 < i < min(vy, 1),
max(va, p2) < § S va + g, 1475 < v+ ps}

54



Special cases

with the additional requirements

dul+”1+1_£g£ + dC,U2+p‘,2+1-£ = 0 £ = 1, ey min(Vl,#l,V?, ’1}2)

These additional requirements alter the determinant representations
(1.6.4a) and (1.6.4b) but the structure of the determinants remains the
same. For more details we refer to [LEVIa).

Z////
TN

My el vpesy

Figure 1.6.4

For all these definitions the determinant formulas (1.6.4) can be rewritten
as

to(h) to(h)
pu(z,y) = ° t?(h) h ° tfc(h) (1.6.50)
Ato(h+k—=1) ... Atg(htk—1)
1 1
lo.0) A t.:;;(h) .. A t:c-(h) Losh
Atolh+k—1) ... Abylh+k—1)
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This quotient of determinants can again be computed using the E-algo-
rithm given in (1.4.2) if the series £o,...,¢x are defined as in section4, but
now using Taylor coefficients instead of divided differences:

fo—d 0o—e
tO(O) = €0 ig—do,0 jo—eo L © 0ydoTeo

Nto(£—1) = to(ﬂ) —tg(£—1) =co it—do,0 je—eo :E"L—doyfc—eo
£=1,...,h+k (I.6.6a)

Atp(£—1) =0 1e < dp or J¢ < €

do—d, Jo—e,
tr(0) = o io—dy,0 jo—e, T TYTE

Atr(e - 1) = tr(e) — tr(ﬂ —- 1) = Cip~dr,Je—en -’L‘ia_d' ng—er
£=1,...,h+k  (16.60)

At.(£—1)=0 1 < dy O 3¢ < e,
Finally with » = n and k = m, this is with N, = N, D, = D and
Ihii = 1 we get
Pn(2,9) — E()
Qm(g":y)

while intermediate values in the computation scheme are also multivariate
Padé approximants since

E(h) _ ph(ms y)
k qk(x)y)

and thus o
f-EM = Y. ety

(4,7)EN2\I) 4

In- the same way as in section 5, these intermediate values can be used to
build a table of multivariate Padé approximants:
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[No/Dol1, [No/Dilr, [No/Dsli,
[N1/Dolr, [N1/Dilr, [Ni/Dali,

(N2/Dol1, [N2/Dilr, [N2/Dzl1,

Table 1.6.1

Using the formulas (1.5.4), (I.5.5) and (I.5.6) again continued fractions of
the form (I.5.7) can be constructed of which the successive convergents
are the multivariate Padé approximants on the descending staircase

[NS/DO]IB
[Ns+1/Dolz,yy  [Nox1/Dil1,4s
r e ¥ (I.5.1)
[N3+2/D1]Is+a [N3+2/D2]Is+4.
¥or the starting values
+1
glorn) - “Alols +1) g1y (1.6.7)
1 Ato(s) g(()?:rz) B g(()-:l-l)

the series to is defined as in (I.6.6a). The determinant formulas (I.5.13)
and (L.5.14) remain valid as well with ¢, defined as in (1.6.6b). So we
see that Padé approximants originally only introduced via defining equa-
tions, can be given via a recursive scheme and can be obtained as the
convergent of a multivariate continued fraction. In this way the univari-
abte equivalence of the three main defining techniques for Padé approx-
iman$s is also established for the multivariate case: algebraic relations,
recurrence relations, continued fractions.
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1. APPROXIMATION OF FUNCTIONS.

Let iis illustrate a number of all these rational interpolants and approxi-
mants by some numerical results. When we are dealing with interpolation
problems, we must specify whether we are interested in an explicit for-
mula for the interpolant or only in its value at some points different from
the interpolation points. The former gives rise to a coefficient problem
while the latter is a value problem. Suppose we have to solve the fol-
lowing numerical problem. A bivariate function f(z,y) is only known by
its function values in a number of distinct points {z;,y;) and we need an
approximation for the value of f in some other points (u;,v;). This prob-
lem can be solved by calculating the function value of an interpolatory
function (polynomial or rational) with or without solving the coeflicient
problem. The bivariate Beta function B(z,y) will serve as a concrete
example here. It is defined by

I'(z)I(y)
B(z,y) = Tty

where T' is the Gamma function. Singularities occur at z = —k and
y=—kfor k=0,1,2,... and zeros at y = —~z — k for k = 0,1,2,... By
means of the recurrence formulas

['(z+1) = al'(z)

Ty +1) = yT'(y)

for the Gamma function, we can write

1+ (z—-1)(y—1)f(z—1,y — 1)
Y

B(=, y) -

We shall now compute several types of approximants R(z,y) for f(z —

l,y — 1) and compare the exact value B(u,, vy) with the expression
5

1+ (ug — 1)(vy — 1) R(us, vy)

Let us use the following interpolation methods:
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(a) Polynomial interpolation
‘ Ly no
R(i“: y) = Z Z f[$0: T mt][yO; R yj‘]Bij(x} y)
i=0 7=0
satisfying

(f - B)(z,y) = Z cij Bij (%, y)

{{t,7)]i>ns or j>nq}

(b) Symmetric branched continued fractions of the form [CUYTK]

no,x o,y |
)

e  m—Tp | Y = Ye—1
R(s,y) = @|zo][yo] + ,; (o0, - 2ullvo) :4:« [elzolyo, -, 9x]

+i (z — -"35—1)(?!;:!5—1)

=1 go[‘.’Eo, e ,QJE][yO; ‘e ,yZ] + E tﬁP[ﬂ:O:-f;Zf[;;w-:ytl

k=£+4+1
+ % , Y—Yr—1
= f+1 |p[a’0w-:$£][yo,...,yk]
where
©lzol[yo] = f(zo, ¥o)
p[:BO)"-,:Ek][y()] = T — Th—1
©l%0, - -y Th—2, Tk} [Yo) — ©[To, - -+, Tr—2) Tk—1][Y0]
Y — Yk—

<p[$0][y0, oy Yk = 1

P[26)1Y6, - - + s Yie—z, Yie] — P[Lo] Yo, - -+ Y1) Yh—i]

olza, ..., zd¥o,. .., Yi] =
(ze — ze—1)(ye — Ye_1)

elEoy e Be2,2e][Y0s Yt—2 Ve}— €T, Doz, Be—1] (Yo, W2,
—@[T0, o2, @] [H0s Y e—2,¥e— 1} 0 T0 Tz 1] (Yo, Y -2 Ye—1]
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afid for k > £

©[T0, -+ Tkl[Yo, -+ s ye] =
Tl — Th—1

‘P[xos" -1xk—2)$k][y0: . -';yl] - ‘10[30: e ;xk—stk—I][yOJ "'1y£]

‘P[wO; .- -,-'Cz][yO; Tt yk] =
Ye — Yr—1

¢[$0;--'Jf£][y0:' . '!yk—2:yk] - 40[301' .. :mt]['yOJ' . ':yk-—%yk—l]

satisfying
(.f - R) ('T') y) = Z C;‘J'B;'j(ﬂi,'y)

IN2\{(i,5)|0<i<n ,0<5<n;y )
\{(7,9)[0<i<hn , 05K, }

(c) Branched continued fractions of the form [STEM]

T, = T ( 3 I e I
B(z,) = Vlaollwl + 2 el *

r— Te—1
+2
Y—Vk-1

LY A
£=1 ’l,b[:co, v ,xZ] [yO] + kz_ji ‘1.()[:1’:0..--,-’-6.'_][3!0:-"33”#1

with
P[zo][y0] = f(%0, Yo)
R ] e Ye — Yr—1 _ L
¢[mo][yo, o ’-yk] B ¢[x0][y0,...,yk_2,yk] - ¢[wo][yo,---,yk_z,yk_1]
g — Tg—1

P20, - - -, Zellyo] = o, .-, Te—2, Te]lYo] — Y[Zo, - . ., Be—2, Te—1][%0]

6d 161 25 1
¢[$0:' "1555][?;01 T "yk] =

Ye — Yre—1
'llb[:cO" cey xt][yO: . ':yk-—-ZJyk] - 'llb[xOs . e '!mﬂl[yﬂx' . ':yk—2ayk—1]
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satisfying

(f ~ R)(z,y) = Z

Cs'jBij(xJ y)
N 2\{(¢,7}]0<i<n , 0<5<n;}

(d) Multivariate Padé approximants calculated by means of the -algo
rithm [CUYTg]

R(z,y) = el ™
with

= F’.2m

s(k) =0

—1

k=0,1,...

' L i+g
(k) _ 1 a7 f . B
0 = 2 iyt 9zt oy’ l0,0) 'y’ k=0,...
i+5=0

(—¢-1)

DY)
(k) _ _(k+1) 1 _
€pp1 = €4y + Gt D) 0 £=0,1,...
) — &

=0

b= —|52], -1 %2+ 1,
satisfying the conditions described in section 6 of part I

(e) Chisholm’s Padé approximants [CHISc]

n

2. a

3—_‘

R(z,y) =

||M; gM:

where a;; and b;; are computed so that in the Taylor series development

(f—R)(my)= Y, ciyz'y’
(¢,7)eN?
we have
cij =0 (w)e{(z 7)10<i+j < 2n})
Czn'i‘i_jsj + 0312"""1 =0 j - 1’ DR 2n
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(f) Levin’s general order Padé approximants [LEVIa]

> at’jxiyj
(isj.)eN

R(z,y) = >

(’:».7.) eD

b,'J':Ciyj

described in full detail in section 6 of part I and satisfying

(f-RB)(zy)= D, cyz'y

(i’J-)ENZ\I
Our choice for the sets N, D and [ is:

ny +1

NI

n1+1
2

N={G)[0<i+i<m)u{(|

D={(1)]0<i+j <ny}
I={(i,5)|0<£i<ns3,0< 7 <na}

(g) General order rational interpolants

9y Z): . aijB,'j(.'L‘, y)

_ (i9)E

R#9) = 5 Balm )
(isJ')ED

as given by (1.3.5) here and with the next choice for the index sets N, D
and I:

N={G)10<i+i <m)u((l5 212 )

D={(i7)|0Zi+7j < ns}

F={{1,7)]0<i<ng,0< 7 < ng}

In order to use the same amount of data for each method, we are going
to take
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(a) ni=5and ny=>5

(b) n=25and ni; =5 =n4y
i=0,...,5

(c) n=5andn;=5
(dJ n=4andm=3
(e) n=3

i=0,...,5

(f) n1=5,npo=4andns =5
(8) ni=5,ny=4andng=5
For (a), (b), (c) and (g) the interpolation points are chosen to be

zo = 0.90
T3 = —0.b4
Yo = 0.70
ys = —0.45

z; = —0.85 25 = 0.47
zq4 = 0.18 zs = —0.23
y1 = —0.77 y; = 0.60
ya = 0.21 ys = —0.35

which amounts to 36 data points {z;,y;). For (d), (e) and (f) respec-
tively 36, 34 and 36 Taylor coefficients are given in order to compute the

approximant, namely

i+j
Azt oy’ [¢8Y)
o+
axiayj |(1$1)

for (d):

for (e):

ov+3
fOI‘ (f): amzayf; 1(1,1)

We take

(4,7) € {(5,5) |0 < i +35 <7}
(4,5) € {(%,7) |0 < i+ 5 < 6}U
{(1,86),(2,5),...,(5,2),(6,1)}

(i,7) € {(3,7) | 0<i< 5,0 < j <5)

(us,v;) € {(~0.75,—0.75), (=0.50, —0.50), (;0.25, —0.25)}

U{(0;25; 0;25)5 (0;50; 0:50); (0.’755 0:75)}
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Approzimation of funciions

The rational interpolants in (b) and (c) are computed using a backward
evaluation algorithm while the rational interpolants from (g) are com-
puted once using the algorithm given in (1.4.2) (see results (g)) and once
using (1.5.4-7) (see results (g’)). For the Padé approximants in (d) the
well-known e-algorithm is used while the Padé approximans from (e) and
(f) are calculated once using (1.4.2) for the representation (1.6.4) (see
results (e) and (f)) and once using the gdg-algorithm for the starting val-
ues (1.6.6) (see results (e’) and (f’)). Of course one can also compute the
approximants in (e) and (f) by means of older techniques used by the
Chisholm-group [GRAVa) and Levin themselves [LEVIb]. The numerical
results can be found in table II.1.1 below. All the compufations were per-
formed in floating point double precision arithmetic on a Gould UTX/32
with an input of 12 significant decimal digits.

For all the types of approximants, except (c), the choice for R(z,y) was
such that it was a symmetric function. This was done because B(z,y)
is symmetric. We noticed that unsymmetric approximants yield worse
numerical results. The polynomial approximants Joose a number of sig-
nificant digits because of the singularities of the Beta function. The
g-algorithm (d) and the other Padé approximants (e) and (f) get all their
information at (1, 1), far from the points (u;, v;). What’s more, the given
Taylor series does not even converge for —1 < z,y < 0. This is a disad-
vantage in comparison with the interpolation methods. As a conclusion
we can say that the general order rational interpolants (g) introduced
here, behave quite well.
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(—0.75,-0.75) | (—0.50,—0.50) | (—0.25,—0.25)
() 11. 0.06 —6.75
(b) 9.95 —0.001 —6.7770
(c) 9.95 0.003 —B.775
(d) 8.8 —0.07 —6.786
(e) 7.0 —0.14 —6.787
(e)) 6.9 —0.14 —6.785
(f) 5.3 —0.46 —6.84
(%) 5.6 —0.41 —6.83
(g) 9.91 0.0002 —6.7776
(g") 9.91 —0.0002 —6.7776
B(x,y) 9.88839829 0. —6.77770467
(0.25, 0.25) (0.50, 0.50) (0.75,0.75)
(a) 7.45 3.14151 1.69
(b) 7.416291 3.14159276 1.604426
(c) 7.416205 3.14159290 1.604426
(d) 7.416307 3.14159269 1.60442617
() 7.416310 3.14159269 1.60442617
) 7.4160 3.1416 1.60442617
f) 7.4164 3.1415938 1.60442617
(1) 7.4164 3.1415936 1.60442617
() 7.416310 3.14159202 1.694426
(g) 7.416309 3.14159290 1.694426
B(x,y) 7.41629871 3.14159265 1.60442616
Table I1.1.1
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Multidimenstonal convergence acceleration

2. MULTIDIMENSIONAL CONVERGENCE ACCELERATION.

The idea of using the epsilon-algorithm to accelerate the convergence of
a. sequence, which can be considered as a table with single entry, is quite
well-known. Given the sequence {a;}iew with A = lim;., o ¢4, we choose
n and 7 in IN and construct the rafio of determinants

2273 An—1 An—m

V Gp+1 V Gn v VlGpy1—m

Vént+m Vntm—1 - V CGn (I1.2.1)
1 ce 1

van.+1 V Op van-i-l—m

Véptm V Gpnitm—1 .- V Gn

with a; = a; — a;—; and a; = 0 for 4 < 0. The ratio (I1.2.1) is the
Padé approximant of order (n,m) evaluated at z = 1 for the univariate

function
oo

f(z) =) vai'

=0

We are particularly interested in approximations at z = 1 since
f1)=4

This ratio of determinants can easily be computed using the epsilon-
algorithm. With

eH =0 k=01
e =d,  k=0,1,...

t e+1 1
8’(0"')"1:€§C—4-1)+ (£+1) (z) k=0,1,-.. e=0,1,...
€p — &g
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Multidimensional convergence acceleration

formula (II.2.1) is given by sg":,,_"’“). The e-values are usually arranged in
a table as follows
2(0)
-1
0) .
O
STRO
s(()l) sgo)
KCRt
B W

The epsilon-algorithm is called a convergence accelerator because it
can be shown, in some cases, that the convergence of the columns or
diagonals in the e-table is faster than that of the given sequence {a;};cmw
[BREZa, pp. 83-85].

The previous reasoning was generalized by Brezinski. Gliven sequences
{ge(1)}iew (k= 1,2,...) and {a;}icwv With A = lim;_, o @¢; Where ap-
proximately

a5:A+algl(i)+...+amgm(i) ‘320

it is easy to see that an approximate value for A is given by

0 o aln—m
gm(n) gm(rlz — m) (112.2)
gi{n) ... g1(n — m)
gm-(n) e gm(n'— m)

In [BREZD] it is shown that formula (I1.2.2) can be computed recursively
in an analogous way as formula (I1.2.1), now using the F-algorithm. With
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Multidimensional convergence acceleration

E¥) =ar  k=0,1,...

d=g(d k=12.. £=01,..
_ EO (1) _ pler1) (6
0 _ Tr ekl k 9k kt1 _ .
Ek+1 - (€+1) (E) E_O,l,-nu k "_0’1---

Ir,k+1 ~ 9k ki1
(&) (&+1) (e+1) (€)

0y Iki9%kk+1 ~ 9k5  Ikk41
Tt1,5 = (¢+1) (@)

I k11— Ikk41

=kt 1,k+2,...

formula (I1.2.2) is given by B ~™)  The values E,(CQI and gx(ci)_l’j are
stored as in the tables I.4.1 and 1.4.2 of part I. Convergence acceleration
results are given in [BREZb]. So far for the univariate case.

Suppose we are given a table {Gil,“{p}(il’_“,ip)ewp with multiple entry and
with A =lim;, | . 5,00 @ity In [CUYTa] formula (I1.2.1) is generalized
for this case as follows. Define

o0

F(@1ye s @) = D Viiy.i,B5 . Ty (11.2.3a)
il,...,iP:-O
with

p
V@i, = Ofy. 4, — E :ail...(z',-—n...z',,
J=1

p .
+ E @iyodyy (55— g0 fm 1 (S —1) e ga00p

7,k=1
J<k
— ...t (—l)pa(,-l_l)_”(,;p_l) (II23b)
Clearly :
f1,...,1)=A
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Multidimensional convergence acceleration

For this multivariate function multivariate Padé approximants can be
calculated and evaluated at (zy,...,%p) = {(1,...,1) via the epsilon-
algorithm [CUYTal. Let us restrict ourselves again to the bivariate case
and deal with a table {a;;} (i ;)ea of double entry. The bivariate Padé
approximant of order (n,m) to which the epsilon-algorithm applies, is
then given by

L n—m

2. Ve .. > Vaij
i+7=0 t+5=0

E Vaiy Z V @iy
i+7=n+1 i+j=n+1—m

2. Vi .. 2. Vo

PPl =
o e (I1.2.4)
1 ces 1
E V @iy ces E N Gy
i+7=n+41 tti=nt+l—m
2. Vi .- 2. Vg
i+r=nitm i+i=n

where Z?+j:0 Vai; can be simplified to 2., - ai;—) ;0 s gy @iy, For
convergence acceleration results we refer to [CUYTal.

The technique described above used the epsilon-algorithm for the evalu-
ation of its Padé approximant. We discussed another recursive compu-
tation scheme for different definitions of multivariate Padé approximants
in section 6 of part I which was based on the E-algorithm. In this way
a number of multivariate convergence accelerators suggested in the past
appear to be particular applications of the I-algorithm given above. Con-
sldef for instance the followiiig tratsforiiation based on siiggesticis by
Levin [LEVIb] and Albertsen, Jacobsen and Sgrensen |[ALBE]
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Multidimensional

Qi —do,jn—eo

Vo %nt1—do,dnt+1—e0

v 0 a’in +m—d0|.?.n+m —€pn

convergence acceleration

Yin—dm,Jn—em

v m a'ff'n+1"‘dm yJInt1—€m

v m a'f:n-|-m_‘dm ;J-n—|-m_em

1

Vo g1 —do,dng1—eo

v 0 ain-—]—m ‘_'d01.7'n+m =Co

1
Vom g1 —du,dnt1—Cm

V m ain—!—m ~dm,Jntm—€m

(I1.2.5)

where V kOt —dp gn—ex — Fin—di,gh—erx — Fin_y—di,gh_1—ex That this ex-
pression can be computed by means of the E-algorithm can easily be seen
from the fact that it is a multivariate Padé aproximant of the type given

in (1.6.4) for the function

f(z, y) -

oo
E TS YR )
vazhjh T y '

h=0

(I1.2.6)

where Va;, 5, = @i, j, — @4 _jn_, a0d a;; = 0if1 < Oorj < 0. Remember
that (40, 70), (41, 91), (i2,72), - - - is a numbering in IN?. The partial sums

to(£) and ¢,(£) necessary to start the E-algorithm are given by

to( = ). Vaigsty™
(ih 1Jh )EN!_

4
— E vaihjh xih y.?’h

h=0

PP P, 1)
—alljf.:c y

and

L= > v

(’.h'ljh)ENL

£
= Z V gy —

h=0

=0i,—d, ji—e,

A th—dr, Jh—e
P Oiy—de,jn—e T Y "

d J.h e mih—dl' yjh—el‘
r —%r

te—dy, Je—er

Y
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Multidimenstonal convergence acceleration

When Levin and Albertsen, Jacobsen and Sgrensen developed their con-
vergence accelerator, they did not know that recursive computation was
possible and they computed formulas analogous to (II.2.5) by solving
systems of linear equations.

Other formulas than (I1.2.5) can be obtained by constructing multivariate
general order Padé approximants for the series (II.2.3) instead of the series
(I1.2.6). An even more general formula than (I1.2.5) is the one that results
if we construct multivariate rational interpolants instead of multivariate
Padé approximants. We refer the reader to the following section.
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Some new convergence accelerators

3. SOME NEW CONVERGENCE ACCELERATORS.

Let us first discuss new methods that result from the use of multivari-
ate general order Padé approximants. Consider a two-dimensional table
{ai5} (i, 5yeve With limy ;00 ai; = A and construct the series (11.2.3) with
f(1,1) = A. If we choose a numbering in IN? and construct a sequence
of sets {f} ey with #I, = £, then for each £ = 0,1,... a variety of nu-
merator and denominator index sets N,, and D,, with n + m = £ exisis,
‘Fhe general order Padé approximants

[No/Dwlr, (1,1) (11.3.1)

for (I1.2.3) can be computed by means of the E-algorithm and found in
{n)
m e

In order to illustrate this fechnique numerically we consider the following
situation. Suppose one wants o calculate the integral of a function ¢(z, y)
on a bounded closed domain £ of IR?, For the sake of simplicity we take

= [0,1} x [0,1]. The table {ais}(; jyew> can for instance be obtained
by subdividing the interval [0,1] in each direction respectively into 2¢ and
27 intervals of equal length hy = 27 and ke = 277, Using the midpoint
rule one can then substitute approximations

hi h
1 2 h h
f / g(z,y)dedy = hy hzg( - 22

to calculate

2t 2/
2k-1 22-1
Gij = 2:—|—3 Zzg< 2t-+1 ? 99+1 )
1£=1

Lét iis take the diagonal enumeration of IN? given by (0,0}, {1,0), (0,1),
(2;0); (1;1); (0;2); ::: As an example we take g(z;y) = 1/(z + y) which
produces slowly converging a;; because of the singularity of the integrand
in (0,0). Let the values a;; be given for 0 < ¢+ 5 < 9. With these
data the approximations (II.2.4), (IL.2.5) and (II.3.1) can be computed
respectively far n + m = 0,...,9 and n+m = 0,...,54 because (I1L.2.4)
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Some new convergence accelerators

adds a complete diagonal of data in one step and (II.2.5) and (I1.3.1)
add the data along a diagonal one by one. The results displayed in table

I1.3.1 are the most accurate among the possible approximations eg?;:m)

and B respectively for n + m =4 and n+ m-+41 = (¢ + 1)z + 2)/2

where 1 < 9. We can compare them with the CEINEAE The exact value
2 L2

of the integral is

1 1
f [ - dzdy =2In2 = 1.38629436...
o Jo T+Y

It is clear that (II.2.5) can be improved by (II.3.1). Similar conclusions
can be found in the sequel of this section.

Table 11.8.1
s

a11 = 1.166667 | ¢®) = 1.330205 | E() = 1.202352| E{®) = 1.183518
a1 = 1.200102 szl) — 1.361764 EZG) = 1.374224 Ezf‘) = 1.228489
a2s = 1.269048 | (% = 1.306306| E® = 1.350011| E!®) = 1.304007
a3z = 1.202078 sil) — 1.386057| E{'? = 1.373649 | E{'? = 1.329994
ass = 1.325744 | &0 = 1.386872| E{L" = 1.385863 | E{\") = 1.360150
Ga3 = 1.338426 egl) = 1.386481 Eiﬁ‘)) = 1.386177 E](io) = 1.374274
asq = 1.355532 | {9 = 1.386300| BE(2% = 1.386366 Ei';;"‘) = 1.371675

as4 = 1.362056 egl) = 1.386298 Eiﬁg) = 1.386208 | E\2) = 1.385897

Secondly we shall discuss a technique that results from the use of mul-
tivariate general order rational interpolants. Consider a two-dimensional
table {a,-_,-}(,-,j)ewz with lim; ;o0 @35 = A and let {(zy, yj)}(i,j)elN2 be a
convergent table of points in IR? with

lim (2:,95) = (21, 2)

i,7—00

When using extrapolation techniques to accelerate the convergence of
{a',-j}(,-,j)ewz, we compute a sequence {b;};cv with

bi = lim g:(z,y)

(e,y)—=(21,22)
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Some new convergence accelerators

where g;(z,y) is determined by some interpolation conditions. The point
(21, #z) is called the extrapolation point. In analogy with the univari-
ate extrapolation technique of Bulirsch-Stoer, we choose for g;(z,y) the
bivariate rational interpolants on the descending staircase

[No/ Do r,

[Ni/Dolr, [N1/Dil1, (1.5.1)

[N2/Dilr,  [N2/ D2,

For the notation we refer to the sections 3 and 5 of part I. These rational
interpolants

Pn(xiy)
N D IH n —
[ n/ m] * qm("E: y)
are constructed here such that
Pn(ﬂli, y.?) . 2
Qo = —NTEI IS 7 c 1 C IN
¥] qm(mz',yj) ( ,.7) n+m =

and then b; is computed from

bz.:pn(zh@) n=s+ 2]  m=[f] i=0,1,2...

qm (21, 22)
(11.3.2)
Of course the choice of the interpolation points {z;, y;) greatly influences
the convergence behaviour of the resulting sequence {b;}icmv -

Let us compare the formulas (I1.2.5), (11.3.1) and (I1.3.2) numerically. We
know that the Beta function B(z,y) for —1 < z,y < 0 can be written as

1+ zyw(zs+1,y+1)
zy(z + 1){y + 1)

and that a Taylor series development for w(z +1,y+ 1) can be computed
by the first method suggested in [GRAVa). Let us denote this Taylor
geries by

B(z,y) = (-’B+y)(1+$+y)

o0

‘U)($ + 1, Y+ 1) = Z Coiiog‘xiy‘f
1,7=0
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Some new convergence accelerators

and its partial sums for (z,y)=(u, v) by

P
o
GRe = E E Cos,05 %' v’

1=0 7=0

Input of the convergence accelerators are these bivariate partial sums of
the Taylor series development for w(z + 1,y + 1) around (1,1). We shall
compute rational approximants and interpolants R(u, v) for w{u+1, v-+1)
and compare the value

1+ uvR(u,v)
uv(u + 1} (v + 1)

(v +v)(1+u+v)

with B(u,v). Let the values age be given for (k,4) € I C IN%, Let us
associate each az, with an interpolation point (g, ye) where

lim (zx,ye) = (21, 22)
k,f—o0

lim age = w(u,v)

sL—00

So we construct a function f(z,y) satisfying
f(xk: yﬁ) = 0Ke

f(z1,22) = w(u,v)

We can then proceed as in the sections 3 and 4, choosing numerator and
denominator index sets N and D, constructing subsets Ny, D¢ and I,
computing rational interpolants [N, /D)1, .. for f(z,y) and evaluating
them at (21, 23). In our example we have taken (u,v) = (—0.92,—0.97).
In the first column the values

14 uvay
#9(i + 1) (v + 1)

(v +v)(1+u+v)
are displayed. For the construction of all the other columns we have taken
I={(k2)|0<k,£<6}
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Some new convergence accelerators

and used the enumeration (0,0), (1,0), (0,1), (1,1), (2,0), (0,2), (2,1),
(1,2), (2,2), (3,0), (0,3), (3,1), (1,3), (3,2), (2,3), (8,3), ... In order to
compare values that use the same number of data as the ay for 1 =
0,1,2,..., we choose for R(z,y) the (i+1)?t* elements on the descending
staircase given at the beginning of this section, namely

1=0: [No/Dos,
1=1: [N2/Dyly,
1=2: [Ng/Dyr,
i =3: |[Nsg/Dsl5,
124 [NIZ/DIZ]IZ4
?; =5 [NIS/D17]Ias

The second column is an illustration of (IL.2.5) and the third column an
~ illustration of (II.3.1). The other columns illustrate (II.3.2) where we
have made different choices for the interpolation points:

1 1
E+1£+1

(zk, ye) = ( ) (11.3.24)

(zk,ye) = (275,279 (11.3.2b)

The correct limif is
A = B(—0.92,—0.97) = 86.07672 ...

All computations are performed on a Gould UTX/32 in double precision
arithmetic. Remark that the values a;; converge slowly due to the pres-
ence of singularities in the vicinity of (u,v) = (—0.92,—0.97). For similar
conclusions we refer to section 1 of part II. Our advice to the reader is to
consider construction of the series (I1.2.3) if Padé approximants are used
and to pay attention to the choice of the interpolation points if rational
Intetpolants sie tised. '
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Table 11.3.2

ai; | (I1.2.5)] (I1.3.1)| (J1.3.2a) | (11.3.25)

118.551; 106.835| 140.066| 23.0915| 23.0915
02.1841| 88.6788{ 83.1745| 100.396| 88.2749
88.3833 | 87.6991| 86.8761| 78.0438| 85.7630
87.1083 | 73.6345| 86.1894| 86.5946| 86.0138
86.5533 | 93.2420| 86.0873| 83.8083| 86.0543
86.3002 | 85.8025| 86.0793| 86.8151| 86.0689

Sy G s W BSOS = |ea

Several theorems exist that describe the type of series which can be
summed exactly by a particular convergence accelerator in that sense
that an application of the convergence accelerator to the sequence of
its partial sums gives the limit value A. Consider for instance formula
(I1.2.1) again. According to [BREZa, pp.40-42] a necessary and sufficient
condition for

™ 4 n—m=200+1,...

2m
is that there exist constants o, ..., o, with Y .. o ar # 0, such that
m
> tp(tnomir —A) =0 n-—m=£L+1,... (I1.3.2)
k=0

This can easily be seen by solving (I1.3.2) using Cramer’s rule.

When using (I1.2.2) instead of (IL.2.1), formula (II.3.2) generalizes as
follows. A necessary and sufficient condition for the exact summation
[BREZD]

E=m = A p—m=~£441,...

m

18

Gnm = A+ Y apge(n—m) n-m=£L+1,... (1133
k=1 '

When turning fo the multivariate case analogous conclusions can be writ-
ten down. The summation process (II.2.4) sums the series

o0
E , Vi
£,7=0
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exactly, if
m n—m+k
Zak Z Vay ~—A| =0 (11.3.4)
k=0 t47=0

with Y ¢, ok # 0.

An even more general result was proved by [BREZc] for {I1.2.5). When
computed recursively as suggested in section 4 of part I, the expression
(1.2.4) is given by E,S,’f' ). A necessary and sufficient condition for exact
summation of

Z V &y, gy, (II'3'5)
h=0

is that there exist ag, ..., am not all zero such that

Z k(@i —dp,ja—er A)=0
k=0

We have not mentioned the most general results here because this would
take away much of the clarity when we try to show how things general-
ize. The reader can now translate more general conditions than (IL.3.2)
and (I1.3.3) to the multivariate case. We conclude with a necessary and
sufficient condition for our new convergence accelerator to sum the series
(I1.3.5) exactly. It is a simple application of results given in [BREZc].

COROLLARY 11.3.1. A necessary and sufficient condition for exact sum-
mation of the series (I1.3.5) by [Nn/Drmltnym = Pl ¥)/am(z,9) (n > 0),
satisfying :

p .
ey =a; (5,7) € Ingm
m
is that there exist ag, ..., Qm not all zero such that forn > £

ao(to(it) — A) + ... + &m(tm(n) — A) =0
where for 0 < k <m

tk(o) = Cdyio,exdo Bdkio exdo (ms y)
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tk(n) = Z Cdk:',eijdki,ekj(-T) y)
($,7)ENA

with
Cdyiens = f[:r;dk1 KRR mi][yek; vy yj]

flzillys) = ass
Cdpiens = 0 t < dgorj<eg



Systems of nonlinear equations

4, NONLINEAR METHODS I'OR
THE SOLUTION OF SYSTEMS OI' NONLINEAR EQUATIONS.

Suppose we want to find a root z* of the nonlinear equation

f(z)=0

Here the function f may be real- or complex-valued. If f is now replaced
by a local approximation then a zero of that local approximation could be
considered as an approximation for z*. Methods based on this reasoning
are called direct. One could also consgider the inverse function ¢ of f
in a neighbourhood of the origin, if it exists, and replace g by a local
approximation. Then an evaluation of this local approximation in 0 could
be considered as an approximation for z* since

9(0) = z*

Methods using this technique are called inverse. Let us recapitulate the
univariate situation.

Let z; be an approximation for the root z* of f and let

ri(z) = B(z) (I.4.1a)

1

be the Padé approximant of order (n;m) for f in z;. Then the next
approximation z;4, is calculated such that

p,-(:c,'+1) =0 (II41b)

In case p;(z) is linear (n = 1) the value z;; is uniquely determined. It is
clear that this is to be preferred for the sake of simplicity. A well-known
method obtained in this way is Newton’s method (n = 1,m = 0) which
can be derived as follows. The Taylor series expansion for f{z) at =z; is
given by

I (=)
2

f(z) = f(zg) + f'(zi)(z — =) + (z—z)%+... (11.4.2)

81



Systems of nonlinear equations

Hence the Padé approximant of order (1,0) for f at z; equals

ri(z) = f(zs) + f'(2:)(5 - =)
ald we obtaln F(z)
P m.
Tif1 = & — f’(ﬂ;i) (II.4.3)
Another famous method is Halley’s method based on the use of the Padé
approximant of order (1, 1) for f at =z;:

N/ fH

f(xl)/f (m?) . (II;4.4)
1 — lf”(:l:,;) f(=:)

2 fi(zi)?
Since the iterative procedures (I1.4.3) and (11.4.4) only use information
in the point z; to calculate the next iterationpoint z;4 they are called
one-point. It is obvious that methods based on the use of (n,m) Padé
approximants for f with m > O give better results if the function f has
singularities.

Titl = i —

The formulas (I1.4.3) and (I11.4.4) can also be generalized for the solution
of a system of nonlinear equations

fi(z1y..,%6) =0

fk(a;l,...,:ck) = 0
which we shall write as
F(z1,...,2,) =0

Newton’s method can then be expressed as [ORTE]

‘ g+ 2{) | | T Y
: = : - F'(f”g’)’ r 'sfg))nl :
g+ zy) fule$, ..., 2l
(I1.4.5)
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where F’(wgi), cey :cg)) is the Jacobian matrix of first partial derivatives
evaluated at (mgz),...,wfj)) with

(a5 9h)
dz, Ozg
F’(:Cl!-":xk): :
ofc O
\ 0z, " 0wy )

Let us now introduce the abbreviations
F;=F@E, . s
Fl= (9., )
To generalize Halley’s method we first rewrite (11.4.4) as
(=f(=:)/ ' (2:))*
—flzi) | S f ()
(=) 2f!(2:)?

Thei for the solution of a system of equations it becomes [CUYTi]

Tipi = Ti +

$g£+1) xgi)
: ={ : |+
m§c£+l) x}:‘)
_FIlRy?
+ (=f &) (I1.4.6)

—F{7VF; 4 %FJ_IF”(SBSi)s ey o:g))[—F,-'_lF,-, —F{ ' F}

where the division and the square are performed componentwise and
F"(z1,...,2x) is the hypermatrix of second partial derivatives given by

F'(z1,...,2,) =

CI IR A ) A
B E R o T F - TR T FALLIY . FAAA
8% fi. 82 fx 82 fi 92 fx 0% fi 82 fx

k 872 ' 8mpdzy O110z2  Ozkdzy T Oz Omp O} }
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Systems of nonlinear equations

which we have to multiply twice with the vector —F;_IF,-. This multipli-
cation is performed as follows. The hypermatrix F"(z;,..., ) is a row
of k matrices, each k x k. If we iise the usual matrix-vector multiplication
for each element in the row we obfain

(z f i ’f
Y1 7] 35513$z - $ka$z Yi
F"(ml,...,xk) . : =
Yk Yk Zk: asz Zk: asz Yk

\, i Bmlasc,yz = O B:J:,y }
In [CUYT]] is proved that the iterative procedure (I1.4.6) actually results
from the use of multivariate Padé approximants of order (1,1) for the
inverse operator of F{zy,..., %) at (:cg )L :cg).).

To illustrate the use of the formulas (I1.4.5) and (I1.4.6) we shall now
solve the nonlinéar systein

filz,y) =¥ —0.1=0

Fals,y) = eV — 0.1 =0
which has a simple root at

—In{0.1}\  (2.302585092994046
0. B 0.

As initial point we take (z(®),y(®)) = (4.3,2.0). In the tables IT.4.1 and
I1.4.2 one finds respectively the consecutive iterationsteps of Newton’s
and Halley’s method. All computations are performed on a VAX 11-780
in double precision arithmetic. Halley’s method behaves much better
than the polynomial method of Newton because the inverse operator GG

of the system of equations F* has a singularity near to the origin and this
singularity causes trouble if we get close o it. For

P = (o) = (0)
we can write

o= (3120) - (ot 5 wnop) =)

With (2(), y(©)) = (4.3,2.0) the value v(®) = f2(:c(°) y(9)) is close to
—0.1 which is close to the singularity of G.
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Table 11.4.1

(%)

2

W00 ~J Oy o W= O e,

| R e R T . T T O T
O ©C 00 =IO WY = O

0.43000000D + 01
—0.22427305.D + 02
—0.21927303D + 02

—0.21427303D + 02 -

—0.20927303D + 02
—0.20427303D + 02
—0.19927303D + 02
—0.19427303D + 02
—0.18927303D + 02

0.18427303D + 02
—0.17927303D + 02
—0.17427303D + 02
—0.16927303D + 02
—0.16427303D + 02
—0.15927303D + 02
—0.15427303.D + 02
—0.14927303D + 02
—0.14427303D + 02
—0.13927303.D -+ 02
—0.13427303D + 02
—0.12927303.D + 02

85

0.20000000D + 01
—0.24729886D + 02
—0.242298881) + 02
—~0.23729888D -+ 02
—0.23229888D + 02
—0.22729888D + 02
—0.22229888D + 02
—0.21729888D + 02
—0.21229888D + 02
—0.20729888D + 02
—0.20229888D + 02
—0.19729888D + 02
—0.19229888D + 02
—0.18729888D + 02
—0.18229888.D + 02
—0.17729888D + 02
—0.17229888D + 02
—0.16729888D + 02
—0.16229888D + 02
—0.15729888D + 02
—0.15229888D + 02



Systems of nonlinear equations

Table I1.4.2
) g;(") y(l)
0 0.430000000) + 01 0.20000000D + 01
1 0.28798400D 4 01 0.57957286.D -+ 00
2 0.22495475D -I- 01 —0.52625816.D — 01
3 0.23018229D + 01 —0.44901947D -- 02
4 0.23025841 D + 01 —0.57154737D — 05
5 0.23025851D + 01 ~0.97689305D — 11
6 0.23025851D + 01 —0.17438130D — 16

The reasoning in (I1.4.1) can be generalized by using- rational interpolants
instead of Padé approximants as local approximations for f(z). Let

() = Piry
ri(s) = B(z)

with p; and g¢; respectively of degree n and m, be such that in approxi-
mations z;,...,z;_, for the root =* of f

rz) = fO(2)  G=0,...,80—1
P (ziy) = FN(2i1)  §=0,...,8 —1

rz(j)(:c,;_s) =fW(g;_,) 7=0,...,8—1 (11.4.7a)

withn+m+1= 37", ¢;. Then the next iterationstep z;¢; is computed

such that -
pi(Tiy1) =0 (I11.4.7b)

For the calculation of Zyyr1 We now use information in more than one

previous point. Herice siich methods are called mialtipoint.

If we restrict ourselves to the casen =1, m =1, £=1 and s = 2. Then
Zi+1 18 given by '

f(z)[f (mi-1) — f(i-2)]
Tyl = Ti— SR Ty PRy (11.4.8)
f(zi—1) f(xé:_zz - i( ) flzi_a) A ;:jl) — if )
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Systems of nonlinear equations

Tike i =1, i =1, fo = 2, &y =1 aiid 8 = 1. Théh £;4 is givén by

flzi)(zi — zi 1) -
Tity = T; + —— (11.4.9)
= 2ic) £ ()

f(mf—l)f’(ml')f(x‘_) _ f(xi—l)

The case n =1, m =0, £ =1 and s = 1 reduces to the secant method.

By means of the multivariate rational Hermite interpolants introduced in
part I, the previous formulas will now be generalized for the solution of
systems of nonlinear equations.
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Use of general order rational inferpolants

5. METHODS BASED ON THE USE OF
GENERAL ORDER RATIONAL INTERPOLANTS.

We use the same notations as in part I and as in the previous section.
For each of the multivariate functions f;(z,...,zx) with j =1,...,k we
choose

D =N={0,...,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)} C IN¥

H=1{(2,0,...,0),(0,2,0,...,0),...,(0,...,0,2)} C IN®

Here the interpalationset NU H expresses interpolation conditions in the
poinis

) W IR C) IO C R N ) )

(a:gi_z),:cgi),...,a:,(ci)) e (a:&"),. xgc)l,:c}: 2))

Remark that this set of interpolation points is constructed from only
three successive iteration points. The numerator of

ri; (%1, -0, %) = %’;(ml,...,xk) (I1.5.1a)
i
G %)EN Cyooge B e (T1y 00, Tk)
TS baBaa(n ) J=1k
satisfying
(fiqs; — pi; )(z1,.. ., 38) = Z de,..e.Be,..en(T1y-- o T)

(£1;.::38k)ENF\(NUH)

where

£—1 £r—1

Be,..oo (%1, .5 2k) = H (2, —279) H (zg — $;(: %y
£=0
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with possible coalescence of points, is then given by

pi; (%1, Tk) =
No,...o{%1,..,2k) Nio,..ol®1,e-526) ... No..01(®1,..., %)
02,00, ...,00 €12,00,...,00 ‘. 0
€00,...,00,02 0 Co0,...,00,12
where
Nf:]_,...,‘l.k(xlj"')g;k) = E : Cilel,...,ikﬂkle...ek(xl)'"}xk)
(€1 tr)EN

The values cg,¢,,... 0,t, are multivariate divided differences wit.h possi-
ble coalescence of points. Remark that this formula is only valid if the
set H provides a system of linearly independent equations. The next

iterationstep ($££+1), Cee a:,(:'l'l)) is then constructed such that
( ,-1(3:5”1), ...,:z:f:"*"l)) =0
9 (11.5.1b)
L gk($£z+1),...,$§:+1)) =0

For k = 1 and without coalescence of points this procedure coincides
with the univariate iterative method (I1.4.8). With k = 2 and without
coalescence of points we obtain a bivariate generalization of (I1.4.8). Let
us use this technique to solve the system

e " =0.1
e *7¥ =0.1
with initial points (3.2, —0.95), (3.4,~1.15) and (3.3,—1.00). The nu-

merical results computed in double precision are displayed in table 11.5.1.
The sinple root 1s (2.3025850929940486,0.).

It must be clear from part I that a whole variety of choices for the sets
N, D and H is possible, depending on which multivariate divided differ-
ences can be computed. Some function evaluations may be much more
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difficult or time consuming than others. An advantage of iterative pro-
cedures that only use function evaluations is that no derivatives must be
supplied although nowadays automatic differentiation takes away much
of the laborious and erroneous work.

In the same way we can also derive a discretized Newton method in
which the partial derivatives of the Jacobian matrix are approximated by
difference quotients:

N:H:{(0:-":0)1(1)01'"50):--';(0:"'10)1)}
D = {(0,...,0)}

3f3;
== |
3:52 (= yeees) )
fj-(a:gi), oo, mgﬂl,mgi_l),xgﬂl, e a:,(:)) — fj-(xgi); .. .,:c,(:))
(1—1) (¥)
Ly — Zy

If we call this matrix of difference quotients AF;, then the next iterate is
computed by means of

mgi—ﬂ)' mgt) fl(mgi),,..,:cg))
o= | R '
a:,(:H) a:}ci) fk(mgil, e :Eg))

As an example we take the same system of equations and the same but
fewer initial points as ahove. The consecufive iterationsteps computed in
double precision can now be found in table I1.5.2. The rational method
is again giving better results. Now the initial points are such that u =
fi(z,y) is close o —0.1 which is precisely a singularity of the inverse
operator for the considered system of nonlinear equations.
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Table I1.5.1
i A, y(9)
0.32000000D + 01 —0.95000000.D + 00
0.34000000.D + 01 —0.11500000D + 01
0 0.33000000D + 01 —0.10000000.D + 01
1 0.25249070D + 01 ~0.22072875D 4 00
2 0.22618832.D + 01 0.41971944D — 01
3 0.23127609.D + 01 —0.10164490D — 01
4 0.23030978 D + 01 —0.51269373D — 03
5 0.23025801D + 01 0.49675854D — 05
6 0.23025851D + 01 —0.25696929.D — 08
7 0.23025851D + 01 —0.12778916D — 13
8 0.23025851.D + 01 ~0.11350932D — 16
Table 11.5.2
i z(7) 51
0.34000000D + 01 —0.115000000D + 01
0 0.33000000.D + 01 —0.10000000D + 01
1 —0.29618530.D + 00 0.21743633D + 01
2 0.32743183D + 01 0.20884933D + 01
3 0.22114211D + 01 —0.84011352D + 01
4 0.36513339.D + 01 —0.72149651.D + 01
5 —0.17900983D + 04 0.20854111D + 04

Arnother system of nonlinear equiatiotis illustrates the possibilities of this
newly developed technique. Consider [PONI]

filosy)=o" —zy+y° +2-2=0

fa(w;9) =32 + 20y + 2y — T =0
which has a simple root in (1,1). This solution is also a bifurcation
point because the Jacobian of the system of equations is singular. There-

fore Newton-like methods are inappropriate because good approximations
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to the Jacobian will be ill-conditioned. The computation of bifurcation
points is interesting because, from a physical point of view, they are
points of unstable equilibrium. This implies that many methods require
very accurate starting points. We solve the above system with much
rougher starting values than in [PONI]. The results can be found in table
I1.5.3.

Table 11.5.8

B z{9) y(3)
0.998000000.D + 00 1.00200000.D + 00
0.9960000000D + G0 1.00300000.0 -+ 00

0 0.997000000.D + 00 1.00400000.2 + 00
1 0.998801518.D + 00 1.00239696.0 4 00
2 0.999401241.D + 00 1.00119752 + 00
3 0.999700529.D + 00 1.00059894.D -+ 00
4 (1.999850224 D + 00 1.00029955D 4 00
5 0.9999251020D + 00 1.00014930D + 00
6 0.999962549 D + G0 1.00007490.0) + 00
7 0.999981274 D + 00 1.00003745D + 00
8 0.999990637.0 4 00 1.00001873D + 00
9 0.999995318.D + 00 1.00000936.D + 00
10 0.999997659.D + 00 1.00000468.D + 00
11 0.999998830.0D +- 00 1.00000234 0D + 00
12 0.999999415.D +4- 00 1.00000117D + 00
13 0.999999707D + 00 1.00000059D + 00
14 0.999999854 D + 00 1.00000029D + 00
15 0.9999999270 + 00 1.00000015D + 00
16 0.999999964.D + 00 1.00000007.D 4 00
17 0.999999982 D + 00 1.00000004.D + 00
18 0.999909991.D + 00 1.00000002D + 00
19 0.999999996 D + 00 1.00000001.D + 00
20 0.999999999 D + 00 1.00000000D + 00
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6. METHODS BASED ON THE USE OF
GENERAL ORDER PADE APPROXIMANTS.

In section 4 we have generalized the iterative procedure (I1.4.4) to the
multivariate case by using the multivariate Padé approximants introduced
in [CUYT{]. We have seen in section 6 of part I that these multivariate
Padé approximants can be considered as multivariate general order Padé
approximants. Let us first study this matter in more detail with respect
to the iterative procedure (II.4.6) for the solution of

fi(ze, ..., ox)

F($):F($1,...,$k)= =0

fk(!ﬂl,:. .,IEk)

We denote the inverse of the Jacobian in (:r:gi) o ,:{:}:)) by

Rt = 1) = (e,(.t;))k

r,a=1

The series development for the inverse operator

Y1 fi(z1,. .., 7r) 1
G:RF-RF:| : | = —

Yk fre(z1,...,28) Tk

at (y1,...,yx) = F(z(9) is given by

T zy) filzi, . me) = A, 2)

” = . -+ L(t) .

) \z) filtiy .o t) — fe(@,. . 80)
1

LR (10 (F(2) - Pal)), L0 (F(z) - Fal)) + ..

This series development can for each of its & components be written as

follows. Denote for r = 1,..., k& the function value f,.(:ng"), - .,:cg)) by
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r=1 s,i=1 L=
k
=$§‘)+Zcoo .00 (g — F9)
r=1
pla.ce
FOY(y, — (2)
+ Z ¢ oo, 100 (Y5 — ) )
":#1 sth and tth places
+Zcoo, 202,000 (% — £19)? +
place

Using the formulas (1.3.5} for the index sets

N = {(1;1,...,?:]@) l 1 S?:]_—i—...—f—?:k S 2} =
I={(i1y...,%) | 1 <dp + ...+ < 3}
H={(t1,...,%6) |1+ ...+ 1% = 3}

We cad writé dowi explicit expressiois for the fiiinerator and défioiii -
tor of [N/D)r(y1;...;4k). Making use of section 6 of part I; it is evident
that we rediscover Halley’s method (I1.4.6) by evaluating this expression
i thé origin

(-LO R
~LOF; + L0 Fy(— LU F;, — LUV )

[N/DII(O,...,O) —_— +

The fact that the multivariate Padé approximants introduced in [CUYTd],
can be considered as multivariate general order Padé approximants, sug-
gests us to continue our construction of new nonlinear methods because
more types of multivariate general order Padé approximants exist. Let
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18 first answar the gliestion “why?”. It 18 nécessary that a iilitber of
different techniques exist because the available information of the sytem
of nonlinear equations one is dealing with, is not always the same. For
formula (I1.4.6) all first and second partial derivatives of the functions
filz1,...,2zk), (7 = 1,..., k) must be known. This may be a drawback.
A completely different situation is encountered in formula (I1.5.1). This
iterative procedure only uses function evaluations and no derivatives a$
all. Inbetween lies the iteration we want to introduce here. Suppose
some partial derivatives of the f;(z1,...,zx) are given or easily com-
puted. Then from this information the sets N, D and H can be chosen
so that precisely these pieces of information are used. Consider for in-
stance for each of the functions fj(z,...,2x) with § = 1,..., k the same
sets N, D and H as in the previous section

D:N:{(0:--'10)3(1:0:'-':0):“-5(0:--':0:1)}
H=1{(2,0,...,0),...,(0,...,0,2)}

but now with all interpolation points coinciding. This means that the
necessary information to build an iterative procedure with, is

fj(:cgi),...,a:,(:)) i=1,...,k
%(xgi)’. (i)) ?ﬁ(x(i) m(t’)) j=1,...,k

axl ..,.’Ek ,..-,8xk 1 gy k
8% f; . (i . 82f: i .
3:8%‘? (zgz)i'”’xg))a'“: (9.’1:32: (:ng),,..,:cg)) g=1,...,k
The numerator of
p (7 x)EN ajl.”jkm{l e 'xgck
i J1see0Je )€
r,-.(:cl,...,:ck)z—’(:cl,...,:uk): - :
’ q+; > by, ... 5k N
(jlv--:jk)E-D
sabisfying
(fJ-QI':j '—pi'j)(xij'-°jxk) = | Z dgl___gkwgl ...Ifck
(1yer ER)ENE\(NUH)
(I1.6.1a)
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is given by

No...o(ﬂ?h---,ib'k) N10...0($1,---,$k) No...01($1s---:33k)

10%f; o O @ i

Eﬁg(a:g),...,x,(c)) ﬁ(zg),...,x,&)) 0

10%f5 . (i) (4) | 0fi ;. (5) (%)

Eamﬁ(xl )"':xk) 0 a(ml 1---:$k)
where

a£1+---+£k—‘i1—--'—£k fj.(m(’:))

CEAC N F

& &
Tt Ty

N,-l,_,,-k(xl,...,a:k)z Z

(L1, bk )JEN

We have of course assumed that the set H provided a system of linearly
independent equations. As in the previous section the next iteration step
is constructed such that

Piy ($££+1)a AR xi(:-l-l)) =0
(I1.6.15)

p%k($£t+1)’ M | E;ct-l—l)) = 0

The numerical behaviour of this method is similar to that of {IL5.1).

Finally we emphasize once more that this section covers in fact a whole
bunch of iterative procedures, each adapted to the cost of evaluating and
differentiating the nonlinear equations in the system. In the same way
as we obtained (II.6.1) we can also set up nonlinear methods based on
the use of Canterbury approximants, Karlsson and Wallin approximants,
Lutterodt approximants and all types of multivariate general order Padé
aproximants that can be described in this framework.
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