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Abstrtrct 

Cuyt, A., Extension of “A multivariate convergence theorem of the “de Montessus de Ballore” type” I 
multipoles, Journal of Computational and Applied Mathematics 41 (1992) 323-330. 

In this journal (1990) we proved a multivariate version of the de Montessus de Ballore theorem stating tk 
convergence of general order Pade approximants for multivariate meromorphic functions with so-ca!le 
“simple” poles. That result is extended here to the case of “multipoles”. 
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The multivariate de Montessus de Ballore theorem 

The univariate theorem deals with the case of simple poles as well as with the case t 

multiple poles. The former means that we have information on the denominator of th 
meromorphic function while the latter means that we also have information on the derivative 
ef that denominator. Up to now w-e o+ ,...; prtivcd a multivariate analogon of the univariate d 

Montessus dc Baiiore theorem for the case of “simple” poles. Before stating the more gener 
theorem we repeat the necessary notations. 

Given a Taylor series expansion 

f( X, Y) = C CijXiY', 
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A. Ctiyt / Corriwg~mt~ of mdtii *aria te Pad& approximartts 

we compute a multivariate general order Pad6 approximant p( X, y )/q( X, y ) to f(x, y) from 
y) and q(x, y) given by [l] 

p(x, y) = c R,,X’Yj, NCN2, 

(i.jkN 

q(~, Y) = C bijx'y'. MCN2, 
(i.jkM 

( -P)(x, Y) = C dijx’y’, E c N’, 
(i.j)E%i’\E 

(11 I 

where the index sets N and M indicate in a way the “degree” of p(x, y) and q(x, y) and the 
es set E satisfies the inch&n property [lb and contains the numerator set N as a subset. 

For detailed information we refer to [l]. Let us denote #N = n + 1, #M = m + 1 and this 
general order multivariate Pad6 approximant by [N/M],. We can arrange successive Bade 
approximants in a table after king an enumeration of the degree sets N and M and the 
equation set E. Numbering the points in k12, for instance, as (0, O), (1, 01, (0, l), (2,0), (1, 11, 
(0.2b, (3, O), . . . and carrying this enumeration over to the index sets N, M and E which are 
infinite subsets of IV’ provides us with an enumeration: 

N= ((&,, j0),..=,(in9 i,)): (2 ) a 

M= ((d,, q,),....(d,, e,& (2b) 

E=NU ((inclV jn,,)Y...&+,, i,,,,)). (2 ) C 

By means of this numbering we can set up descending chains of index sets, defining bivariate 
polynomials of “lower degree” and bivariate Pad6 approximation problems of “lower order”: 

N=N,I ..- xN,=((~,, j,,) ,..., (&j;O)’ -.. ~&=((i,, i,>), k=O ,..., n, 

(3 ) a 

M=M, 1 - . . xM, = ((d,, e,),. . . ,(d,, e,>) 3 - l - IM, = ((d,, eo)), 

I=O,...,m, (W 

E = Encm 1 - - - I&+~ = ((i,,, j,,), . . . &+17 i,,,)) 1 0 = l I&, = ((i,, i,)), 

k+I=O ,...,n +m. (3 ) C 

In order to set up a “table” of multivariate Pad6 approximants, the enumeration of .N and E 
should be such that all subsets Ekcl of E satisfy the inclusion propertly too. This allows us to 
compute al! the foliowing entries: 

PJ”/M,] E,, - - - 

(4) 



By the set N * A4 we denote the index set that results from the multiplication of a polynomial 
indexed by N with a polynomial indexed by .A& namely IV * M = {(i + k, j + 11 I<i, j) EN, (k, I) 
EM}. Since the set E satisfies the inclusion property, we can inscribe isosceles triangles in E, 
with top in (0,O) and base along the diagonal. Let T be the largest of these inscribed triangles. 
On the other hand, because N * A4 is a finite subset of fY’, we can circumscribe it with such 
triangles. Let T be the smallest of these circumscribing triangles. For figures we refer to [2, 
Figs. 1 and 21. In both cases we call r7 and Q the “range” of the triangles r and T, 
respectively, meaning that r and T, respectively, cut the axes of lY’ in !r7, 01, (0, rr) and bT, O), 
(0, rTh 

In what follows we discuss functions f(x, v) which are meromorphic in a polydisc 
B(O; R,, R,) = {(x, y): 1 x I< I?,, I y I < R,}, meaning that there exists a polynomial 

I?1 
r,,x”y’ = c rd,~*,xd’yr’, 

i=O 

such that (fR,,,Jx, y) is analytic in the polydisc above. The denominator polynomial R&X, y) 
can completely be determined by m zeros (x,,, y,J E B(0; R,, R,) of R,(x, y): 

R,(x,,, y,)=O, h= I,..., ~2, (5 ) a 

or by a combination of zeros of R, and some of its partial derivatives. For instance in the point 
(x,~, y,J the partial derivatives 

#I, + TV, R 
M 

Wh aY I’# (s,,.y,,~’ ( S}, 7 t,,) E z(? 

can be given with I(“) a finite subset of &J2 of cardinal&y p(h) + 1 and satisfying the inclusion 
property. We can again enumerate the indices indicating the known and vanishing partial 
derivatives as follows: 

In the multivariate de Montessus de Ballore convergence theorem given in 121 all p(h) = 0 and 
I(“) = ((0, 0)). The following theorem extends this result. 

Theorem I. Let f (x, y ) be a function which is meromorphic in the polydisc HO; RI, &I = 

{(x, y): I x I -CR,, I y I < R2), meaning that there exists a polynomial 

such that ( fR,)(x, y) is analytic in the polydisc above. Ftirther, we assume that RJO, 0) f 0 so 
that necessarily (0, 0) E M in the above expression for Z?,. Let there also be gillen k zeros 
(x,, y,,) E B(0; R,, R,) of R,Jx, y) and k sets I(“) c N2 with the inclusion property, satis+& 

(fR,,I)(x,,, Y,,) ~0, A = L-A j64 

=o, (s,,, t,)d”), h=l,... ,k, 
(x,,.y,J wo 

I . i (p(h) + 1) =m, #z(“) = p(h) + 1. 
II = 1 



= ( p/~)( X. y) Fade approximant , with M fUren as giren abore and N and E 
wbzg. conrerges to f ( s, y ) rmiformly on compact wbsets of 

(x. y): -CR,, R,Jx, y) =+ O), 

mzd its omimator 

q(s, y) = 

cowerges to R,,( s. 
inscribed triangle in 

v= 

Cb (Q, -‘c df Yet 
i=O 

1’1 under the following 
E and the range of the 

conditions for N and E: the range of the largest 
smallest triangle circumscribing N * M should both 

to ~n~n~~ as the sets N and E grow along a cohrmn in the multir-ariate Fade’ table. 

Proof. Let the polynomials p(x, y) and q( X, y) respectively of “degree” N and M satisfy the 
Pad6 conditions Q 13. We also assume that the sets N, N and E are enumerated as in (2). Since 

function fR, is an analytic function, we can write, using Cauchy’s integral representation 

From the Pad6 conditions we know that the series development of fq is indexed by N U N*\E. 
Hence the series development of fqRbI is indexed by N * M u F@\E. The partial sum of this 
series comaining the terms indexed by T circumscribing N * M, will be denoted by l7, and 
because of the Pad6 conditions it is indexed by N * M U T\E and given by 

Ect us write 

q(-L Y)=u&c Y)+qx, Y)Y 

with 

A(& Y)' C 6,jX'y', 
(i.j)E.M 
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and int:oduce the notation 
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We know that the coefficients in R,(x, y) are determined by k of its zeros (x,, y,,) satisfying 

(6). We study 3 @hJh)&. and see how this affects A(x, y). On the one hand, 

a( 9, Jl# ‘nT = ~(s,A)( p&, ) 

2 

E 
i! j! 

i - sl, 

( i -s/J! (j - t,,)! -% 
j - I,, 

h, 
(i,jk -E 

and on the other hand, 

c 
i! j! . 

‘-%a yp# 

(i.j)E T ( i-s,,)! (j- t,,)!x’l 

c 
i! j! . 

’ 

(i,j)ET ti - s/l)! (i - h)! Xh 

-%, 

From the above formulas we conclude for A(x, Y) with (X9 Y) E B(O; RI, R2)7 

( s/, , tll) E I(k), h = 1, . . w , k. 
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tions are a linear system of m equations in the m + 1 unknown coefficients 6,, 
Knowing that the set T satisfies the inclusion property and is triangular in 

structure. let us say of range r, we can write for the coefficient of S,, in the above equations 

x(fRd(f, u)dtdu 9 

1 

which for r + = and for Lx,, y,,) satisfying (6a), converges to 

~cwid 

[ 
&i=R Jtt,+ ‘;:y;?;’ dfd”l 

W[~*y’(j&, ,,I 

-%* c/n 

= KFo Aso (k Id ) (1 1!,),*pp a~~~-KJqf??h,). 
-K! - . 

W shd denote this last expression by S(k, I, sit, t,). Similar computations can be made for 
the right-hand side of the linear system of equations for the Sk/. We have 

,=R J[4,CR (f;2;y dt du 
I I 

/ / ’ (Tb$;;;)dtdu] 
Itl=R, lul=R, 

1 z 

= 27ii 
0 [ 

~(S/,J;,) 
c 

(i.j)E nE 
xiq,=,,l,_, 

2 
‘fy2$, u, dt &if 1 

- ( +Ja(~~f.f~J[ ~t,cRJ~.,-,i( (: $y;,‘, - i;) “~=~‘y,~yt~r-i) 
x(.b’$)(t, u)dtdu 9 1 
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which, for r + 00 and the range of 7 inscribed in E tending to infinity, converges to 

%I 41, 
= _ c c @A’( Rh,)a(S/,-KJs-A)( fR,) = 0, 

K=O A=() 

because of (6b) since a (K*A)( R,) evaluates at (x,,, ya) with (K, A) E I(“). Hence for n + 00 we 
have in the limit a homogeneous system of m equations in the unknowns a+,,, . . . , Sd,,,e ,,,, with 

coefficient matrix 

The fact that I(‘*) satisfies the inclusion property allows us to make the appropriate linear 
combinations within each block of p(h) + 1 rows related to I(“), and this for h = 1,. . . , k, such 
that the preceding coefficient matrix is reduced to the matrix of (6~) after dividing each 
equation of the hth block by ( fR,,,)( x,,, y,, ) which is nonzero because of (6a) and after 
normalizing p and 4 such that &+e,, = 6,,, = 0. We know that this new m x m coefficient matrix 
is regular because of (Qc), and hence for n + 00 the solution of the linear system governing the 
coefficients of A( x, y ) = (R, - q)( x, y) converges to zero, in other words, 

6 kl+O, (k, lj&M, 

or the polynomial 4(x, y), being the denominator of the Pad& approximant, converges to 
R&X, y) because A(x, y) converges to 0. The uniform convergence to f(x, y) is based on the 
same error formula as for the case I(“) = ((0, 0)) treated in [2]. 0 _ 

It is clear that the choice of the equation set E plays an important role, as already pointed 
out in [2], and that Pad6 approximants, for instance computed from 

N = ((0, O), (LO), (0, I)), m = 2> 

NC ((i , O)!O<i<n), 

E = NU ((0, l), (1, 1)), #E = #N+m, 

generate error expressions O! y * + xy2 + x *?) which do not necessarily converge to zero. _ 
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