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Abstract

Cuyt, A., Extension of “A multivariate convergence thecorem of the “‘de Montessus de Ballore™ type™ !
multipoles, Journal of Computational and Applicd Mathematics 41 (1992) 323-330.

In this journal (1990) we proved a multivariate version of the de Montessus de Ballore theorem stating tt
convergence of general order Padé approximants for multivariate niecromorphic functions with so-calle
“simple” poles. That result is extended here to the case of “*multipoles”.
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The multivariate de Montessus de Ballore theorem

The univariate theorem deals with the case of simple poles as well as with the case ¢
multiple poles. The former means that we have information on the denominator of th
meromorphic function while the latter means that we also have information on the derivative
of that denominator. Up to now we only pioved a multivariate analogon of the univariate d
Montessus dc Baiiore theorem for the case of “simple” poles. Before stating the more gener:
theorem we repeat the necessary notations.

Given a Taylor series expansion

flx,y)= Z Cijxi."j,

(i.j)eN?
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(0, 0),

we compute a multivariate general order Padé approximaat p(x, y)/q(x, y) to f(x, y) from
p(x, ¥) and q(x, y) given by [1]

plx,y)= Y a,x'y, NCN?,
(i.j)EN
a(x.y)= X bx'y, McN?, ()
Gi.)eM )
(fa-p)x.¥)= X d;x'y, EcCN,
(. ENNE

where the index sets N and M indicate in a way the “degree” of p(x, y) and ¢g(x, y) and the
index set E satisfies the inclusion property [1], and contains the numerator set N as a subset.
For deiailed informaticn we refer to [1]. Let us denote #N=n+1, #M=m + 1 and this
general order muliivariate Padé approximant by [N/M].. We can arrange successive Padé
approximants in a table after {xing an enumeration of the degree sets N and M and the
equation set E. Numbering the points in N?, for instance, as (0, 0), (1, 0), (0, 1), (2, 0), (1, 1),
(0. 2), (3, 0),... and carrying this enumeration over to the index sets N, M and E which are
infinite subsets of N> provides us with an enumeration:

N= {(iO’ jﬂ)!-“’(in’ jn)}’ (23)
M= {(dl)’ e())""’(dm’ em)}’ (Zb)
E=NU{(in+l’ jn+l)""’(in+m’ jn+m)}' (ZC)

By means of this numbering we can set up descending chains of index sets, defining bivariaie
polynomials of “lower degree” and bivariate Padé approximation problems of “lower order’:

N=N,> - DN ={(ig> Jo)s---»lix» i)} 2 ==+ DNy={(ip, Jo)}, k=0,...,n,

(3a)
M=M,>--- OM,= ((do’ €y)s--->(dy, ‘—’l)}D r DM, = {(do’ eo)}’
[=0,....m, (3b)
E=E,.,> - DE. . ={(io: Jo)s---s(ixsr> Jxs1)} 2 -- " DEy= {(io, o)}
k+1=0,....,n+m. (3¢)

In order to set up a “table” of multivariate Padé approximants, the enumeraticn of N and E

should be such that all subsets E, ,, of E satisfy the inclusion property toc. This allows us to
compute all the foliowing entries:

[No/Myle, - [No/M,]E,

: . )
[Nn/MO] £, Tt [Nn/Alm]E,,‘m
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By the set N+ M we denote the index set that resuits from the multiplication of a polynomial
indexed by N with a polynomial indexed by M, namely N = M ={(i +k, j+ DI, j) €N, (k, i)
€ M}. Since the set E satisfies the inclusion property, we can inscribe isosceles triangles in E,
with top in (0, 0) and base along the diagonal. Let 7 be the largest of these inscribed triangles.
On the other hand, because N * M is a finite subset of N2, we can circumscribe it with such
triangles. Let T be the smallest of these circumscribing triangles. For figures we refer to [2,
Figs. 1 and 2]. In both cases we call r, and r, the “range” of the triangles 7 and T,
respectively, meaning that 7 and T, respectively, cut the axes of N? in (r_, 0), (0, r.) and (r, 0),
(0, ry).

In what follows we discuss functions f(x, y) which are meromorphic in a polydisc
B(0; R,. R,) ={(x, y): |x|<R,, | y| <R,}, meaning that there exists a polynomial

m
Ry(x,y)= Y rexly=% Tae XY,
(d, e)eMcN? i=0
such that (fR,,)(x, y) is analytic in the polydisc above. The denominator polynomial R,,{x, y)
can completely be determined by m zeros (x,, y,) € B(0; R,, R,) of R,(x, y):
Ry(x,,y,)=0, h=1,....,m, (5a)
or by a combination of zeros of R,, and some of its partial derivatives. For instance in the point
(x,, ;) the partial derivatives
a.Y,, +l,,Rh’

ox Su ayl/. ’ (Sh’ th) € I(h)’ (Sb)

(.\.h‘.‘.'l)

can be given with 7" a finite subset of N? of cardinality u(h) + 1 and satisfying the inclusion
property. We can again enumerate the indices indicating the known and vanishing partial
derivatives as follows:

0= (s, ), (s 00)) (587, 64) = (0, 0).
In the multivariate de Montessus de Ballore convergence theorem given in [2] all u(2) =0 and
I = {(0, 0)}. The following theorem extends this result.

Theorem 1. Let f(x, y) be a function which is meromorphic in the polydisc B(0; R,, R,) =
{(x, y): |xI<R,, | y| <R,}, meaning that there exists a polynomial

m

Rhl(x’ y)= Z: rdcxdye__- Zrd,.e,xd'yei7
(d.e)eMcN? i=0

such that (fR,,)x, y) is analytic in the polydisc above. Further, we assume that R,,(0, 0) # 0 so
that necessarily (0, 0) € M in the above expression for R,,. Let there also be given k zeros
(x,, y,) €EB(0; R,, R,) of R,,(x, y) and k sets '™ c N? with the inclusion property, satisfying

(fRy)(xy yi) #0, h=1,....k, (6a)
as,,-H,,RM

axshaylh =0’ (Sh’ t’l)el(h)a h=1,-..,k,

(xp. ) (6b)

k
Y (e(h)+1)y=m, #I"=p(h)+1,
h=1
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and satisfving

X ih I .. I‘,’”' yim
! o afiabga s 4! €’ xifm =By =)
(dy — (D) (e —pn()!! (d,— (D) (e, — (O
: ) : ' #0. (6¢)
x;‘ll-r;'l e X{lmygm
dl! L] gl Iﬂ’”\lil atky . ‘l" ! e,y.' td"‘ ik '}Em ntk)
(‘Il -“(A))! (el F(k)" ( m I‘(I\))' (em_"'("))'

Then the [N/M]z=(p/q)x. y) Padé approximant, with M fixed as given above and N and E
growing. converges to f(x, y) uniformly on compact subsets of

{(x. ¥ 1XI<R,.1yI<Rs, Ry(x, y)#0},
and its denominator

”»

q(x.y)= Z e, XY

converges to R,/(x, y) under the following conditions for N and E: the range of the largest
inscribed triangle in E and the range of the smallest triangle circumscribing N x M should both
tend to infinity as the sets N and E grow along a column in the multivariate Padé table.

Proof. Let the polynomials p(x, y) and g(x, y) respectively of “degree” N and M satisfy the
Padé conditions (1). We also assume that the sets N, M and E are enumerated as in (2). Since
the function fR,, is an analytic function, we can write, using Cauchy’s integral representation

BL
: o (faRy)(t, u)
) Z x'y’f / —_:_+l_-;—+T_dt u. (7)
(i. pen? it1=RNul=R; LU

From the Padé conditions we know that the series development of fg is indexed by N U N2\ E.
Hence the series development of fgR,, is indexed bv N * M U N>\ E. The partial sum of this
series comaining the terms indexed by T circumscribing N = M, will be denoted by IT, and
because of the Padé conditions it is indexed by N = M U T\ E and given by

I (x, y)=(pRy)(x. y)
1

i
' 2

(faR)(x. .‘)"‘\

Ry )2,
T LG
ltl=R;“lul=R,

i+1,,j+1
| & ) (i j)eT\E t u

Lct us write
a(x,y)=R,(x,y)+A4A(x,y),
with
Ax,y)= Y §,x'y,

(i.jeM
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and int:oduce the notation

S, i,

(51, ‘h).f‘—‘ ( h’ yh)'

ox = dy'e

We know that the coefficients in R,,(x, y) are determined by 4 of its zeros (x,, y,) satisfying
(6). We study 3“~'»IT,. and see how this affects A(x, y). On the one hand,

a(slu’,h)HT = a(sh"h)( pRM)

2

(5w | E
+ e a(sh'lh
2mi ! u.j)eN\E

( 1 )3 > i j! i
=} — - - xl 3I|y h
2wi) Gpene (E=s)! (G=1,)! '

Xf f (faR )¢, u)dt du
lt1=R7lul=R,

R, )t, u
X ’[ f (faRy ) )dtdu
lel=R,”"lul=R>

+l +1
u ‘;

tl+|u1+l ’

and on the other hand,

i! J!
) T Al
i G.)eT (i- sh) (J ty)!

(faRp)(t, u)

<f,

le}=R7lui=R, t'“u”'

1 )2 i! j!

== X = . XjShyf o
(2"‘” d.per (E=5,)! (-t "

r (fR3 +fAR,)(¢, u)

tl+lu1+l

(sh lh)n (

5hy1 Uy

ded

X
|”=R|',|u|=R2

From the above formulas we conclude for A(x, y) with (x, y) € B(0; R,, R)),

2

. X'y (fRy)(t, u)dy
2ai) O o7 2 e du
( ) [(k,E:EM'/I-tI R,f Z piti—kyi+i=l

2mi lul=Ry(i jleT

2

1 qR,,)(t, u)
-3 (‘-—T) a(sh"h ‘ ]f ] (f I+A;I)E+| dt 7]
2wi G neT\E [t1=R\"lul=R, ru

1 -2(5,,,r,, iyi (fR2 )(t ”_)
_(_) P )l Z xy'/|’1|=R,[|ul=Rz t1+1 Jj+1 drdu ]

2mwi G.)eT u

(slz’ th)el(h), h=1,...,k.
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The above equations are a linear system of m equations in the m + 1 unknown coefficients §,,
with (%, /) € M. Knowing that the set T satisfies the inclusion property and is triangular in
structure, let us say of range r, we can write for the coefficient of §,, in the above equations

1) x‘yj(fR )¢, u)
(_) a“M)[";n R r drdu

- +1-k j+1-I
2w ul= R’(u)eT e

l 2 [ r or-i l yj
= — | gt l - R tu dt du
(Z'Wi f“|=R|[M|—Rs IZ()]ZO il u1+l(f M)( ) ]

R P (/0" v\ Eroly/w) (x/0)
=(2—15) = [m R.fn..n R- ((t—x)(u -y) (’“) (#=y) )

X(fRy)(t, u)dt du],

which for r — = and for (x,,, y,) satisfying (6a), converges to

IR thu'(fRy)(t. 1)
(ET-;) ? [‘ll.ll=R1]:zll=R: (t—x)(u—y) dtdu]

= 3 Xy fRy (X, ¥)]
Sy I k! I
_K MZO (k—x)! (I=A)

We shall denote this last expression by S(k, /, s, t,). Similar computations can be made for
the right-hand side of the linear system of equations for the 8,,. We have

;)26(%_!;.)[ Z xl ;j jl.u' R,(quM)(t u)dt u]

i+1,,j+1
Z'ITl G YeT\E itl= R, t 17}

Xp TRyt 8 TR,

(fRM)(t u)
[ul R, G u]

1 }2
Snaty) Z xl Jf
i+l g+l 1
(2 J It1=R, i w+

(i, ))eT

t:+lu1+l

=(——1—,)-a(s,,.n,) Y ff flul . (aRy )1 u)dt u]

2wi (. ))eN\E ltl=R,
1= (/0" oy \Eo(y/u) (x/1)"
(S otp, i
“l) 0 {jl'll R,‘(ul R((t_x)(u )’ (t ) (u-y) )

X (fRE)(¢, u)dt du],
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which, for r — « and the range of 7 inscribed in E tending to infinity, converges to

1\ fRu(t, u)
_ — (S0 00) o S A—
(21‘”) 0 l£t|=R|'[|l¢|=R2(t —x)(u_y)dt du

= — 3wt fR2,)

Sh t,

=— ) X I(R, )TN fRy,) =0,
k=02A=0
because of (6b) since 3**(R,,) evaluates at (x,, y,) with (x, A) € I'”. Hence for n — « we
have in the limit a homogeneous system of m equations in the unknowns 8, ,...,8, . , With
coefficient matrix

( S(do> €qs s 1) o S(dus ems sos 1)
S(du’ €o» S:(Ll()l)’ tI(Ll()l)) o S(dm’ e,,,,.sﬁ(’,,, t:*l()”)
S(dy, eu,:S&"", ) o S(d em’. s6s 157)
S(do’ €o> S:(l’;l)\)’ ’fféb) o S(dm’ €m> -sl(‘l:’)‘” tf(‘l(("")

The fact that 7 satisfies the inclusion property allows us to make the appropriate linear
combinations within each block of w(k) + 1 rows related to I, and this for A =1,...,k, such
that the preceding coefficient matrix is reduced to the matrix of (6¢c) after dividing each
equation of the hth block by (fR,)(x,, y,) which is nonzerc because of (6a) and after
normalizing p and q such that 8, , = &,, = 0. We know that this new m Xm coefficient matrix
is regular because of (6¢), and hence for n — « the solution of the linear system governing the
coefficients of A(x, y)=(R,, —q)(x, y) converges to zero, in other words,

8,-0, (k,ijeM,

or the polynomial g(x, y), being the denominator of the Padé approximant, converges to
R,(x, y) because A(x, y) converges to 0. The uniform convergence to f(x, y) is based on the
same error formula as for the case IV = {(0, 0)} treated in [2]. O

It is clear that the choice of the equation set E plays an important role, as already pointed
out in [2], and that Padé approximants, for instance computed from

M={(0,0), (1,0), (0, 1)}, m=2,
N={{i,010<i<n},
E=NU{(0,1),(1,1)}, #E=#N+m,

generate error expressions Of y2 + xy% 4+ x2**y) which do not necessarily converge to zero.
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