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Introduction.

A given function f can be approximated with a high degree of contact
by its Padé approximant. Let us call the operator that associates with f
its Padé approximant 7, ,, of degree n in the numerator and degree m in
the denominator, the Padé operator Py, ,,,. The fact that the Padé approx-
imant is a rational function gives rise to a number of interesting questions.
Since the concept of Padé approximant is defined both for univariate and
multivariate functions, the following topics will each be discussed for both
cases.

Suppose that we construct rational expressions ¢(f) = (af +b)/(cf+d) of
f. Then one can investigate when the Padé approximant co-varies with f

in this case, meaning that ¢ [Pnm(f)] = Pnym, [4(F)]-

Let us consider the case that f is itself an irreducible rational function.
Then it is reasonable to expect that a suitable choice of the numerator and
denominator degree delivers Py, . (f) = rnm = f.

Taking it one step further, we consider a meromorphic function f, which
has a polynomial denominator and a holomorphic numerator. We can prove
that both in the univariate and the multivariate case the function f can be
rediscovered as the limit of a sequence of Padé approximants with increasing
numerator degree and suitably chosen denominator degree. What’s more,
the polar singularities of f can be computed from the knowledge of its
Taylor series expansion as a consequence of this convergence property.
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1. Notations and definitions.

1.1. THE UNIVARIATE CASE.

Consider a formal power series expansion
f(z)=co+ 1z + coz® + ... (1)

in a complex variable z, with ¢o # 0. In the sequel of the text we shall write
Op for the exact degree of a polynomial p(z) and wf = min{¢ | ¢; # 0} for
the order of a power series f(z). The Padé approximation problem of order
(n,m) for f consists in finding polynomials

n
p(z) = Z a;z’
1=0

and

g(z) = ib; z*

1=0

such that in the power series (fg — p)(z) the coefficients of z* for i =
0,...,n + m disappear,

op<n
dg<m (2)
w(ifg—p)=n+m+1

Condition (2) is equivalent with the following two linear systems of equa-
tions

4

CQbo = Qg

c1bo + coby = a4

(3a)

L Cnbo + Cn—-lbl +...4+ Cn-—mbm =day,
cn+1b0 +enby +.. 4+ Cn—m+1 b =0
: (3b)
Cn+mb0 + Cngm-1 h+...+cbpn=0

with ¢; = 0 for ¢ < 0. For m = 0 the system of equations (3b) is empty. In
this case a; = ¢; for i = 0,...,n and by = 1 satisfy (2), in other words the
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partial sums of (1) solve the Padé approximation problem of order (n,0).
In general, a solution for the coefficients a; is known after substitution of a
solution for the b; in the left hand side of (3a). So the crucial point is to solve
the homogeneous system of m equations (3b) in the m+1 unknowns b;. This
system has at least one nontrivial solution because one of the unknowns
can be chosen freely. The following relationship can be proved for different
solutions of the same Padé approximation problem.

Theorem 1 If the polynomials p1, ¢1 and p,, q2 satisfy (2), then p1g2 =

P2q1.
proof  The polynomial p;g; — p2¢1 can also be written as

(f‘12 - Pz)(h - (f(h - Pl)fh
Since

wfap—p1)2n+m+1
w(fga—p2)2n+m+1

we have
w(pigz —p2q1) 2 n+m+1

But (p1g2 — p2q1)(2) is a polynomial of degree at most n+m. Consequently
P1g2—p2 1 =0. o
A consequence of this theorem is that the rational functions p;/¢; and

P2/g2 are equivalent. Hence all nontrivial solutions of (2) supply the same
irreducible form. If p(z) and ¢(z) satisfy (2) we shall denote by

Fam(z) = 222 (o)
Gn,m

the irreducible form of p/q normalized such that g, ,,(0) = 1. This rational
function r,,,(z) is called the Padé approximant of order (n,m) for f.
As a conclusion we can formulate the next theorem.
Theorem 2 For every nonnegative n and m a unique Padé approrimant
of order (n,m) for (1) ezists.
Although p,, ,, and g, », are computed from polynomials p and ¢ that satisfy
(2), it is not necessarily so that p,, and g, satisfy (2) themselves. A
simple example will illustrate this. Consider f(z) = 1+ z2? and take n =
1 = m. Condition (2) is then equivalent with

bo = Qg
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A solution is given by bg = 0 = ap and b3 = 1 = a;. So p(z) = z = ¢(z).
Consequently p;1 =1=q11 with w(fg11 —p1,1) =2<n+m+ 1 and the
corresponding equations (2) do not hold. But it is easy to construct, from
the knowledge of p, m and gy m, a solution of (2).

Theorem 3 If the Padé approzimant of order (n,m) for f is given by

Tnm(T) = pn_m_(z)
n,m

with n' = dpp;m and m’' = 0¢ym, then there exists an integer s with 0 <
s < min(n — n/,m — m') such that p(z) = 2°p, m(z) and q(z) = 2°¢nm(z)
satisfy (2).

proof Let p;,q; be a nontrivial solution of (2). Hence

Op1 <n
01 <m
w(ifar—p1)>2n+m+1

Since the irreducible form of p;/q¢: is pn,m/gnm We know that

pl(x) :t(x)pn,m(z)
qa1(z) = Hz)gnm(z)

with #(z) a polynomial of degree at most min(n — n’,m — m’). If s = wt is
the order of the polynomial ¢(z), then

0 < s <min(n - n',m —m')

Since
w(fql - pl) = w [t(f‘In,m - pn,m)]
= w [xs(f(In,m - pn,m)]
= w[f(2°tm) = (°Prm)]
the proof is completed. O

1.2. THE GENERAL MULTIVARIATE CASE.

We restrict ourselves to the case of two variables because the generalization
to functions of more variables is only notationally more difficult. Given a
Taylor series expansion

f@y)= Y 'y

(1.7)EN?
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with
11 9 oS
Ci; = 2| |az,ay1 |(00)
we introduce a multivariate Padé approximant (p/q)(z,y) to f(z,y) where
p(z,y) and ¢(z,y) are determined by a general accuracy-through-order
principle. Let the polynomials p(z,y) and ¢(z,y) be of the form

pz,y)= Y, @i’y (4a)

(i.J)EN
q(z,y) Z b,].'lt y (4b)
(¢,7)€D

where N (“Numerator”) and D (“Denominator”) are finite subsets of V2.
The sets N and D indicate in a way the degree of the polynomials p(z,y)
and ¢(z,y). Let us denote

Ip={(57)|(57) € Nya; #0} C N n+1=#N

0¢={(5,7)1 (5,5) € D,b;; #0} CD  m+1=#D

It is now possible to let p(z,y) and ¢(z,y) satisfy the following condition
for the power series (fg — p)(z,y), namely

(fa-p)=z,9)= D dyz'y’ (4¢)

(1,7)EN?\E

if, in analogy with the univariate case, the set of indices E (“Equations”)
is such that

NCE (5a)
#(E\N)=m = #D -1 (55)
E satisfies the inclusion property (5¢)

Here (5¢) means that when a point belongs to the index set F, then the
rectangular subset of points emanating from the origin with the given point
as its furthermost corner, also lies in E. In other words,

(i) e E={(kO|k<it<j}CE
Condition (5a) enables us to split the system of equations

di;j =0 (i,j)€FE
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in an inhomogeneous part defining the numerator coefficients

i g
E z cu.ubi—u,j—u = G4y (2’]) €N (6(1)

pn=0rv=0

and a homogeneous part defining the denominator coefficients
i

Z Z Cuubi-—u,j—u =0 (l,]) € E\N (Gb)

pu=0v=0
By convention bge = 0 if (k,€) € D. Condition (5b) guarantees the exis-
tence of a nontrivial denominator ¢(z,y) because the homogeneous system
has one equation less than the number of unknowns and so one unknown
coefficient can be chosen freely. Condition (5¢) finally takes care of the Padé
approximation property, namely

90,00 £0= (f = D)a,y)= ¥ dija'y’
g (i,j)ENz\E

If E does not satisfy the inclusion property, as in figure 1, then

(fa-p)(z,9)= Y. dia'y
(1.5)EN?\E
does not imply
2\ -
(f = %) (y)= Y diyz'y
! (i) EN\E
since in that case f—p/q also contains terms resulting from a multiplication
of the “hole” in E by (1/¢)(z,y) as can be seen from figure 1. For more
information we refer to [11, 8].
We denote the set of rational functions p/q satisfying (4) by [N/D]g and
we call it the general multivariate Padé approximant of order (n,m)

for f.

In general, uniqueness of the general order multivariate Padé approximant,
in the sense that all rational functions in [N/D]g reduce to the same ir-
reducible form, is not guaranteed, unless the index set F \ N supplies a
homogeneous system of linearly independent equations (6b). It is obvious
that at least one nontrivial solution of (4) exists, but it is not so (unlike in
the univariate case) that different solutions p;, ¢, and p,, g2 of (4) are nec-
essarily equivalent, meaning that (p1¢2)(z,y) = (p2¢1)(z,y). Hence p1/¢x
and p2/q; may be different functions. Consider the following approximant:

(b/)a,y) = L2
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Figure 1.
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Depending on a, it has 3 different irreducible forms, namely

a=0.0 S —
l+z+4+y

a=105 : 0.5

o =10 1tz
l+z+y

For particular choices of N, D and E however it can be a general rule that
all solutions in [N/D]g are equivalent and reduce to a single irreducible
form, as can be seen in the following section. In general, with a free choice
for N, D and E, only subject to (5), it is not true. We shall discuss this in
detail further on.

Most of the older definitions for multivariate Padé approximants appear to
be special cases of the very general definition introduced here [20, 21, 5, 19,
10]. Hence all the results mentioned in the following sections are applicable
to these special cases. In this way the older theories are complemented with
a lot of new theorems and algorithms. The general definition also contains
the univariate theory as a special case.

Theorem 4 If the index sets N, D and E are such that
N D> {(t,0)]0< i< n}
D > {(:,0)|]0<i<m}
E > {(:,0)]0<i<n+m}

then the univariate Padé approzimant of order (n,m) to f(z,0) is given by
the irreducible form of [N/D]]fg(:c,O)
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1.3. THE HOMOGENEOUS MULTIVARIATE CASE.

The approach we have taken in the previous section to define and construct
multivariate Padé approximants is essentially based on rewriting the double

series expansion o
> 'y (7
(i.)eN?

as the single sum
oo

Z C,'J’:Eiyj

TE(i,j)=0

In general, a numbering rg of IN? places the points in IN? one after the
other. By doing so, the dimension of the problem description is reduced.
When the input is indexed by integer numbers rg(i,j) € IN and not by
multi-indices (4, ) € IN?, the explicit determinant representation of the so-
lution as well as the algorithms for its computation depend on a numbering
rg in IN? and not on the number of variables. Another way to work with
the bivariate power series (7) is the following

o0
Y iy =) ( > Cij""iyj)

(i.)eN? =0 \i+j=¢

This approach is taken in [10, pp. 59-62] to construct homogeneous mul-
tivariate Padé approximants. These homogeneous multivariate Padé
approximants are a special case of the general definition (4) where for cho-
sen v and p in IN, which are comparable to the degrees n and m of the
univariate Padé approximant, the numerator and denominator degree sets
N and D are given by

N= {(i,j))e N*|vp<i+j<vp+v} (8a)
D= {(de)e IN*|vp<d+e<vp+pu} (8b)

while
E = E(,,,u) U Eq) (8C)

Epuw={G,5)e N* |vp <i+j <vp+v+p}
Es ={(i,5) € IN* |0 < i+j<wu}
#E(V,y,) = #N+#D—1

The conditions in Fg are automatically satisfied by the choice of N and D
and hence void.
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An advantage of homogeneous Padé approximants is that they preserve
the properties and the nature of univariate Padé approximants even better
than the general order definition (4). This is for instance reflected in a
tremendous simplification of the algorithms for their computation [7, 9].
Let us introduce the notation

Al(za y) =

Bl(xv y)
Cl(“’? y) =

and rewrite

»(z,9)

q(z,y)

Then the conditions

(fg-p)(z,y) =

can be reformulated as

Z a;jm"yj £=0,..
i+j=vut+t
S biaty’ (=0,.
+j=vutl
E cijxiyj £=0,1,2..
i+3=¢L

= ¥ aijz'y = Y A(z,y)
(1,7)eN £=0

.. H
= Y byz'y’ = Y Be(z,y)
(i,})€D =0

Y, dialy = >

(i,5))eN?\E

' Co(xa y)Bo(III, y) = AO(:C’ y)
C](Q?, y)Bo(SU, y) + Cﬂ(xa y)Bl($7 y) = A](-T, y)

i+ 2vptvtptl

7

.

dij.'z:"yj

| Cu(z,9)Bo(z,y) + ... + Cop(2,y) Bu(z,y) = A(2,9)

CV-H(:E, y)BO(x7 y) +...+ CV+1—M($7 y)Bu(:E, y) =0

Cu+u(ma y)Bo((E, y) +...+ C‘,(.’E, y)B#(za y) =0
where Cy(z,y) = 0 if £ < 0. This is exactly the system of defining equa-

(9a)

(9%)

£

tions (3) for univariate Padé approximants if the univariate term c,z* is

substituted by

Cele,y) = Y cijz'y’

i+j=¢

€=0,1,2...
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For the homogeneous Padé approximants we can prove a multivariate anal-
ogon of the theorems 1-3. To this end we define the order wf of a power
series f(z,y) as wf =min{i+ j | ¢;; # 0}.

Theorem 5 If p1,q1 and p2, g2 both satisfy condition (4) written down for
the homogeneous multivariate Padé approzimation problem defined by (8),
then

(mae)(z,y) = (p2q1)(2,y)
proof  We proceed as in the univariate case. Write p;q2 — p2q; as

(fez—p2)ar — (far — 7)) @2
We know that

wifap—-pm)2vp+v+p+1l
w(fgz=p2)2vp+v+p+1
wq 2 vy
wg > vp

and consequently

w(pr1gz — paq1) = w[(f2 —p2)an = (f1 —pr)@e] > 2vp+ v+ p+ 1
Now the polynomial (p1g2 — p2¢1) is indexed by a subset of {(z,7) | 0 <
i+ j <2vp+ v+ p} and hence pyg2 — p2¢; must be identically zero. O

The homogeneous multivariate Padé approximant of order (v, u) for f(z,y)
can now be defined as the unique irreducible form

Pou(T,y)
@u(Z,9)

of a solution p(z,y)/q(z,y) of (9). For these r,, the following properties
of the univariate Padé approximant remain valid. Theorem 6 is the multi-
variate version of theorem 2 and theorem 7 generalizes theorem 3.

T‘,,,,(IIJ, y) =

Theorem 6 For every v and p a unique homogeneous multivariate Padé
approzimant of order (v, p) for f(z,y) ezists.

Before we proceed let us first take a look at an example to better under-
stand the difference between general and homogeneous multivariate Padé
approximants.

Consider
T .
f(z’y) - 1 + 0.1 -y + SIH(zy)
x .. & (zy)Ht?
=1 1=0 (21' + 1)|

Il

14 10z 4+ 101zy + 1000zy2 + ...
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Take n = 2 and m = 1 in the general order Padé approximation problem
with

N = {(0’0)7(0’1)7(170)}
D = {(07 O)v (0’ 1)}
E = {(0,0),(0,1),(1,0),(1,1)}

A solution of (4) is given by

p(z,y) = 1410z —-10.1y

q(z,y) = 1-10.1y
1410z —10.1y
[N/Dlg = 1-10.1y

Take v = 1 = u in the homogeneous Padé approximation problem. Then
we have to look for p(z,y) and ¢(z,y) of the form

p(z,y) = a102 + any + azz?® + anzy + aozy2

q(2,y) = broz + bory + baoz® + bi1zy + boay®

such that .
(fa-p)(z,y)= ) dijz'y’

i+5>4
A solution of (9) is given by

p(z,y) = 10z + 1002 — 101zy
¢(z,y) = 10z — 1012y
and
1+ 10z —10.1y
1-10.1y
Here the shift of the degrees over vu = 1 has disappeared by taking the
irreducible form. This is not always the case. Take » = 1 and u = 2. Then

p(z,y) and ¢(z, y) satisfying the homogeneous Padé approximation problem
are given by

7‘1,1(%!/) =

p(z,y) = 100z% — 101zy 4 1000z> — 2020z%y + 1000zy?
q(z,y) 10022 — 101zy — 10102y + 1000zy? + 201z 2y?

with _
z — 1.01y + 1022 — 20.2zy + 10y?

z — 1.01y — 10.1zy + 10y2 + 2.01zy?

"'1,2(3"7 y) =
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In general the following results can be proved about the order and degree of
numerator and denominator of r, ,(z,y). In this context we mean by order
and degree the total homogeneous order and degree. If , , = p,, /¢, is the
irreducible form of a solution p/q of the homogeneous Padé approximation
problem (9), we can write

p(z,9) = puu(z,y)T(z,y)

9(z,9) = quu(z,y)T(z,y)

with wg, , < wp and wq,, < wg So we can define v' = dp, , — wq,,, and
p' = 8q,,, — wqy,,. Obviously

/

Vo= 0pyu—wq,, = (0p—0T)—-wq,,

< Op-uwl~wq,,=0p-wglvut+v—vp=v
Ho= 09— whu =(0¢g—0T) - wq,,

< q-wl-wqu=0qg-—wglvptp—vp=yp

This definition of v’ and p’ is an extension of the univariate definition,
because in the univariate case wgq, , = 0.

Theorem 7 If the homogeneous Padé approzimant of order (v, p) for f(z,y)
is given by v, ,(x,y) with V' and p' defined as above, then an integer s with
0 < s<min(v —v',u— ') and a homogeneous bivariate polynomial

S(z,y) = > sijz'y’

i+j=vp—wey,u+s

exist such that p(z,y) = S(z,y)p,,u(z,y) and q(z,y) = S(z,y)qu(z,y)
satisfy (4).

proof  Since p,,/q, .(,y) is computed from a solution of (4), we may
consider nontrivial polynomials py(z,y) and ¢;(z,y) and write

pi(e,y) = T (2, y)puu(z,y)
QI(z’y) = T(.’L‘, y)qu,u(may)
with p; and ¢; satisfying (4) and with

aT

T(z’y) = Z tijwiyj
t+j=wT

Clearly from (8)
wq =Wl +wq, > vy
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and hence
wl'=vp—wq,, +s

with s > 0. Also wT < 0T with
OT = 0pr—0pu<vp+v—(V+wg,u)=vp—wq,+v-—v
T = 01 —0quu <vp+p— (0 +wgu)=vp—wg,+p—p
Hence
0T < vp —wq,, +min(v — ', u—p')

which implies
0<s<min(v—v,u—py)

Now consider the homogeneous polynomial consisting of the lowest order
terms in T'(z,y), namely

S(z,y) = > tijaty’
t+j=vu—wyu,u+s
Because

w [(f‘Iu,u - pu,u)T]
w[(fquu = Pvu)S]

the proof is completed. (]

vp+v+p+1<w(fa—p)

2. Covariance.

2.1. THE UNIVARIATE CASE.

In this section we are looking for operators & working on the series devel-
opment f that commute more or less with the Padé operator P, , which
associates with f its (n, m) Padé approximant:

@ [Prn(f)] = Prgme [2(F)]
with ng and m¢ depending on the considered ®. It’s easy to see that the

operators ® have to be rational.

A first property we are going to prove is called the reciprocal covariance
property.

Theorem 8 If 7y, ;n = Pum/qum s the (n,m) Padé approzimant to the
series development (1) with co # 0, then

_ qn,'ln/CO
Tm,n - - 7
pn,m /CO

is the (m,n) Padé approzimant to 1/ f.
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proof  Since pp, n, /Gn,m is the (n,m) Padé approximant to f, a polynomial
t(x) exists such that p = tp, n, and q = tqy, ,, satisfy (2). Since ¢ # 0,

f

from which we can conclude that ¢ and p satisfy (2) for 1/ f. Since p, ,»(0) =
co # 0, ¢nm/Pnm can also be normalized. 0O

w(fq—p)2n+m+1=>w[%(fq—p)] =w(lp—q) >n+m+1

A second property is called the homographic covariance property.

Theorem 9 Let a,b,c and d be complex numbers with cco + d # 0. If
Tnn = Pnn/qnn 15 the (n,n) Padé approzimant to f, then

(apn,n + bqn,n)/(c co + d)
(cpn,n + d(In,n)/(C co + d)

is the (n,n) Padé approzimant to (af + b)/(cf + d).
proof  We know that 7, , is computed from a solution p = tp, , and
q = tqnn of (2). Now

O(ap+bg)<n
O(cp+dg) <n

1
w(fg—p)2n+m+1 =>w(cf+d(fq—p)(ad—bc)> >n+m+1
Since Fib .
a
of ra Pt da) = (ap+ba) = —=—(fg - p)(ad - be)
and ¢p(0) + dq(0) = ¢ co + d # 0 the proof is completed. (]

In general the theorem is not valid for the (n,m) Padé approximant with
n # m because then

d(ap + bq) < max(n,m)
O(cp + dq) < max(n,m)

instead of n and m respectively.

2.2. THE GENERAL MULTIVARIATE CASE.

In this section we study some covariance properties of the general order
multivariate Padé approximant. For the sake of simplicity we denote a
particular element of the set of solutions [N/D]g for the general Padé ap-

proximation problem of f(z,y) by [N/D]{;
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Let the formal Taylor series development of f(z,y) be such that coo #
0. Then the formal Taylor series development of g(z,y) = (1/f)(z,y) is

defined by o
9(z,y)= Y e’y
(i,5)EN?
with
f(z,9)9(z,y) =1
If

(fa-p)(z,9)= Y. diyz'y’

(1,7)EN?\E
then after multiplication by —g(z,y), we get
(gp—a)(z,y)= > &'y
(1)) EN?\E
From this we can conclude the following theorem.

Theorem 10 Let [N/D]é be a general order multivariate Padé approzi-
mant to f(z,y) as defined above and let g(x,y) = (1/f)(z,y). Then

[D/N)% = 1/[N/ D)}

If we study the homographic function covariance of the general order mul-
tivariate Padé approximant, we cannot consider denominator index sets D
different from the numerator index set N. Indeed, when transforming the
function f into the function f = (af + b)/(cf + d), a general order Padé
approximant p/q for f transforms into

cp +dg (i.j)ed bi Ty’

which can not necessarily be written in the form p/§ = [N/ D]{;

Theorem 11 Let [N/N]é = p/q be a general order multivariate Padé ap-
prozimant to f(z,y) and let f = (af +b)/(cf + d), then

[N/NY; = /3
with

#(z,y) = ap(z,y)+ bq(z,y)
§(z,y) = cp(z,y)+ dg(z,y)
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2.3. THE HOMOGENEOUS MULTIVARIATE CASE.

Since the homogeneous multivariate Padé approximant can be considered as
a special case of the general multivariate Padé approximant, the theorems
10 and 11 remain valid. The condition N = D in theorem 11, is replaced
by the equivalent condition v = p.

3. Consistency.

3.1. THE UNIVARIATE CASE.

Last but not least the consistency property of the Padé approximant. If
we are given an irreducible rational function f(z) right from the start, but
know only its Taylor series, do we come across it when calculating the ap-
propriate Padé approximant? This consistency property is in fact quite logic
and hence very desirable. In the next section we consider the more general
problem of approximating functions with polar singularities, in other words
Taylor series coming from functions with a polynomial denominator but not
necessarily a polynomial numerator.

Theorem 12 If f(z) = g(z)/h(zx) with h(0) = 1 and

n
g(z) = > gz’
1=0
m

h(z) = Z izt
i=0

then for f(z) irreducible we find v, = f.
proof  For f(z) we can write

wifh—g)>2n+m+1

Since g < n and 0h < m we see that g and & satisfy (2) for f. Hence 7, ,,
is the irreducible form of g/h or f itself. 0O

3.2. THE GENERAL MULTIVARIATE CASE.

Let’s investigate the same question. If we are given an irreducible rational
function f(z,y) right from the start, do we come across it when calculating
the appropriate general order Padé approximant? By this we mean that for
an irreducible function
(1) _ e
9(z,y) _ (i)eN
f (:1:, y) = . =

h(z,y) ¥ hiz'y
(1.7)eD
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and for a solution p(z,y)/q(z,y) to the Padé approximation problem of
f(z,y), we want to find that p/q and g/h are equivalent. In other words,
that

(ph - gq)(z,y) =0
It is clear that this is the case if the general order multivariate Padé ap-
proximation problem to f has a unique solution, because then both p/q and
g/h satisfy the approximation conditions (4c). If the solution is non-unique
we can get in trouble because of the non-unicity of the irreducible form of
the Padé approximant as pointed out in the previous section. A solution of
the form

atazr+(l-a)y

l+z+y

has 3 different irreducible forms. These irreducible forms cannot all together
coincide with g/h. In general we can only say that

(ph—gq)(z,y)= > &'y’
(i.;)EN=D\E

where

N+D={(i+d,j+¢€)| (i) € N,(d,e) € D}

3.3. THE HOMOGENEOUS MULTIVARIATE CASE.

However for the homogeneous Padé approximants, the consistency property

holds.

Theorem 13 For an irreducible rational function

v ..
9(z,9) '+Zogijz1yj
9 tTrJ)=
f(:t,y)= h(il) ) = Z‘ o
Y > hijzty?
i+7=0

the homogeneous Padé approzimant to f of order (v,p) is given by r,, =

g/h.
proof For f = g/h we can write

h=9)zp)= 35 dya'y
t+32vutvtutl
For r,, = p,u/q,, we know that there exists a polynomial T'(z,y) such

that .
(f@ouT — puuT)(z,y) = Yoo dija'y
i+ >vutrutl
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Because of the equivalence of different solutions for the homogeneous Padé
approximation problem we can write

9(2, ¥)av,u(z, ¥)T(2, y) = puu(z, ¥)T (7, y)h(z, y)

and consequently

9(z,y) = puulz,y)
hMz,y) = qu(z,9)
a

This consistency property is an important advantage of the homogeneous
multivariate Padé approximants over the general order multivariate Padé
approximants: in the general case the consistency property is only satisfied
if the linear system of defining equations (6b) has maximal rank.

4. Convergence.

4.1. THE UNIVARIATE CASE.

Let us consider a sequence S = {rq, r1,72,...} of Padé approximants of dif-
ferent order for a given function f(z). We want to investigate the existence
of a function F(z) with

t1_1}101o ri(z) = F(z)

and the properties of that function F(z). In general the convergence of S
will depend on the properties of f. A lot of information on the convergence
of Padé approximants can also be found in [3].

We are interested in the convergence of columns in the Padé table. First
we take 7;(z) = r;o(z), the partial sums of the Taylor series expansion for
f(z). The following result is obvious.

Theorem 14 If f is analytic in B(0,7) with r > 0, then S = {rio}ieN
converges uniformly to f in B(0,7).

Next take ri(z) = r;1(z), the Padé approximants of order (¢,1) for f. It
is possible to construct functions f that are analytic in the whole complex
plane but for which the poles of the r;; are a dense subset of € [23, p. 158].
So in general S will not converge. But the following theorem can be proved
[4].

Theorem 15 If f is analytic in B(0,r) with r > 0, then an infinite subse-
quence of {r;1}ien exists which converges uniformly to f in B(0,r).

In [2] a similar result was proved for S = {r;(z)}ien. However, the most
interesting result was obtained by de Montessus de Ballore for Padé ap-
proximants of meromorphic functions. In that case it is possible to prove
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the uniform convergence of a particular column in the Padé table [15]. Since
the column number in the Padé table is given by the degree of the Padé
denominator, this number is determined by the number of poles of the
meromorphic function in the considered disk. Aiming at larger regions of
convergence, implies considering larger disks and hence dealing with more
poles of the function at the same time and increasing the column number
to be inspected.

Theorem 16 If f is analytic in B(0,7) except in the k distinct poles
Wy, ..., Wk of f with total multiplicity m and with

0<|un| <|wy] <...<|wg] <R

then {r; m}ien converges uniformly to f in B(0,7)\ {wn,..., wi}.
Several proofs exist of which the most elegant one is due to Saff [3, pp. 252-
254]. In some cases another kind of convergence can be proved for the
diagonal approximants. It is called convergence in measure [22].

Theorem 17 Let f be meromorphic and let G be a closed and bounded
subset of € . For every € > 0 and § > 0 there exists an integer k such that
for ¢ > k we have

Irii(z) - f(z)l<e z€G;
where G; is a subset of G such that the measure of G \ G; is less than §.

The proof of this theorem and more results on convergence in measure of
Padé approximants can be found in [3, pp. 263-283].

For meromorphic functions f(2) information on the poles can also be ob-
tained from the columns in the ¢d-table which we introduce now. In the
series development of f we set ¢; = 0 for i < 0. For arbitrary integers n
and for integers m > 0 we define determinants

Cn Cn+l -+ Cngm—1
(n) Cn41 Cpug2 v Cntm
HY =
Cn+m—-1 Cugm - Cn+'2m—2

with Hén) = 1. The series (1) is termed A-normal if J7is # 0 form =
0,1,...,kand n > 0. It is called ultimately k-normal if for every 0 < m < k
there exists an n(m) such that J7a% # 0 for n > n(m). With (1) we define
the gd-scheme where subscripts denote columns and superscripts downward
sloping diagonals [18, p. 609]:
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(a) the start columns are given by
=0 n=102,...
(") Sntl n=0,1,...

Cn

(10)

(b) and the rhombus rules for continuation of the scheme by

6571:) _ q5:.+1) (n) +e (n+1) m=1,2... n=0,1...

1n -1 (11)
ent1)
qf,I‘,’L]:—m(,;)—q,S?*‘) m=1,2... n=0,1,...
€m

Theorem 18 If f is analytic in B(0,7) except in k distinct poles with total
multiplicity m and with

lwo| = 0 < |wq| < |wz] < ... < |wy| < R | Wy p1| = 00

where each pole occurs as many times in the sequence as its order, and if
f is ultimately m-normal, then the qd-scheme associated with f has the
following properties:

(a) for each € with 0 < £ < m and |we—1| < |we| < |wesa],

lim qf,"H) = 1/wy

n—oo
(b) for each € with 0 < € < m and |we| < |wes1],

lim egnﬂ) =0

N=—>00

The index ¢ for which |wg| < |we4q], is called a critical index because it
indicates in which columns of the gd-table we have to take a look. It is
clear that the critical indices of a function do not depend on the order
in which the poles of equal modulus are numbered. When £ is a critical
index, the €t* e-column tends to zero and the ¢* ¢-column just preceding
it in the ¢d-table contains information on the poles with distinct moduli.
Thus the gd-table of a meromorphic function is divided into subtables by
those e-columns tending to zero. Any ¢-column corresponding to a simple
pole of isolated modulus is flanked by such e-columns and converges to the
reciprocal of the corresponding pole. If a subtable contains more columns of
g-values, the presence of poles of equal modulus is indicated. In [18, p. 642]
it is also explained how to determine these poles.

Theorem 19 Let ¢ and (+k with k > 1 be two consecutive critical indices.
Let the polynomials p,(s) be defined by

@) = 1
pfi)l(x) = a:pst)(:v) qli)w-ﬂ’( )( ) $s>0 i=0,1,...,k-1
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Then there exists a subsequence {s(n)}nen such that

(())()

lim p (z - w4+1) w£+k)

n—oo
From the above theorem the ¢d-scheme seems to be an ingenious tool for
determining the poles of a meromorphic function f directly from its Taylor
series at the origin. If f is rational, the last e-column is even theoretically
equal to zero, as can be seen from the next theorem. The proof hereof is
based on the next lemma [18, pp. 610-613].
Lemma 1 Let f be given by its formal Taylor series ezpansion (1). If there

(n)

ezists a positive integer k such that f is k-normal, then the values ¢’ and

es,?) erist form=1,...,k and n > 0 and they are given by
(n+1 n
(n) _ }Im )H'r(n)l
' = 0 H0HD

m m-—1

(n) (n+1)
(n) m+1 Hm—
en’ =
B Y
Theorem 20 Let (1) be the Taylor series at = 0 of a rational function
of degree n in the numerator and m < n in the denominator. Then if the

series f is m-normal,

e$;1—1n+h) =0 h>0

4.2. THE GENERAL MULTIVARIATE CASE.

The univariate theorem of de Montessus de Ballore deals with the case of
simple poles as well as with the case of multiple poles. The former means
that we have information on the denominator of the meromorphic function
while the latter means that we also have information on the derivatives of
that denominator. In this section we give a similar convergence theorem for
the general order multivariate Padé approximants.

Let us first introduce the notations
#N = n+1
Nz(n) = max{i]|(i,7)€ N}
Ny(m) = max{j| (i) € N}

In what follows we discuss functions f(z,y) which are meromorphic in a
polydisc B(0; Ry, R2) = {(z,v) : |z| < Ri,|y| < Rs}, meaning that there
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exists a polynomial

m
Rm(x7 y) = Z Tdexdye = Zrd.‘e.‘wdiye‘

(d,e)eDCN? i=0

such that (fR,.)(z,y) is analytic in the polydisc above. The denominator
polynomial R,,(z,y) can up to a multiplicative factor be determined by m
zeros (zh, yn) of Rm(z,y) in B(0; Ry, R2),

Ru(zh,yn) =0 h=1,...,m (12a)

or by a combination of zeros of R,, and some of its partial derivatives. For
instance in the point (x4, ys) the partial derivatives

9ihtin R,

dzihQyin | =0 (4n,Jn) € In (120)

(zhoyn)

can be given with I}, a finite subset of IN? of cardinality u(h)+ 1 and satis-
fying the inclusion property. We can again enumerate the indices indicating
these vanishing partial derivatives as

I = {8, 387), .. G000 68,58 = (0,0)

For the pole (zn,yr) the set I; substitutes the univariate notion of multi-
plicity.

Theorem 21 Let f(z,y) be a function which is meromorphic in the poly-
disc B(0; Ry, R2) = {(2,¥) : |z| < R1,|y| < Rz}, meaning that there ezists
a polynomial

m

Rm(xa y) = Z Tdea:dye = E"'d,‘egzdiyei

(d,e)eDCN? i=0

such that (fR.,)(x,y) is analytic in the polydisc above. Further, we assume
that R, (0,0) # 0 so that necessarily (0,0) € D. Let there also be given k
zeros (zh, yr) of Rm(z,y) in B(0; Ry, R2) and k sets I, C IN? with inclusion
property, satisfying

(fRw)(zh,yn) #0 h=1,...,k (13a)

aih+thm o
FY N =0 (ZhyJn) € In h=1,...,k
TROY™ \(zh,un) (13b)

Sho(u(h) +1)=m  #I, = p(h) + 1
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and producing the nonzero determinant

dy e dm em
1 4% 14

4 ! RRTORED ! L dm—p(1) em—u(1)
@Oy E=a Oy SRR ¢ g6 I8 e 63 T uyr

291,61 z9m em
“k “k Tk Yk

! ! d) - e k ! ! ) —u(k em k
15441 ; el_e“;| —" CON o u(k) dmd_m”k ; cme_m“(k ' k n(k), #(() )
13¢

Then the sequence of general order multivariate Padé approxzimants
[N/DIg = (p/q9)(z,y) with D determined and fized by the inder set of
R..(z,y) and N C E growing such that

lim NMy(n) =

o0
n—00
o0

lim Ny(n) =

n-—+00

converges to f(z,y) uniformly on compact subsets of

{(z,9) : |z| < Ry, |yl < Rz, Ru(z,y) # 0}
and its denominator

m
q(z,y) = Y bae,xhy®

converges to R, (z,y).

The main difference in comparison with the univariate theorem lies in the
fact that in the univariate case N * D = {(¢,0) |0 < i < n}*{(5,0)|0 <
j<m}=FE ={(:,0)| 0 <¢< n+m} which is not necessarily true in
the multivariate case. A numerical example illustrating theorem 21 can be
found in [12].

In the literature one can find similar attempts to generalize the theorem
of “de Montessus de Ballore” to the multivariate case [6, 17, 19]. However,
the problem is nowhere treated in such a general way as is done here. We
have complete freedom of choice for the numerator (by setting N) and the
equations defining the Padé approximation order (by setting E). Also we
can deal with any polynomial denominator since the index set D can be
any subset of IN2. In [13] the interested reader can find a typical situation
where this freedom is necessary for the construction of numerically useful
multivariate Padé approximants.
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In analogy with the univariate case we now discuss a first multivariate
version of the gd-algorithm. Given a formal series expansion of a function
f(z,y), an enumeration 72 of the points (i,;) in IV? specifies in which
order we are going to deal with the Taylor coefficients c¢;;. The multi-indices
(%,7) of ¢ij can for instance be counted down along upward sloping diago-
nals in the order (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), ... or in any
other order as long as the inclusion property remains satisfied during the
enumeration. Now we introduce two enumerations of multi-indices which
will play a special role in the super- and subscripts of the general order
multivariate ¢gd-algorithm, namely 7y satisfying the inclusion property and
enumerating the ¢;; to be fed as input to the algorithm, and rp for the
time being arbitrary:

N = {(iOajO)""7(i71»j11)a"'} (14&)
D = {(do,e0),-.-s(dm,em),...} (14b)

Here indexing a point (¢,7) or (d,e) with ¢ and referring to it as (i, j¢) or
(de, €¢), means that it is the next point in line in N or D. The univariate
case appears as a special case if we enumerate only the first axis. A typical
multivariate choice would be N = IN? and D general.

Let us introduce help entries !1(()7,113; by:

n n
(n) _ tk—dm , Jk—em tk—dm=1,Jk—€m—1
9om = E :cik_dmvjk"cmm Y _E Ciy=dm—1,jx—€m—1 T mly m

k=0 k=0
(15a)
(n) (n+1) (n+1) (n)
gm-l,rgm—l,m - gm—l,rgm—l,m _
(n) — nr 1) o r=m+1,m+2,... (15b)

Im—-1,m — gm—l,m

(n)

keeping in mind that ¢;; = 0if 7 < 0 or j < 0. The values g,,?,r are stored
as in table 1. The general order multivariate gd-algorithm is then defined

by:

. . inay—do o insl—e (n+1)
Q(n)(a: )= Cing1—dojny1—eg @ ¥ O Ym0 0,1 (16a)
1 ' Y) = Cir—dp i — min-do yjn—eo ("+1) (n+2)
in—do,jn—€o 901 ~ — Y01
2 n42 +m-=1 + +
QU (4, y) = Bt eV ey) sl —onti A
m = T -1 +m+1
’ Ef:jl )(.‘L',y) 1(1:1-—"2",1711—)1 gg:jln,?n—gs'?—r': )

m > 2
(16b)
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(n+m) _ (nt+m+1)

E,‘,:‘“)(x,y)+1:g’”‘l""(n:"’[;“"” (QG*(z,9)+1) m>1

m—1,m

(16¢)

If we arrange the values Qs,?)(z, y) and E,(#)(:z:, y) as in the univariate case,
where subscripts indicate columns and superscripts indicate downward slop-
ing diagonals, then (16b) links the elements in the rhombus

Efllljll)(z7 y)
Qut(z,y) (2, y)
E{D(2,y)

and (16¢) links two elements on an upward sloping diagonal

E,,"H)(z Y)

577:-*-2)(1:7 y)

In analogy with the univariate Padé approximation case [18, p. 610] it is also
possible to give explicit determinant formulas for the general multivariate
(Q-and E-values. Let us introduce the notations

.n"drn In— 7 y y
Cmyn(z, y) = cin—dm,jn—emzl y]” o iy > dm In 2 €m
Tr(n,m) =ipg1 4+ ...+ ipgm —do— ... — di,
Ty(nym) = Jng1+ ..o+ Jugm — €0 — ... — €

where Cy, (2, y) is not to be confused with the homogeneous expression
Cm(z,y), and let us introduce the determinants

CO,n+1(za y) s Cm—],n-{-l(‘z', y)
Hip, = : : HEg =
CO,n-{»-m(zv y) e C'm—l,n-f-m(x’ y)
1 . 1
CO, +1 (2}, y) oo c'm,n+1 (.’IT, y) y
= | R VRN
CO,n+m(-73’ ?/) s C‘vm,n+m(x7 y)
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Z CO,k(z7 y) Z C'ln,k(-'r’ y)

k=0 k=0
Hé-::zl _ CO,n+T($7 y) Cm,n+'1 (173 y) H2(,n—)1 —

Co,n+m($, Y) Conntm(T,9)

1 1

Z CO,k("H y) Z Cm,k(mv y)

(n) k=0 k=0 (n)
H3y C'm,n+l(:l;7 ?/) 3 -1~ 0

C10,'n+1 (.’E, y)

CO,n-}-m—l(xa y) C1n,n+7n—1($1 y)

By means of the determinant identities of Schweins and Sylvester we can

prove the following lemma.

Lemma 2 For well-defined QS,’LLH)(:L',y) and E,(,?H)
terminant formulas hold:

(z,y) the following de-

(n+m) H (n4m-—1) H (n+m)

(n+1)(.’13 y) o,m 1,m-1 3,m
’ (n+m—1) ry(n+m) y(nt+m)
IIO Hl m HS m—1
(n+1n) ('n.+m.) (n4m+1)
E(n+1)(:ll y) HO ym+1 1 m—1 H.} m
m ? (n4m) pp(n+m+1) y(n+m)
HO m 1{1 m H3,1n

Moreover, H, ("+m) / [z"’("'m)y”y(’“’”)] is a determinant representation for
the denommator q(z,y) satisfying the Padé approximation conditions. From
lemma 2 we then see that if f(z,y) is a meromorphic function, the denomi-

nators of anH)(a: y) contain information on the poles of f because in that

case some determinants H, ”H) / [1“(" O ymy(n, ’)] converge to the poles of

the meromorphic f as explamed in the previous theorem. We reformulate
this in terms of the general multivariate gd-algorithm.

Theorem 22 Let f(z,y) be a function which is meromorphic in the poly-
disc B(0; Ry, R2) = {(z,y) : |z| < R1,|y| < Rz}, meaning that there ezists
a polynomial R, (z,y) such that (fR,,)(z,y) is analytic in the polydisc
above. Let the polynomial R,,(z,y) be factored into

Z TdeT y "E"'d.e.l ye.

(d,e)eD

Ryn(z,y) =
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K

K
[[R(z) =TI | D raea®y
=1

r=1 \(d,e)€Dy,

with D¢, * Dy, *...% D¢, = D. Further, we assume that R,,(0,0) # 0 so
that necessarily (0,0) € D. Let the conditions (13) be satisfied and let the
enumeration (14a) be such that

nh_l’ll Me(n) = o0
1}220./\@(71) = o

Then for each 1 < € < m with Dy = Dy, x...% Dy,:

lim E (1 y)=0

n—00
uniformly in a neighbourhood of the origin excluding a set of Lebesgue mea-
sure zero, and

lim H +€)/[ w2 (m0) oy (3, l’)] = Ri(z,9) X ... X Ru(z,y)
n—oo

The column number ¢ satisfying D¢ = D¢, * ... * Dy, is called a critical
column number and it has the same meaning as the critical column number
in the univariate gd-scheme. It indicates which column of @-values has to
be inspected because it contains information on the poles of f(z,y). When

computing an+1) algebraically, the factor Hl(flg”)/ [w”r(“v[)yﬂy(nl)] is easy

to isolate in the denominator of anﬂ) because it is the only one that
evaluates different from zerc at the point around which the given function
f(z,y) is developed, here the origin.

4.3. THE HOMOGENEOUS MULTIVARIATE CASE.

Let us first take a look at the sequence of homogeneous multivariate Padé
approximants 7, ,(z,y) with » = 0,1,2,... and p fixed. From (8a-b) it is
clear that if we increase the numerator degree » of the homogeneous Padé
approximant, also the denominator set D is influenced. Hence a sequence
of homogeneous Padé approximants with fixed g and increasing v does not
correspond to any sequence of general order multivariate Padé approxi-
mants with fixed denominator index set D. This immediately implies that
theorem 21 cannot be applied to any sequence of homogeneous multivariate
Padé approximants.

A generalization of theorem 17 on the convergence in measure of diago-
nal homogeneous Padé approximants is currently under investigation. That
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there is evidence for such convergence in measure is illustrated numerically
in [13]. We remark that because v and p play the same role for multivariate
homogeneous Padé approximants as n and m for univariate Padé approxi-
mants, the notion of diagonal approximant is very natural for multivariate
homogeneous Padé approximants. It suffices to let » = u. For general or-
der multivariate Padé approximants the notion of diagonal approximant is
not so clear because of the possibility to choose the enumeration for the
numerator different from the one for the denominator.

Let us now take a look at a homogeneous multivariate gd-algorithm. The
series expansion of f(z,y) is rewritten as a single sum by grouping terms
into homogeneous expressions:

fy)=> | D cijz'y’

LeN \i+j=¢

The homogeneous multivariate ¢d-algorithm is then defined by:

E((,")(x,y) = 0 n=12,... (17a)
Y ety
(n) _ i+j=n+1 b
1 (msy) Z Cij:l:iyj (17 )
t+y=n
EP(z,y) = Qut)(a,y) - QW(a.y) + ENF (2, )
m=12... n=0,1...
o _ B (2, )Q8 (2, y)
‘m+1(z y) - (n)

m(2,Y)
m=1,2,... n=0,1,...(17c)

If we arrange the values Q) (z,y) and E{M (2, y) as in the univariate case,
where subscripts indicate columns and superscripts indicate downward slop-
ing diagonals, then the entire construction is very similar to the univariate
scheme (10-11). It can also be proved that for y = Az and for n,m > 1

”)(z Az) (],(,?) -z
")(z Az) = & .y

(n) (n)

where ¢, and é,,’ come from the univariate gd-scheme computed for the
function f(z, Az). In other words, the homogeneous multivariate gd-scheme
and the univariate gd-scheme coincide when the multivariate function is
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projected on rays y = Az. When we then want to use the homogeneous
gd-algorithm to detect the polar singularities of f(z,y), we proceed as fol-
lows. Theorem 23 generalizes the results of theorem 18. A generalization of
theorem 19 can be formulated in the samme way.

Theorem 23 Let the Taylor series at the origin be given of a function
f(z,y) meromorphic in the polydisc B(0,R) = {(z,y) : |z] < R,|y|] <
R}, meaning that there ezists a polynomial q(z,y) such that (fq)(z,y) is
holomorphic in B(0, R). Let for A € IR the function f\(z) be defined by

fi(z) = f(z, Az)
and let the poles w; of fx in B(0, R) be numbered such that
wo=0<|wy| < |wy] <...< R

each pole occuring as many times in the sequence {w;}ien as indicated by
its order. If fy is ultimately m-normal for some integer m > 0, then the
homogeneous qd-scheme associated with f has the following properties (put
W41 = 00 if f\ has only m poles):

(a) for each € with 0 < £ < m and |we—1| < |we| < |we4),

lim Qﬁ")(:n, Av)=w;' -z

N—+00

(b) for each € with 0 < € < m and |we| < |weg1],

lim E{"(z,Az) =0

n—oo

How the parameter \ affects the order in which the poles of f(z,y) are
detected pointwise as (we, Awe) with wy = z/lim, e an)(z, Az) and not
curvewise as in theorem 22, can be learned from a numerical example given
in [14]. If we compare this convergence result to the one for the general order
multivariate gd-algorithm given in the previous section, we see that there
the algorithm discovers and identifies the polar factors as separate objects.
The price one has to pay for this elegance is that the general multivariate ¢d-
algorithm must be programmed in order to deal with algebraic expressions
instead of with numeric data. The homogeneous gd-algorithm delivers the
poles point by point (numeric output) while the general order gd-algorithm
delivers the poles as algebraic curves (formula output). This implies that
the general gd-algorithm is considerably slower than the homogeneous ¢d-
algorithm when used for pole detection. However its reply is considerably
more accurate.
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In analogy with the univariate Padé approximation case [18, p. 610] it is
also possible to give explicit determinant formulas for the homogeneous
multivariate Q- and F-values. Let us re-introduce the notation

Ce(z,y) = Z c,-j:c"yj ¢=0,1,...
i+5=~0

and define the determinants

Cn(zy y) Cn+1(x, y) KR Cn+m—1(z, y)

Crsi(z, Crya(z, oo Cham(z,

Cn+m—1($a y) Cn+m($’ y) e Cn+2m——‘2(x7 3/)

The series development of f(z,y) is termed k-normal if H,(,?)(:v, y) £ 0 for
m = 0,1,...,k and n > 0. It is called ultimately k-normal if for every
0 < m < k there exists an n(m) such that H,(,;l)(:c,y) # 0 for n > n(m).
By means of the determinant identities of Sylvester and Schweins we can
prove the following lemma for k-normal multivariate series [9].

Lemma 3 Let f(z,y) be given by its formal Taylor series expansion. If
there exists a positive integer k such that f(z,y) is k-normal then the func-

tions Qs,?)(z,y) and E,(,?)(a:,y) ezist form = 1,...,k and n > 0 and they
are given by

H1(7?+1)f1(n)
QW (z,y) = L=—251(a,y)
PR

H(n) H(n+1)
(n) _ m+14"m—1
Em (xy y) - H(H)H("'*'l) (z’ y)

m m
We can now complete the list of results with the following multivariate
analogue of theorem 20 of which the proof can be found in [14].
Theorem 24 Let the Taylor series expansion at the origin be given of a
multivariate rational function of homogeneous degree n in the numerator
and m < n in the denominator. Then if the series f(z,y) is m-normal,

EM=mth) (2 ) =0 h>0
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