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Abstract: In the paper “Branched continued fractions for double power series” [J. Comput. Appl. Math. 6 (1980) 
121-1251 Siemaszko generalizes for branched continued fractions the formula that expresses the difference of two 
successive convergents of an ordinary continued fraction. However, the generalization is not yet fit to write the 
branched continued fraction as an Euler-Minding series for the following reason. Indeed a convergent of the branched 
continued fraction can be written as a partial sum of a series but different convergents are different partial sums of 
different series. The next convergent cannot be obtained from the previous one by adding some terms. We shall 
develop here another formula that overcomes this problem. 

Let us consider ordinary continued fractions 

~~ = b$i) + !-?f.! + lal” + . . . , 
bj’) 1 bf’ ( 

i = 0, 1, 2, . . . . 

If Cii) denotes the nth convergent of (1) then it is well-known that 

C,‘i) - C,‘i’l = ( _l)(“+‘)al(i) . , . a;)/Q;‘Q$L,, n = 1, 2,. . .) 

c$i) = b$i), 

where 

CL9 = p,‘i)/Qr), 

with 

pii) = bf)pic’,, + at)p(i) 
k-2, 

Q;’ = bf’Ql”, + @Qy’, , 
k=l,...,n, 

p”‘, = 1 = Q&i’, p$i) = b(i) 
0 3 Q'i', = 0. 

We will now generalize (2) for the branched continued fraction 

B +a,+++ . . . . 
O I4 I B2 

(1) 

(2) 

(3) 

(4) 
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Let us denote by PJQ, the subexpression 

c i ‘i 

n,(n,n-l,..., 1,O) 
r=l 

Another subexpression we shall need is 

k 
which is in fact the kth convergent of 

(5) 

= 0 n, Y---T 

PJQ,. These subconvergents can be ordered in a table 

where we proceed in a certain row from one value to the next one by using (3) for (5): 

R(kn) = C,(!\Rp?, + a,R(,“1,, 

sp = q’,sp, + a,sp,, 
k=l,...,n 

with R(“1) = 1 = S,$“), R’,“) = CA’) and S ?) = 0. If we want to obtain an Euler-Minding series for 
the branched continued-fraction (4) we must compute an expression 

P P,_i Rj:, “--= Rc,_p’ -___ 
Q, CL-1 s,‘“’ s,‘:,” 

for the difference 

(7) 

Remark that in comparison with P,_l/Qn_l the expression P,,/Q, contains an extra term in 
each of the involved convergents of Bi. Also B, is not taken into account in Pn_l/Qn_l. In order 
to compute (7) we must be able to proceed from one row in the table of subconvergents to the 
next row. The following lemma is a means to calculate the differences R(kn) - Rp-‘) and 
Sin) - Q-1). 

Lemma. Forn>2 andk=l,...,n-1 

R(kn) _ ~(kn-1) = CJ(lc)k(R(knll - Ry::)) + a,(Rp?, - Rjr_:)) 

+(-1) 
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$4 - q-1) = c,‘“‘,( sp, - s&l)) + ak( sp, - spy) 

+(_l)n-k+l aik) *- - 4”‘k p-1) 

Q’k’ Q’k’ _ k-l ’ 
nknkl 

with 

and 

R’“,, _ R’“,” = S(Jj - Sl”,-‘, = S$” - S$“-l) = () 

Proof. We shall perform the proof only for R(kn) - Rye’) because it is completely analogous for 
SL”) - Sjnpl). Choose k and n and write down the recurrence relation (6) for row n and row 
n - 1 in the table of subconvergents: 

R(kn) = C,‘!‘,R(,?, + akRlc”12, 

R(kn-1) = C,‘“‘,pkR’,_-ll,l, + a R(“-1). 
k k-2 

By subtracting we get 

R(kn) - Ry-‘) = C;(lc)k( R(knll - Rp:;)) + ak( R& - R!“;1)) 

+ (C,‘“‘, - C,(Ic)kpl) R’,_-;) 

where by (2) 

C-C”‘, _ c(k) n~k_l = ( _yk+’ ;:I,-pixq~k. 
n k n k-l 

The first three starting values are easy to check and for Rg) - Rg-‘) again (2) is used. q 

From the above lemma we see that up to an additional correction term the values R(kn) - Rpp ‘) 
and ‘$“’ _ Sin-l) also satisfy a three-term recurrence relation. By means of this result we can 
write for the numerator of (7): 

RZI”‘S,‘C;” _ S(“)Rc,_-ll) 
n 

= (C,‘“‘R’,“I, + anR(,“_),)S,(“~‘) - ( C,cn)S,!!), + a,S,‘“‘,) Ryp-ll) 

= Co’“‘S,‘“;” [ R’,_-l’) + c;n-l)( R’,j2 - R(n_-;‘) 

+ a,_,( R’nJ3 - R(nn_;‘) + ( a,(“-‘)/bjnp’))R~I;)] 

_ C,‘“‘R’,“-l” [ s,‘b;” + cyq s,c?, - S,‘“,“) 

+ a,_,( s,c:), - qny) + (a~“~l)/b~~-l))S,(n;“] 

+a,( R(,?2S,‘“,1) - S,‘“‘2R’,_-l’)) 
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where 

R’,“_21’S,’ “‘T 1) _ $@‘l’)R’,“-l” = (-I)“-‘a, . . . a,_, 

because R(,:21)/S,(F; ‘) and R’,_pt’/S,‘!T; ‘) are consecutive convergents of the finite continued 
fraction 

n-1 

c,‘y+ c --L 

i=l 
c(i) 

n-l-i 

In this way 

C/Q,-L/Q,-, 
( c,(Nc,‘“-1’ + u,)( Ryj2 - RF_-;)) + C,(n4z_l( R',Y3 - R(nn-;)) 

= 
Q, 

P n-1 - 
QnQn-1 K q”‘q”-” + a,)( A?,:)2 - sp 1 + c,(%_l( $2, - s,(y)] 

+ (_1)-l a1 . . . a,-l cJ&I$ + a, 

QnQn-1 i 1 

(8) 

We remark that (8) reduces to (2) if the continued fraction (4) is not branched because then 
R(kk) = Rp) and Sjk) = Si”) for all n >, k. Consequently the classical Euler-Minding series will 
turn out to be a special case of the Euler-Minding series for branched continued fractions. 

Theorem. For n > 2 the convergent C,,,(n,n_l,,,,,l,Oj of the branched continued fraction (4) can be 

written us 

+ 2 (_1y+l al . . * ui-l 
i=2 QiQ,-1 i 

n u +c( I 

+ c(i)C{i’l))( Ril)2 - R$y;)) + CJi)~i_l(R!2, - RI?:)) 
0 

i=2 Qi 

n Pi_1 (a, + c(yc1(“))( sp2 - s,(y)) + co(i)ui_l( sp3 - qy)) 

- i?2 Qi-, Qi 

Proof. The result is obvious if we write 

and insert (8) for Pi/Qi - P,_l/Qi_l. 0 
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As a result of the previous theorem we can associate with the branched continued fraction (4) 

the series 

c,(O) + + + 5 
i=2 i 

(-I)‘+’ al . . ’ ‘i-1 
QiQi-1 i 

ai + CJi) “,i:_:: 
1 I 

+L 0 
a + c(i)c$i-I))( RI?, - Rik-2)) + CJi)ai_l( RI!, - Rjtt)) 

Qi 

of which the successive partial sums equal the successive convergents Cn,(n,n_l,,,,,l,Oj of (4). 
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