THE ε-ALGORITHM AND PADÉ-APPROXIMANTS IN OPERATOR THEORY*

ANNIE A. M. CUYT[†]

Abstract. The ε -algorithm of Wynn is closely related to the Padé-table of a univariate function in the following sense: if we apply the ε -algorithm to the partial sums of the power series $f(x) = \sum_{i=0}^{\infty} c_i x^i$ then $\varepsilon_{2m}^{(-m)}$ is the (l, m) Padé-approximant to f(x) where l is the degree of the numerator and m is the degree of the denominator [C. Brezinski, Algorithmes d'accélération de la convergence, Editions Technip, Paris, 1978, pp. 66-68]. In this paper we see that the Padé-approximants for nonlinear operators $F: X \to Y$, where X is a Banach space and Y a commutative Banach algebra, introduced in [Springer Lect. Notes in Math. 765, 1979, pp. 61-87], satisfy the same property as the univariate Padé-approximants.

1. Padé-approximants in operator theory. We briefly repeat the definition of Padé-approximants in operator theory and a determinental formula for their calculation. More details can be found in [3] and [4].

Let X be a Banach space and Y a commutative Banach algebra (0 denotes the unit for the addition and I the unit for the multiplication). Let $F: X \to Y$ be analytic in the open ball B(0,r) with centre $0 \in X$ and radius r > 0 [5, pp. 113]:

$$F(x) = \sum_{k=0}^{\infty} \frac{1}{k!} F^{(k)}(0) x^k \text{ for } ||x|| < r,$$

where $F^{(k)}(0)$ is the kth Fréchet-derivative of F in 0 and thus a symmetric k-linear bounded operator, and $(1/0!)F^{(0)}(0)x^0 = F(0)$.

DEFINITION 1.1. $F(x) = O(x^k)$ $(k \in \mathbb{N})$ if nonnegative constants r < 1 and K exist such that $||F(x)|| \le K ||x||^k$ for ||x|| < r.

Write $D(F) = \{x \in X | F(x) \text{ is regular in } Y, \text{ i.e. there exists } y \in Y: F(x) \cdot y = I = y \cdot F(x)\}$. We shall denote by y^{-1} the inverse element of y in Y for the multiplication in that Banach algebra.

DEFINITION 1.2. An abstract polynomial is a nonlinear operator $P: X \to Y$ with $P(x) = A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0$, where A_i is a symmetric *i*-linear bounded operator $(i=0,\cdots,n)$ [5, pp. 194].

DEFINITION 1.3. The couple of abstract polynomials

$$(P(x),Q(x)) = \left(\sum_{i=0}^{n} A_{nm+i} x^{nm+i}, \sum_{j=0}^{m} B_{nm+j} x^{nm+j}\right)$$

such that the abstract power series $(F \cdot Q \cdot P)(x) = O(x^{nm+n+m+1})$ is called a solution of the Padé-approximation problem of order (n,m). The choice of P(x) and Q(x), or in other words the translation of degrees in P and Q by $n \cdot m$, can be justified as follows [3]. Write $C_k x^k = (1/k!)F^{(k)}(0)x^k$.

The condition in Definition 1.3 is equivalent with (1a) and (1b):

(1a)

$$C_{0} \cdot B_{nm} x^{nm} = A_{nm} x^{nm} \qquad \forall x \in X,$$

$$C_{1} x \cdot B_{nm} x^{nm} + C_{0} \cdot B_{nm+1} x^{nm+1} = A_{nm+1} x^{nm+1} \qquad \forall x \in X,$$

$$\vdots$$

$$C_{n} x^{n} \cdot B_{nm} x^{nm} + \dots + C_{0} \cdot B_{nm+n} x^{nm+n} = A_{nm+n} x^{nm+n} \qquad \forall x \in X,$$

*Received by the editors December 10, 1981, and in revised form June 12, 1982.

[†]Aspirant N.F.W.O. (Belgium), University of Antwerp, Department of Mathematics, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

with $B_{nm+j}x^{nm+j} \equiv 0$ if j > m; $C_{n+1}x^{n+1} \cdot B_{nm}x^{nm} + \dots + C_{n+1-m}x^{n+1-m} \cdot B_{nm+m}x^{nm+m} = 0 \quad \forall x \in X,$ (1b) \vdots $C_{n+m}x^{n+m} \cdot B_{nm}x^{nm} + \dots + C_nx^n \cdot B_{nm+m}x^{nm+m} = 0 \quad \forall x \in X,$

with $C_k x^k \equiv 0$ if k < 0. A solution of (1b) can be computed by means of the following determinants in Y; these formulas are direct generalizations of the classical formulas for the solution of a homogeneous system of m equations in m+1 unknowns $B_{nm+j}x^{nm+j}$ $(j=0,\dots,m)$:

The nm-linear bounded operator

$$\begin{vmatrix} C_{n}x^{n} & \cdots & C_{n+1-m}x^{n+1-m} \\ C_{n+1}x^{n+1} & \cdots & C_{n+2-m}x^{n+2-m} \\ \vdots & & \vdots \\ C_{n-1+m}x^{n-1+m} & \cdots & C_{n}x^{n} \end{vmatrix} = B_{nm}x^{nm},$$

the (nm+j)-linear bounded operator

For every solution of (1b) a solution of (1a) can be calculated by substitution of the $B_{nm+j}x^{nm+j}$ $(j=0,\dots,m)$ in th \therefore eff thand side of (1a). So using the classical formulas for the solution of a homogeneous system of equations we get immediately the translation of degrees by $n \cdot m$ in P(x) and Q(x). As a result of these formulas we can also write down the following determinental formulas for P(x) and Q(x):

$$Q(x) = \begin{vmatrix} I & \cdots & I \\ C_{n+1}x^{n+1} & C_nx^n & \cdots & C_{n+1-m}x^{n+1-m} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n+m}x^{n+m} & C_{n+m-1}x^{n+m-1} & \cdots & C_nx^n \end{vmatrix}$$

where $F_i(x) = \sum_{k=0}^{i} C_k x^k$ and $F_i(x) \equiv 0$ for i < 0. We shall now see how the determinant representations of P(x) and Q(x) link this solution of the Padé-approximation problem of order (n,m) to the ε -algorithm.

2. The ε -algorithm. The ε -algorithm is a nonlinear algorithm due to Wynn [2, pp. 42]; input are the elements of a sequence $\{S_i | i=0, 1, \dots\}$. The following computations are performed:

$$\begin{aligned} \varepsilon_{0}^{(i)} &= 0, \quad i = 0, 1, \cdots, \\ \varepsilon_{0}^{(i)} &= S_{i}, \quad i = 0, 1, \cdots, \\ \varepsilon_{2j}^{(-j-1)} &= 0, \quad j = 0, 1, \cdots, \\ \varepsilon_{j+1}^{(i)} &= \varepsilon_{j-1}^{(i+1)} + \left[\varepsilon_{j}^{(i+1)} - \varepsilon_{j}^{(i)}\right]^{-1}, \quad j = 0, 1, \cdots, \quad i = -j, -j+1, \cdots. \end{aligned}$$

The $\varepsilon_i^{(i)}$ can be ordered in a table where (i) indicates a diagonal and j a column:

Let us now take $\{S_i | i=0, 1, \dots\} \subseteq Y$ and denote by $\Delta S_i = S_{i+1} - S_i$ and $\Delta^2 S_i = \Delta S_{i+1} - \Delta S_i$. Write

$$H_{j}(S_{i}) = \begin{vmatrix} S_{i} & \cdots & S_{i+j-1} \\ \vdots & & \vdots \\ S_{i+j-1} & \cdots & S_{i+2j-2} \end{vmatrix}.$$

We can prove the following property for the $\varepsilon_j^{(i)}$. The proof is very technical and similar to the proof in [2, pp. 44–46].

THEOREM 2.1. If $H_{i-1}(\Delta^2 S_{i+1})$ and $H_i(\Delta^2 S_i)$ are regular in Y, then

$$\epsilon_{2j}^{(i)} = \frac{\begin{vmatrix} S_{i+j} & \cdots & S_i \\ \Delta S_{i+j} & \cdots & \Delta S_{i+1} & \Delta S_i \\ \vdots & \ddots & \vdots & \vdots \\ \Delta S_{i+2j-1} & \cdots & \Delta S_{i+j} & \Delta S_{i+j-1} \end{vmatrix}}{\begin{vmatrix} I & \cdots & I \\ \Delta S_{i+j} & \cdots & \Delta S_i \\ \vdots & \vdots \\ \Delta S_{i+2j-1} & \cdots & \Delta S_{i+j-1} \end{vmatrix}},$$

and if $H_i(\Delta S_{i+1})$ and $H_{i+1}(\Delta S_i)$ are regular in Y, then

$$\boldsymbol{\varepsilon}_{2j+1}^{(i)} = \frac{\begin{vmatrix} I & \cdots & I \\ \Delta^2 S_{i+j} & \cdots & \Delta^2 S_i \\ \vdots & \vdots \\ \Delta^2 S_{i+2j-1} & \cdots & \Delta^2 S_{i+j-1} \end{vmatrix}}{\begin{vmatrix} \Delta S_{i+j} & \cdots & \Delta S_i \\ \Delta^2 S_{i+j} & \cdots & \Delta^2 S_i \\ \vdots & \vdots \\ \Delta^2 S_{i+2j-1} & \cdots & \Delta^2 S_{i+j-1} \end{vmatrix}}$$

with $S_i = 0$ for i < 0.

Of course we restrict ourselves to the case that the $\varepsilon_j^{(i)}$ are finite; since the ε -algorithm is a nonlinear algorithm, it can always happen that $\varepsilon_{j+1}^{(i)}$ does not exist (when $\varepsilon_j^{(i+1)} - \varepsilon_j^{(i)}$ is singular in Y). It is easy to see now that for $S_i = F_i(x)$, i.e., the partial sums of $F(x) = \sum_{k=0}^{\infty} C_k x^k$, we get

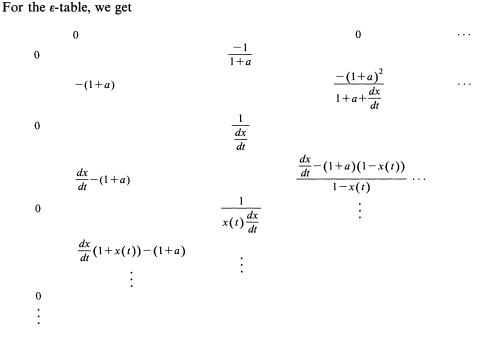
$$\varepsilon_{2m}^{(n-m)} = \frac{\begin{vmatrix} F_n(x) & \cdots & F_{n-m}(x) \\ C_{n+1}x^{n+1} & \cdots & C_{n-m+1}x^{n-m+1} \\ \vdots & \vdots \\ C_{n+m}x^{n+m} & \cdots & C_nx^n \end{vmatrix}}{\begin{vmatrix} I & \cdots & I \\ C_{n+1}x^{n+1} & \cdots & C_{n+1-m}x^{n+1-m} \\ \vdots & \vdots \\ C_{n+m}x^{n+m} & \cdots & C_nx^n \end{vmatrix}}$$

The numerator and denominator of $\varepsilon_{2m}^{(n-m)}$ are the determinental formulas for P(x) and Q(x), the solution of the Padé-approximation problem of order (n,m). Let us illustrate this by calculating part of the ε -table for the following nonlinear operator:

$$F: C'([1,T]) \to C([1,T])$$
$$: x(t) \to e^{x(t)} \frac{dx}{dt} - (1+a)$$

with a a small nonnegative number. The Taylor series expansion is

$$F(x) = \frac{dx}{dt} \sum_{k=0}^{\infty} \frac{1}{k!} [x(t)]^{k} - (1+a).$$



3. Applications in operator theory. Several types of nonlinear operator equations

F(x)=0

can be solved by means of Padé-approximants in operator theory; we mention for instance systems of nonlinear equations, initial value problems, boundary value problems, partial differential equations and nonlinear integral equations. The well-known Newton and Chebyshev iteration [7, pp.205] result respectively from the use of the solution of the Padé-approximation problem of order (1,0) and (2,0) [5], [6]. An interesting new iterative procedure of third order,

$$x_{i+1} = x_i + \frac{\left(-F_i'^{-1}F_i\right) \cdot \left(-F_i'^{-1}F_i\right)}{-F_i'^{-1}F_i + \frac{1}{2}F_i'^{-1}F_i'' \left(-F_i'^{-1}F_i\right)^2}$$

where

 $F_i = F(x_i)$, $F'_i = F'(x_i)$ a linear operator (1st Fréchet-derivative at x_i), $F''_i = F''(x_i)$ a bilinear operator (2nd Fréchet-derivative at x_i), the division is a multiplication by the inverse element of the denominator,

which we called the Halley iteration [5], [6], proves to be especially interesting in the neighbourhood of singularities because it is derived from the solution of the Padé-approximation problem of order (1, 1). If we use the ε -algorithm for the calculation of the

next iteration step in Halley's method, we have

$$\begin{aligned} \varepsilon_{0}^{(0)} &= x_{i}, \\ \varepsilon_{0}^{(1)} &= x_{i} - F_{i}^{\prime - 1}F_{i}, \\ \varepsilon_{0}^{(1)} &= x_{i} - F_{i}^{\prime - 1}F_{i}, \\ \varepsilon_{1}^{(1)} &= -2\left[F_{i}^{\prime - 1}F_{i}^{\prime\prime}\left(-F_{i}^{\prime - 1}F_{i}\right)^{2}\right]^{-1}, \\ \varepsilon_{0}^{(2)} &= x_{i} - F_{i}^{\prime - 1}F_{i} - \frac{1}{2}F_{i}^{\prime - 1}F_{i}^{\prime\prime}\left(-F_{i}^{\prime - 1}F_{i}\right)^{2}, \end{aligned}$$

For numerical examples and results we refer to [5], [6].

REFERENCES

- [1] C. BREZINSKI, Algorithmes d'accélération de la convergence, Editions Technip, Paris, 1978.
- [2] _____, Accélération de la convergence en analyse numérique, Lecture Notes in Mathematics 584, Springer, Berlin, 1977.
- [3] ANNIE CUYT, Abstract Padé Approximants in Operator Theory, Lecture Notes in Mathematics 765, Springer, Berlin, 1979, pp. 61–87.
- [4] _____, Regularity and normality of abstract Padé-approximants, J. Approx. Theory, 35 (1982), pp. 1-11.
- [5] ANNIE CUYT AND P. VAN DER CRUYSSEN, Abstract Padé-approximants for the solution of a system of nonlinear equations, Comput. Math. Appl., to appear.
- [6] ANNIE CUYT, Padé-approximants in operator theory for the solution of nonlinear differential and integral equations, Comput. Math. Appl., to appear.
- [7] L. RALL, Computational Solution of Nonlinear Operator Equations, John Wiley, New York, 1969, reprinted by Krieger, Huntington, New York, 1979.