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Abstract. 

The convergence of columns in the univariate qd-algorithm to reciprocals of polar singularities 
of  meromorphic functions has often proved to be very useful. A multivariate qd-algorithm was 
discovered in 1982 for the construction of the so-called homogeneous Pad6 approximants. 

In the first section we repeat the univariate convergence results. In the second section we sum- 
marize the "homogeneous" multivariate qd-algorithm. In the third section a multivariate conver- 
gence result is proved by combining results from the previous sections. This convergence result is 
compared with another theorem for the general order multivariate qdg-algorithm. The main dif- 
ference lies in the fact that the homogeneous form detects the polar singularities "pointwise" while 
the general form detects them "curvewise". 
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1. Convergence of the Univariate qd-Algorithm. 

Let the function f(z) be known by its formal series expansion 

oo 

( 1 )  f ( z )  .~- ~ ci  Z i .  

i=o 

The series expansion is taken around the origin only to simplify the notation. 
We set c~ = 0 for i < 0. For arbitrary integers n and for integers m -> 0 we 
define determinants 

n(~)  = 

Cn Cn+ 1 " " " Cn+ m -  1 

Cn+ 1 Cn+2 " " " Cn+m 

Cn+ m-- 1 Cn+ m " " " Cn+ 2m-- 2 

with H~") = 1. The series (1) is termed k-normal ifH~) ÷ 0 for m = 0, 1 , . . . ,  
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k and n -> 0. It is called ultimately k-normal i f  for every 0 -< m -< k there 
exists an n(m) such that HE ) ~ 0 for n > n(m). With (1) we can also define the 
qd-scheme where subscripts denote columns and superscripts downward slop- 
ing diagonals [5, p. 609]: 

(a) the start columns are given by 

e(o " ) = 0  n =  1 ,2  . . . .  

q(1 n) = Cn+l n = O, 1 . . . .  
Cn 

(b) and the rhombus  rules for continuation of  the scheme by 

e~) = q~+~) - q~) + e~+l ) m = 1, 2 . . . .  n = O, 1 , . . .  

e(n+ 1) 
q(mn)+ I = ~ m g / ( n +  1) e ~  ~ m = 1, 2 , . . .  n = 0, 1 . . . .  

THEOREM 1. Let (1) be the Taylor series at z = 0 o f  a function f meromorphic 
in the disk B(O, R)  = { z : [ z[ < R} and let the poles z, o f f  in B(O, R) be numbered 
such that 

z0 = 0 < Iz~l < - - I z 2 l - . . .  < R, 

each pole occurring as many times in the sequence {Zi}i,N as indicated by its 
order. I f  f is ultimately k-normal for some integer k > O, then the qd-scheme 
associated with f has the following properties (put zk+ 1 = c~ i f  f has only k poles): 

(a) Foreach m with 0 < m <- k a n d  Izm-ll < [Zml < [Zm+ll, 

(2) lim q~) = Zm 1. 

(b) For each m with 0 < m <- k and I z,, l < I z~+ ~ 1, 

(3) l im e~) = 0 
n--~oo 

PROOF. The proof  can be found in [5, pp. 612-613]. 

Any index m such that  the strict inequality 

lzml < lzm+lt 

holds, is called a critical index. It is clear that the critical indices of  a function 
do not depend on the order in which the poles o f  equal modulus  are numbered. 
The theorem above states that  i f  m is a critical index and f is ultimately 
m-normal,  then 

lim e~) = 0. 
n - . o o  
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Thus the qd-table of  a meromorphic function is divided into subtables by the 
e-columns tending to zero. If  a subtable contains j columns of  q-values, the 
presence of j  poles of  equal modulus is indicated. I f j  = I the q-column converges 
to the reciprocal of  the corresponding pole. In [5] it is also indicated how to 
determine the poles i f j  > 1. We omit summarizing all this as well because it 
will be clear at the end of  the paper how the multivariate results also apply to 
the "equal modulus" situation. 

From the above theorem the qd-scheme seems to be an ingenious tool for 
determining, under certain conditions, the poles of  a meromorphic function f 
directly from its Taylor series at the origin. Any q-column corresponding to a 
simple pole of  isolated modulus would be flanked by e-columns that tend to 
zero. If  f is rational, the last e-column is even theoretically equal to zero, as 
can be seen from the following theorem. The proof hereof is based on the next 
lemma [5, pp. 610-613]. 

LEMMA 1. Let f be given its formal  Taylor series expansion (1). I f  there exists 
a positive integer k such tha t f i s  k-normal, then the values q~) and e~y,) exist for 
m = 1 , . . . ,  k and n >- 0 and they are given by 

H(~ + I)I-~,~ )- I q~)= 
H~)/-/~_ + I) ' 

//(,~) 1 H(mn_+ p 
e~)= 

H~)H(,7+ ,) • 

THEOPa~M 2. Let (1) be the Taylor series at z = 0 o f  a rational function of  
degree n in the numerator and m < n in the denominator. Then i f  the series f 
is m-normal, 

e~ -"+h) = O, h > O. 

These convergence results are closely linked to the convergence theorem of  
de Montessus de Ballore for Pad6 approximants of  meromorphic functions. 
The reason is that the q- and e-values appear in the partial numerators and 
denominators of  the corresponding continued fraction 

i-1 I 1 " 

In order to prepare for a multivariate version we rewrite this continued frac- 
tion as 

f ( z )  = Co + 1 + 
iffit 

introducing 

(4a) Q}")(z) = ~.).z, E!.)(z) = e!').z, 
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with starting values 

(4b) 

(4c) 
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E~o")(z) = 0 n = 1, 2 . . . . .  

Q~")(z) = c"+'z"+l 
c ,z"  ' n = O ,  1 , . . . ,  

and the same continuation rules as above. 

2. The Homogeneous Multivariate qd-Algorithm. 

We restrict ourselves to the case of two variables because the generalization 
to functions of more variables is only notationally more difficult. Let f ( x ,  y) 
be given by its formal Taylor series expansion 

(5) f ( x ,  y) = ~_~ cox' U 
(i,j)~N 2 

with c 0 = 0 if < 0 or j < 0. This sum over index pairs in N 2 is rewritten as a 
sum over indices in N by grouping terms into homogeneous expressions: 

f (x, Y) = ~_~ ( ~_~ coxiY~). 
l eN  \ i + j = l  / 

The homogeneous multivariate qd-algorithm is then defined by: 

(6a) E~o")(x, y) = 0 n = 1, 2 . . . . .  

c,~iy j 
(6b) Q?)(x, y) = ,+j=,+l 

cisx'y i ' 
i+j=n 

E~(x, y ) =  Q~+l~(x, y) - Q~(x, y) + E~+p(x, y), 

(6c) m = 1, 2 , . . . ,  n = 0, 1 . . . . .  

E~+~)(x, y)Q~+l)(x, y) 
Q~)+,(x, y) = 

E~(x, y) 

m = 1, 2 , . . . ,  n = 0 ,  1 , . . . .  

If  we arrange the values Q~)(x, y) and E~)(x, y) as in the univariate case, where 
subscripts indicate columns and superscripts indicate downward sloping di- 
agonals, then the entire construction is very similar to the univariate refor- 
mulation (4). Diagonal homogeneous Pad6 approximants are now obtained 
from the continued fraction [2] 

) f(x,  y) = c® + ~ Q~)(x, Y)I + - e ? ( x ,  Y)I 
i=1 1 t 1 " 
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3. Convergence Results for Multivariate Meromorphic Functions. 

It was shown in [1, pp. 22-28] that problem (6) reduces to problem (4) on 
rays y = ~c. 

THEOREM 3. Let f (x ,  y) be given by its formal Taylor series expansion 

f (x ,  y) = ~ c , yy : ,  
(i,j)~N 

generating Q~)(x, y) and E~)(x, y) through (6 a-c), and let fx(x) be defined by 

generating Q~)(x) and/2~)(x) through (4 a-c) when used with c~ = ~i+j=t c~:XJ. 
Then for y = Xx, 

. . . .  - E i  (x, Y)I 2m --['~(n--m+l)(x Y)I .-4- 

Coo + ~ I 1 I 1 
i=l 

= COO @ ~2m I--Qi" ¢n--m+,)l (X)[ + I E~" +I)(X)[ , 
i=l 

n - m, m = 0, 1, . . . .  

This result implies that for n, m >- 1 

a ~ x ,  xx) = ~"~(x), 

with as in (4a) 

O.~)(x) = ~ . x ,  

E~>(x, Xx) = ~ ( x ) ,  

P~(x) = O~. x. 

This could also be proved directly, but  we want to indicate the link with the 
result by [1]. When we now want to use the homogeneous  qd-algorithm to 
detect the polar singularities o f  f(x,  y), we proceed as follows. 

THEOREM 4. Let (5) be the Taylor series at the origin of a function f(x, y) 
meromorphie in thepolydisc B(0, R) = {(x, y) :  [xl < R, [Yl < R}, meaning 
that there exists a polynomial q(x, y) such that (fq)(x, y) is holomorphic in B(O, 
R). Let for X ~ R the function fx(x) be defined by 

fx(x) = f(x,  xx), 

and let the poles z~ of fx in B(O, R) be numbered such that 

z 0 = 0 <  Iz, I-< I z z l - < . . . < R ,  

each pole occurring as many" times in the sequence {Zi}~EN as indicated by its 
order. Iffx is ultimately" k-normal for some integer k > O, then the homogeneous 
QD-scheme associated with f has the following properties (put zk+ ~ = oo if  fx has 
only k poles): 
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(a)For each m withO < m < - k a n d  ]Zm-l] < Iz,,,I < ]Zm+ll, 

lim Q~)(x, Xx) = zy, ~ "x. 
n ~ ¢ : o  

(b) For each m with O < m <- k and Iz,,l < Iz,,+~l, 

lim E~)(x, kx) = O. 
n ~ o o  

PROOF. For the proof we use Theorem 3 and apply the univariate qd-al- 
gorithm to the function fx(x) = f (x ,  kx). This univariate algorithm coincides 
with the homogeneous one on the ray y = ~x. By Theorem 1 it detects the 
poles of  fx, in other words the poles of  f ( x ,  y) on y = kx. Doing this for 
varying from - c ~  to +co, one can detect all the poles of  f (x ,  y) point by 
point. • 

How the parameter h affects the order in which the poles of  f (x ,  y) are 
detected pointwise (and not curvewise) can be learned from the numerical 
example given in the next section. 

In analogy with the univariate Pad6 approximation case [5, p. 610] it is also 
possible to give explicit determinant formulas for the multivariate Q- and 
E-values. We introduce the notation 

G(x, y) = ~_~ c~:x~U, l =  O, 1 , . . . ,  
i+j=l 

and the determinants 

y) = 

G(x ,  y) G + & c ,  y) --. y) 
y) y) . . .  y) 

C.+m-l(X, 3:) C.+m(X, 3:) ""  C~+2m-2(x, Y) 

The series (5) is termed k-normal if/-P~")(x, y) ~ 0 for m = 0, 1 , . . . ,  k and n 
- 0. It is called ultimately k-normal if  for every 0 <- m -< k there exists an 
n(m) such that/-/~)(x, y) ~ 0 for n > n(m). By means of  the determinant 
identities of  Sylvester and Schweins and using the continued fraction repre- 
sentation for homogeneous Pad6 approximants, we can prove the following 
lemma for k-normal multivariate series [2]. 

LEMMA 2. Let f (x ,  y) be given by its formal Taylor series expansion (5). I f  
there exists a positive integer k such that f ( x ,  y) is k-normal then the functions 
Q~)(x, y) and E~)(x, y) exist for m = 1 , . . . ,  k and n >- 0 and they are given by 

/~(n÷ I) ~T(n) 

Q~)(x, 3:) = (x, y), O(n) ~l(n+ 1) 
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/4"(n) /4(n+ 1) 
E~)(x ,  y )  = ~ tx, y ) . ' ' m d - l J t ~ t m - 1  " 

541 

Before proceeding to the next section we can complete the list of  results with 
the following multivariate analogue of Theorem 2. 

THEOREM 5. Let (5) be the Taylor series at the origin o f  a multivariate rational 
function of  homogeneous degree n in the numerator and m <- n in the denom- 
inator. Then i f  the series f (x ,  y) is m-normal, 

E~-m+h)(X, y) - O, h > O. 

PROOF. The proof is based on the consistency property of homogeneous 
Pad6 approximants which can be found in [3, p. 65] and which says that if  one 
computes the homogeneous multivariate Pad6 approximant rst(x, y) of degree 
s >- n in the numerator and t - m in the denominator for the rational function 
f (x ,  y), then one finds rs, = f The approximation method is consistent: it does 
not return another rational function than the one to be approximated. This 
implies that the homogeneous expression of degree t in the denominator of 
G(x, y) is zero for every s >- n and t > m. This expression is a factor of the 
homogeneous expression H~-t+E)(x, y) of degree s(t + 1). For t = m + 1 and s 
= n + h with h -> 0 this gives H~¥'~+h+~)(x, y) -- O. From Lemma 2 we know 
that this determinant appears in the numerator of E~-m+h)(x, y) with h > 0 
and hence the proof is completed. • 

4. Numerical Illustration and Comparison. 

In what follows we discuss functions f (x ,  y) which are meromorphic in a 
polydisc B(0, 0; R1, R2) = { ( x ,  y) : Ixl < R,, lY < R2}, meaning that there 
exists a polynomial 

D(x, y) -- Z dSy  
/=0 i+j-I 

of homogeneous degree m such that (fD)(x, y) is analytic in the polydisc above. 
Consider the meromorphic finction 

f (x ,  y) = exp(x + 2y) 
--5X 3 - -  x 2 y  - -  5 x y 2  - -  ya _ 5x 2 ..~ 8xy + 7y 2 + 40X -- 4y -- 30 

exp(x + 2y) 
= ( 5 - -  5 x - - y ) ( x  2+  2 x + y E - - 2 y - -  6)" 

Its polar singularities consist of a "straight line" through (0, 5) and (1, 0) and 
a "circle" with center ( - l ,  1) and radius 2X/2, see Figure 1. 

Let us explore several rays y = kx and apply Theorem 3. For X = 0 the poles 
are found in the following order: 
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• ,, , ~ " . ,,, 

:~ ' ' - ' 2  . . . .  ~ ' ' ~ ' 

Figure 1. Polar singularities of f(x,  y). 

lira Q{")(x, kx) = lim Q{")(x) = lx, 
n--~oo n ~ o o  

lim Q(2")(x, ),x) = lim Q(2")(x) = ( - 1  + x/7)-~x, 

lim ~3r~t")t~'~, xx) = lim ~")(x) = ( - 1  - x/7)-~x. 
n ~ o o  n----~oo 

An approximation for the poles on y = 0 is then given by the three points 

(1, 0), ( - 1  + V ~ ,  0 ) ,  ( - 1  - V ~ ,  0 ) ,  

the first one coming from the line, the second one being the intersection point  
o f  the x-axis with the circle closest to the origin and the third one being the 
other intersection point  o f  the circle with the x-axis. For ~, = - 1 the application 
o f  Theorem 3 and Theorem 1 gives: 

lim Q{")(x, 
n ~ o o  

lim Q(2")(x, 
n ~ o o  

lim Q(3")(x, 
n ~ o o  

An approximation 

~¢) = lim Q(~")(x)= lx, 
n ~ o o  

kx) = lim Q(2")(x) = (~)-lx, 
n---~oo 

Xx) = lim Q(3")(x) = -(3)-~x.  
n ~ o o  

of  the poles on y = - x  is then given by the three points 

( 1 ,  - 1 ) ,  (~, -~ ) ,  ( - 3 ,  3 ) ,  
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.'z 1 

Figure 2a, b, c. 

-° 

I S 
Poles found from the first, second and third Q-columns. 

the first pole coming f rom the circle, the second one f rom the line and  the third 
one being the other  point  on the circle fur ther  away f rom the origin. 

Figures 2a, 2b, and  2c depict  respect ively all the poles found f rom the first, 
second and third Q-columns,  "a l l "  mean ing  that  we scanned the rays y = Xx 
for  ~, = - ~  -- ,  + ~ .  One  can see tha t  af ter  each column,  parts  o f  the line and  
the circle are discovered.  Howeve r  the "straight  l ine" and  the "ci rc le"  are not  
recaptured as separate entities. We also pr int  the Q]24)(x, y)-function that  has 
been used to construct  Figure 2a. The  functions Qtz22)(x, y) and c~(2°)tx, ~3 , y) are 
s imilar  but  longer expressions and  are therefore omit ted.  All computa t ions  
were pe r fo rmed  in exact  rat ional  a r i thmet ic  using Mathemat ica .  No te  that  the 
Q-funct ions projected on the rays have  the fo rm ~Q,)x. I f  we denote  the pro-  
ject ions  o f  Q~24), Q(22) and  Q(32°) on y = kx  respectively by  q]24)(~k)X, q(E22)(~k)X and 
q~2°)(X)x, then the location of  the poles is indicated by  

([q126-z°(X)] -~, X[~26-z°(X)] -~) i = 1, 2, 3 

1.x 2s + 5.867xZ4y + 17.32xZ3y 2 + 33.49xZZy 3 + 47.49xZly 4 
+ 52.3xE°y 5 + 46.Sx~gy 6 + 34.11xlSy 7 + 21.1x~Ty s 

+ 11.06x16y 9 + 5.04xlSy ~° + 1.943x~4y n + 0.6869x13y ~ 
+ 0.1865x12y 13 + 0 .06081xl ly  14 + 0.006405xl°y 15 

~- 0 .005508X9y 16 -- 0 .001171xSy  17 + 0.0007941x7y Is 
- 0.0002851x6y~9 + 0.0001043x~y 2° - O.O0003069x4y2~ 
+ 7.565" 10-6x3y 22 -- 1.439" 10-6x2y z3 + 1.923-10-Txy 24 

-- 1.382" 10-8y 25 
Q74)(x, y) = 

1.x 24 + 5.667xE3y + 16.18X22yz+ 30.25xZly 3 + 41.44X2°y 4 
+ 44.01xlgy 5 + 37.69xlSy 6 + 26.57xlVy 7 + 15.79x16y 8 
+ 7.911xlSy 9 + 3.452xl4y l° + 1.25913y ~l + 0 . 429xny  12 

+ 0 .106xl ly  13 + 0.03554xl°y 14 + 0.002156xgy 15 
+ 0.00327xSy 16 - 0.0008024x7y~7 + 0.0004399x6y ~8 

- 0.0001453xSy 19 + 0.00004598x4y 2° - 0.00001144x3y 21 
+ 2.249" 10-6x2y 22 - 3.076" 10-Txy 23 + 2.277" 10-Sy 24 

1. + 5.867X + 17.32X 2 + 33.49X 3 + 47.49X 4 + 52.3~ 5 
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e 

. . . . . . . . . . . . . .  i )  . . . .  

Estimation of all the poles of f(x, y). Figure 3. 

Q~224)(x, Lv) = x 

+ 46.5X 6 + 34.11~ 7 + 21.1~, s + l l . 0 6 X  9 + 5.04X 1o 

+ 1 .943~"  + 0.6869~d 2 + 0 .1865~ 13 + 0.06081X 14 

+ 0 .006405~  15 + 0.005508~d 6 + 0 .1865~ 13 + 0 .06081~  14 

+ 0 .006405X ~s + 0 .005508~  ~6 -- 0 . 0 0 1 1 7 1 ~  ~7 
+ 0 .0007941X 18 -- 0 .0002851X 19 + 0.0001043X 2° 

+ ( 1 0 - 5 ) ( - 3 . 0 6 9 X  2~ + 0 .7565h  22 - 0.1439X23 
+ 0 .01923~  24 - 0.001382h2s) 

1. + 5.667~ + 16.18X 2 + 30.25X 3 + 41.44X 4 + 44.01~ 5 

+ 37.69~ 6 + 26.57X 7 + 15.79~ s + 7 .911~ 9 + 3.452~ ~o 

+ 1.259~ 11 + 0 .429~ t2 + 0 .106~ 13 + 0 .03554~  14 

+ 0 . 0 0 2 1 5 6 h  ~5 + 0 .00327h  ~6 - 0.0008024~17 

+ 0 .0004399X ~s - 0 .0001453X 19 + 0 .00004598X 2° 
+ (10) -5( -1 .144X 2~ + 0.2249X 22 - 0.03076X23 + 0 .002277~ 24) 

= q ? " ) ( x ) x .  

I f  we c o m p a r e  this  c o n v e r g e n c e  resul t  to  the  one  desc r ibed  in  [4] for  a genera l  

o r d e r  m u l t i v a r i a t e  qdg-algorithm, we see tha t  t he re  the  a l g o r i t h m  first d i s c o v e r s  

the  l ines  as a po la r  fac tor  and  t h e n  the  circle  as a po l a r  factor .  T h e s e  fac tors  



THE MULTIVARIATE "HOMOGENEOUS" QD-ALGORITHM 545 

are identified as separate objects. The price one has to pay for this elegance is 
that the algorithm must be programmed in order to deal with algebraic ex- 
pressions instead of with numeric data. The homogeneous qd-algorithm deliv- 
ers the poles point by point (numeric output) while the general order qdg- 
algorithm delivers the poles as algebraic curves (formula output). This means 
that the general order qdg-algorithm is considerably slower than the homoge- 
neous qd-algorithm when used for pole detection. However, its reply is con- 
siderably more accurate. Combining the figures above into one global picture 
results in the estimation of all the poles of f(x, y) shown in Figure 3. 
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