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A CLASS OF ADAPTIVE MULTIVARIATE
NONLINEAR ITERATIVE METHODS

ANNIE CUYT

ABSTRACT. Multivariate iterative procedures, based on
the use of multivariate rational Hermite interpolants, are in-
troduced for the solution of systems of nonlinear equations. To
this end, the most recent iteration points are used as interpo-
lation points. Coalescent interpolation points are obtained by
repeating the same iteration point a number of times.

This new type of iterative procedure can be completely
adapted to the cost of evaluating and/or differentiating the
nonlinear equations in the system. Section 1 deals with the
univariate case and repeats both one-point and multipoint it-
erative procedures resulting from the use of approximating
rational functions. Section 2 generalizes the multipoint itera-
tions to the multivariate case while Section 3 generalizes the
one-point iterations.

1. Nonlinear methods for the solution of systems of nonlin-
ear equations. Suppose we want to find a root x∗ of the nonlinear
equation

f(x) = 0,

where the univariate function f may be real- or complex-valued. If
f is replaced by a local approximation, then a zero of that local
approximation can be considered as an approximation for x∗. Methods
based on this reasoning are called direct methods. One could also
consider the inverse function g of f in a neighborhood of 0, if it exists,
and replace g by a local approximation. Then an evaluation of this
local approximation at 0 can be considered as an approximation for x∗

since
g(0) = x∗.

Methods using this technique are called inverse methods. We now
look at some univariate nonlinear direct and inverse methods that will
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172 A. CUYT

inspire us. Let x(i) be an approximation for the root x∗ of f , and let

(1a) ri(x) =
pi

qi
(x)

be the Padé approximant of order (n, m) for f in x(i). Then the next
approximation x(i+1) is calculated such that

(1b) pi(x(i+1)) = 0.

In case pi(x) is linear (n = 1), the value x(i+1) is uniquely determined.
It is clear that this is to be preferred for the sake of simplicity. A well-
known method obtained in this way is Newton’s method (n = 1, m =
0). Another famous method is Halley’s method, based on the use of
the Padé approximant of order (1,1) for f at x(i), which is given by

(2) x(i+1) = x(i) − f(x(i))/f ′(x(i))

1 − 1
2f ′′(x(i)) f(x(i))

f ′(x(i))2

.

Since these iterative procedures only use information in the point x(i)

to calculate the next iteration point x(i+1), they are called one-point
methods. Examples exist where methods based on the use of (n, m)
Padé approximants with m > 0 give better results than linear methods
if the function f has singularities. The nonlinear methods may even
converge while the linear methods diverge. The reasoning in (1) can
be generalized by using rational Hermite interpolants instead of Padé
approximants as local approximations for f(x). Let

ri(x) =
pi

qi
(x),

with pi and qi of degrees n and m, be such that, in approximations
x(i), . . . , x(i−s) for the root x∗ of f ,

(3a)

r
(l)
i (x(i)) = f (l)(x(i)), l = 0, . . . , l0 − 1

r
(l)
i (x(i−1)) = f (l)(x(i−1)), l = 0, . . . , l1 − 1,

...

r
(l)
i (x(i−s)) = f (l)(x(i−s)), l = 0, . . . , ls − 1,
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with n + m + 1 = l0 + · · · + ls. Then the next iteration point x(i+1) is
computed such that

(3b) pi(x(i+1)) = 0.

For the calculation of x(i+1), we now use information in more than
one previous point. Hence, such methods are called multipoint. If we
take n = 1, m = 1, s = 2 and l0 = l1 = l2 = 1, then x(i+1) is given by
(4)

x(i+1) = x(i) − f(x(i))[f(x(i−1)) − f(x(i−2))]

f(x(i−1)) f(x(i−2))−f(x(i))
x(i−2)−x(i) − f(x(i−2)) f(x(i−1))−f(x(i))

x(i−1)−x(i)

.

Take n = 1, m = 1, s = 1 and l0 = 2, l1 = 1. Then x(i+1) is given by

(5) x(i+1) = x(i) +
f(x(i))(x(i) − x(i−1))

f(x(i−1))f ′(x(i)) x(i)−x(i−1)

f(x(i))−f(x(i−1))
− f(x(i))

.

The case n = 1, m = 0, s = 1 and l0 = l1 = 1 reduces to the
secant method. The case n = 1, m = 1, s = 0, l0 = 3 reduces to
Halley’s method because the rational Hermite interpolant is then a
Padé approximant. The rational function satisfying (3) can also be
obtained by reformulating the rational Hermite interpolation problem
as a Newton-Padé approximation problem. Let us introduce the
interpolation points zl by repeating the approximations x(i), . . . , x(i−s)

for the root x∗ of f as many times as they are used:

z0 = · · · = zl0−1 = x(i)

zl0 = · · · = zl0+l1−1 = x(i−1)

...

zl0+···+ls−1 = · · · = zl0+···+ls−1 = x(i−s).

Then
ri(x) =

pi

qi
(x),

with pi and qi of degrees n and m, is computed such that the first
n + m + 1 divided differences,
(6a)

(fq − p)[z0, . . . , zl]

=(fq − p)[x(i), . . . , x(i)︸ ︷︷ ︸, x(i−1), . . . , x(i−1)︸ ︷︷ ︸, . . . ] = 0, l = 0, . . . , n + m,

l0 times l1 times
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in the formal Newton series representation of (fq − p) disappear, in
other words,

(fq − p)(x) =
∞∑

l=n+m+1

(fq − p)[z0, . . . , zl]Bl(x)

where
Bl(x) = (x − z0) . . . (x − zl−1), B0(x) = 1.

It is explained in [2] and [6] how one computes these divided differ-
ences if some of the interpolation points coincide. The order of conver-
gence of methods based on the use of (2) and (3) can be calculated as
follows [10].

Theorem . If the sequence (x(i))i∈N converges to a simple root x∗

of f and f (n+m+1)(x) with m > 0 continuous in a neighborhood of x∗

with∣∣∣∣∣∣∣∣∣∣

f (n)(x∗) f (n−1)(x∗) . . . f (n−m+1)(x∗)

f (n+1)(x∗)
...

... f (n−1)(x∗)
f (n+m−1)(x∗) . . . f (n+1)(x∗) f (n)(x∗)

∣∣∣∣∣∣∣∣∣∣
�= 0,

where f (l)(x∗) = 0 if l < 0, then the order of the iterative method based
on the use of (3) is the unique positive root of the polynomials

xs+1 − l0x
s − l1x

s−1 − · · · − ls = 0.

By means of the multivariate rational Hermite interpolants intro-
duced in [6], the formulas (2), (4) and (5) will now be generalized for
the solution of systems of nonlinear equations

⎧⎪⎨
⎪⎩

f1(x1, . . . , xk) = 0
...

fk(x1, . . . , xk) = 0.
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We can now refer the reader to [4] for a third order multivariate
generalization of Halley’s iteration. This generalization is not yet
adaptive to the informational usage of the functions fj , j = 1, . . . , k,
but it can be altered to be so by following the reasoning presented in
the next sections. Let us first discuss “why” it is necessary that such
adaptive techniques exist. First of all, available information about
the system of nonlinear equations is not always the same. One may
know some partial derivatives or function values, at one or more points.
Secondly, some function evaluations may be much more difficult or time
consuming than others. Some nonlinear functions depend on some
of the variables in a more complex way than on the other variables.
We shall introduce here a very flexible multivariate generalization that
allows the construction of tailor-made iterative procedures.

2. Methods based on the use of multivariate general order
rational Hermite interpolants. Let (x(0)

1 , . . . , x
(0)
k ), (x(1)

1 , . . . , x
(1)
k ),

(x(2)
1 , . . . , x

(2)
k ), . . . be given in the k-dimensional space Ck, and let the

k-variate function f(x1, . . . , xk) be known at the points (x(i1)
1 , . . . , x

(ik)
k )

with (i1, . . . , ik) ∈ I ⊂ Nk, where I satisfies the inclusion property,
meaning that when (i1, . . . , ik) ∈ I, then (l1, . . . , lk) ∈ I for lj ≤ ij

with j = 1, . . . , k. We denote fi1...ik
= f(x(i1)

1 , . . . , x
(ik)
k ). We know

from [6] how to deal with coalescent interpolation points or coalescent
coordinates of interpolation points. In the next section we shall
especially focus on coalescent interpolation points. In this section we
shall develop the formulas that remain valid both for coalescent and
noncoalescent situations. Consider the following set of basis functions
for the real-valued polynomials in several variables:

Bl1...lk(x1, . . . , xk)

=
[
(x1 − x

(0)
1 ) . . . (x1 − x

(l1−1)
1 )

]
. . .

[
(xk − x

(0)
k ) . . . (xk − x

(lk−1)
k )

]
,

with B0···0(x1, . . . , xk) = 1. With our data and these basis functions,
we can now formally write a Newton interpolating series for f ,

f(x1, . . . , xk) =
∑

(l1,...,lk)∈Nk

c0l1,...,0lkBl1...lk(x1, . . . , xk),

where cs1l1,...,sklk = f [x(s1)
1 , . . . , x

(l1)
1 ] . . . [x(sk)

k , . . . , x
(lk)
k ] is a multivari-

ate divided difference with possible coalescence of points [6]. The value



176 A. CUYT

cs1l1,...,sklk = 0 if, for some j = 1, . . . , k, we have sj > lj . Let us choose
two subsets N and D of Nk, such that

N ⊂ I

#I = #N + #D − 1,

and construct a rational interpolant to f(x1, . . . , xk) as follows:

p(x1, . . . , xk) =
∑

(l1,...,lk)∈N

al1...lkBl1...lk(x1, . . . , xk)

(N from “numerator,” #N = n + 1)

q(x1, . . . , xk) =
∑

(l1,...,lk)∈D

bl1...lkBl1...lk(x1, . . . , xk)

(D from “denominator,” #D = m + 1)

(fq − p)(x1, . . . , xk) =
∑

(l1,...,lk)∈Nk\I

d0l1,...,0lkBl1...lk(x1, . . . , xk)

(I from “interpolation conditions”).

This last condition means that

(6a) (fq − p)[x(0)
1 , . . . , x

(l1)
1 ] . . . [x(0)

k , . . . , x
(lk)
k ] = 0, (l1, . . . , lk) ∈ I,

where

(fq)[x(0)
1 , . . . , x

(l1)
1 ] · · · [x(0)

k , . . . , x
(lk)
k ]

=
l1∑

j1=0

· · ·
lk∑

jk=0

f [x(0)
1 , . . . , x

(j1)
1 ] · · · [x(0)

k , . . . , x
(jk)
k ]

× q[x(j1)
1 , . . . , x

(l1)
1 ] · · · [x(jk)

k , . . . , x
(lk)
k ],

p[x(0)
1 , . . . , x

(l1)
1 ] · · · [x(0)

k , . . . , x
(lk)
k ] = al1,...,lk , (l1, . . . , lk) ∈ N,

p[x(0)
1 , . . . , x

(l1)
1 ] · · · [x(0)

k , . . . , x
(lk)
k ] = 0, (l1, . . . , lk) ∈ I\N,

q[x(0)
1 , . . . , x

(l1)
1 ] · · · [x(0)

k , . . . , x
(lk)
k ] = bl1,...,lk , (l1, . . . , lk) ∈ D,

q[x(0)
1 , . . . , x

(l1)
1 ] · · · [x(0)

k , . . . , x
(lk)
k ] = 0, (l1, . . . , lk) ∈ I\D.

We have proved in [6] that, when the rank of the homogeneous system
(6b) involving the denominator coefficients bl1...lk is maximal in other
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words, if, from I\N , no homogeneous equations have to be deleted
before applying Cramer’s rule to construct a solution then an explicit
determinant formula for this rational interpolant is given by

(7)
p(x1, . . . , xk)
q(x1, . . . , xk)

=∣∣∣∣∣∣∣∣∣∣∣

∑
(l1,...,lk)∈N

c
d
(0)
1 l1,...,d

(0)
k

lk
Bl1...lk . . .

∑
(l1,...,lk)∈N

c
d
(m)
1 l1,...,d

(m)
k

lk
Bl1...lk

c
d
(0)
1 h

(1)
1 ,...,d

(0)
k

h
(1)
k

. . . c
d
(m)
1 h

(1)
1 ,...,d

(m)
k

h
(1)
k

...
...

c
d
(0)
1 h

(m)
1 ,...,d

(0)
k

h
(m)
k

. . . c
d
(m)
1 h

(m)
1 ,...,d

(m)
k

h
(m)
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B
d
(0)
1 ...d

(0)
k

. . . B
d
(m)
1 ...d

(m)
k

c
d
(0)
1 h

(1)
1 ,...,d

(0)
k

h
(1)
k

. . . c
d
(m)
1 h

(1)
1 ,...,d

(m)
k

h
(1)
k

...
...

c
d
(0)
1 h

(m)
1 ,...,d

(0)
k

h
(m)
k

. . . c
d
(m)
1 h

(m)
1 ,...,d

(m)
k

h
(m)
k

∣∣∣∣∣∣∣∣∣∣
where the points in D are denoted by

(d (0)
1 , . . . , d

(0)
k ), . . . , (d (m)

1 , . . . , d
(m)
k )

and those in I\N by

(h(1)
1 , . . . , h

(1)
k ), . . . , (h(m)

1 , . . . , h
(m)
k ).

In order to generalize (4) we shall, for each of the multivariate
functions fj(x1, . . . , xk) with j = 1, . . . , k, choose N and D such
that p(x1, . . . , xk) and q(x1, . . . , xk) are linear expressions and use
information in the last three iteration points

(x(i)
1 , . . . , x

(i)
k ), (x(i−1)

1 , . . . , x
(i−1)
k ), (x(i−2)

1 , . . . , x
(i−2)
k ).

Take

D = N = {(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}⊂ Nk,

I = N ∪ {(2, 0, . . . , 0), (0, 2, 0, . . . , 0), . . . , (0, . . . , 0, 2)} ⊂ Nk.
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This interpolation set I expresses interpolation conditions in the points(
x

(i)
1 , . . . , x

(i)
k

)
,
(
x

(i−1)
1 , x

(i)
2 , . . . , x

(i)
k

)
, . . . ,

(
x

(i)
1 , . . . , x

(i)
k−1, x

(i−1)
k

)
,(

x
(i−2)
1 , x

(i)
2 , . . . , x

(i)
k

)
, . . . ,

(
x

(i)
1 , . . . , x

(i)
k−1, x

(i−2)
k

)
,

as will become clearer further on. We remark that this set of (2k + 1)
interpolation points is constructed from only three successive iteration
points. The numerator of
(8a)

ri,j(x1, . . . , xk) =
pi,j

qi,j
(x1, . . . , xk)

=
a0,...,0 +

k∑
l=1

a0,...,1,...,0(xl − x
(i)
l )

b0,...,0 +
k∑

l=1

b0,...,1,...,0(xl − x
(i)
l )

, j = 1, . . . , k,

satisfying

(fjqi,j − pi,j)(x1, . . . , xk) =
∑

(l1,...,lk)∈Nk\I

d0l1,...,0lkBl1...lk(x1, . . . , xk),

where

Bl1...lk(x1, . . . , xk) =
l1−1∑
l=0

(x1 − x
(i−l)
1 ) · · ·

lk−1∏
l=0

(xk − x
(i−l)
k )

is then given by

(8b) pi,j(x1, . . . , xk) =∣∣∣∣∣∣∣∣∣
N(x1, . . . , xk) c11,00,...,00(x1 − x

(i)
1 ) . . . c00,...,00,11(xk − x

(i)
k )

c02,00,...,00 c12,00,...,00 . . . 0
...

. . .
c00,...,00,02 0 . . . c00,...,00,12

∣∣∣∣∣∣∣∣∣
,

where N(x1, . . . , xk) = c00,...,00 +
k∑

l=1

c00,...,01,...,00(xl − x
(i)
l ).
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The values cs1l1,...,sklk are multivariate divided differences of
fj(x1, . . . , xk) with possible coalescence of points. Coalescent inter-
polation points (or coordinates) can be obtained by using the same
iteration point (or coordinates) again. We remark that (5b) is only
valid if the set I\N provides a system of linearly independent equa-
tions. The next iteration point

(x(i+1)
1 , . . . , x

(i+1)
k ) is constructed such that

(8c)

⎧⎪⎪⎨
⎪⎪⎩

pi,1(x
(i+1)
1 , . . . , x

(i+1)
k ) = 0,

...
pi,k(x(i+1)

1 , . . . , x
(i+1)
k ) = 0.

Thanks to the choice of N , (8c) is a linear system of equations. It
must be clear, however, that a whole variety of choices for the sets N, D
and I is possible, depending on which multivariate divided differences
can be computed for use in the determinant representation (7). Some
function evaluations may be much more difficult or time consuming
than others. Some nonlinear functions depend on some of the variables
in a more complex way than on the other variables. Let us illustrate
all this by the following. Suppose fj depends on the variable x2 in
a very complex way, and it is costly to compute divided differences
like c00,12,00...,00. To avoid this, we can remove the point (0, 2, 0, . . . , 0)
from I\N and, for instance, replace it by (3, 0, . . . , 0). Then, in (7),
the numerator pi,j becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣

N(x1,...,xk) ... c11,00,...,00(x1−x
(i)
l

)

c02,00,...,00 c12,00,...,00 0 ... 0

c03,00,...,00 c13,00,...,00 0 ... 0

c00,00,02,00,...,00 0 0 c00,00,12,00,...,00 0

...
. . .

c00,...,00,02 0 c00,...,00,12

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where N(x1, . . . , xk) = c00,...,00 +
k∑

l=1

c00,...,01,...,00(xl − x
(i)
l ).
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Of course, one must also take into account that some functions and
some variables play a more important role than others, but we only
want to illustrate the flexibility and adaptability of the new method.
An advantage of iterative procedures that only use function evaluations
is that no derivatives must be supplied, although, nowadays automatic
differentiation takes away much of the laborious work. Let us now
write down an explicit formula for the iterative procedure resulting from

(8b c). As mentioned, the correction (x(i+1)
1 −x

(i)
1 , . . . , x

(i+1)
k −x

(i)
k ) is

computed from a linear system of equations. From (8b) one can easily
see that ⎛

⎜⎝ x
(i+1)
1 − x

(i)
1

...
x

(i+1)
k − x

(i)
k

⎞
⎟⎠ = −P−1

⎛
⎜⎝ f1(x

(i)
1 , . . . , x

(i)
k )

...
fk(x(i)

1 , . . . , x
(i)
k )

⎞
⎟⎠

with P = (Pjl)1≤j≤k,1≤l≤k, where

Pjl = fj [x
(i)
1 ] · · · [x(i)

l−1][x
(i)
l , x

(i−1)
l ][x(i)

l+1] · · · [x(i)
k ]

− fj(x
(i)
1 , . . . , x

(i)
l−1, x

(i−1)
l , x

(i)
l+1, . . . , x

(i)
k )

· fj [x
(i)
1 ] · · · [x(i)

l−1][x
(i)
l , x

(i−1)
l , x

(i−2)
l ][x(i)

l+1] · · · [x(i)
k ]

fj [x
(i)
1 ] · · · [x(i)

l−1][x
(i−1)
l , x

(i−2)
l ][x(i)

l+1] · · · [x(i)
k ]

.

If we rewrite the univariate iteration (4) using divided differences, we
get

x(i+1) − x(i) = f [x(i), x(i−1)] − f(x(i−1))
f [x(i), x(i−1), x(i−2)]

f [x(i−1), x(i−2)]
.

Clearly, for k = 1 and without coalescence of points, procedure (8)
coincides with the univariate iterative method (4). With k = 2 and
without coalescence of points, we obtain a bivariate generalization of
(4). Techniques where coalescent interpolation points are used are
treated in the next section.

3. Methods based on the use of multivariate general order
Padé approximants. In [3] we described that many previously intro-
duced multivariate Padé approximants can, within this framework, be
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considered as multivariate general order rational Hermite interpolants
by letting all interpolation points coincide. So we continue our con-
struction of new nonlinear methods. For a multivariate generalization
of Halley’s method as given in [4], all first and all second partial deriva-
tives of the functions fj(x1, . . . , xk), j = 1, . . . , k, must be known. This
may be a drawback. A completely different situation is encountered in
formula (8). If none of the interpolation points and coordinates coin-
cide, this iterative procedure uses only function evaluations. One can
also construct iterative methods based on the use of rational Hermite in-
terpolants where only some of the interpolation points (or coordinates)
coincide. Let us now focus on a new generalization of Halley’s method
that needs only some specified partial derivatives as introduced here.
Suppose a limited number of partial derivatives of the fj(x1, . . . , xk)
are given or easily computed. Then from this information the sets N, D
and I can be chosen so that precisely these pieces of information are
used. Consider, for instance, the situation where, for each of the func-
tions fj(x1, . . . , xk), the following information is given (there are no
mixed second partial derivatives):

fj(x
(i)
1 , . . . , x

(i)
k ), j = 1, . . . , k,

∂fj

∂x1
(x(i)

1 , . . . , x
(i)
k ), . . . ,

∂fj

∂xk
(x(i)

1 , . . . , x
(i)
k ), j = 1, . . . , k,

∂2fj

∂x2
1

(x(i)
1 , . . . , x

(i)
k ), . . . ,

∂2fj

∂x2
k

(x(i)
1 , . . . , x

(i)
k ), j = 1, . . . , k.

With the same sets N, D and I as in the previous section,

D = N = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)},
I\N = {(2, 0, . . . , 0), . . . , (0, . . . , 0, 2)},

but now, with all the interpolation points coinciding, this is precisely
the informational usage of the iterative procedure (9), as shown below.
The numerator of

ri,j(x1, . . . , xk) =
pi,j

qi,j
(x1, . . . , xk)

=

∑
(l1,...,lk)∈N

al1...lk(x1 − x
(i)
1 )l1 . . . (xk − x

(i)
k )lk

∑
(l1,...,lk)∈D

bl1...lk(x1 − x
(i)
1 )l1 . . . (xk − x

(i)
k )lk

,
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satisfying

(9a) (fjqi,j − pi,j)(x1, . . . , xk) =∑
(l1,...,lk)∈Nk\I

dl1...lk(x1 − x
(i)
1 )l1 . . . (xk − x

(i)
k )lk ,

is given by

(9b) pi,j(x1, . . . , xk) =∣∣∣∣∣∣∣∣∣∣∣∣∣

fj(x
(i)) +

k∑
l=1

∂fj

∂xl
(xl − x

(i)
l

) fj(x
(i))(x1 − x

(i)
1 ) . . . fj(x

(i))(xk − x
(i)
k

)

1
2

∂2fj

∂x2
1

(x
(i)
1 , . . . , x

(i)
k

)
∂fj

∂x1
(x

(i)
1 , . . . , x

(i)
k

) 0

..

.
. . .

1
2

∂2fj

∂x2
k

(x
(i)
1 , . . . , x

(i)
k

) 0
∂fj

∂xk
(x

(i)
1 , . . . , x

(i)
k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We have, of course, assumed that the set I\N provided a system of
linearly independent equations. As in the previous section, the next
iteration point is constructed such that

(9c)

⎧⎪⎪⎨
⎪⎪⎩

pi,1(x
(i+1)
1 , . . . , x

(i+1)
k ) = 0,

...

pi,k(x(i+1)
1 , . . . , x

(i+1)
k ) = 0.

If we give an explicit formula for this iterative procedure, we find that

⎛
⎜⎝ x

(i+1)
1 − x

(i)
1

...
x

(i+1)
k − x

(i)
k

⎞
⎟⎠ = −P−1

⎛
⎜⎝ f1(x

(i)
1 , . . . , x

(i)
k )

...
fk(x(i)

1 , . . . , x
(i)
k

⎞
⎟⎠

with P = (Pjl)1≤j≤k,1≤l≤k, where

Pjl =
(

∂fj

∂xl
− 1

2
fj

∂2fj

∂x2
l

/
∂fj

∂xl

)
|(x1,...,xk)=(x

(i)
1 ,...,x

(i)
k

)

.

Clearly, (9b c) is a multivariate generalization of Halley’s method
(2). Finally, we emphasize once more that this section covers iterative
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procedures adapted to the cost of evaluating and differentiating the
nonlinear equations in the system. By varying the set I, more multi-
variate “Halley-like” procedures can be derived, as must be clear from
the foregoing. In the same way as we obtained (9), we can also set up
nonlinear methods based on the use of Canterbury approximants [1],
Karlsson and Wallin approximants [7], Lutterodt approximants [8] and
all types of multivariate general order Padé approximants that can be
described in this framework [3].

4. Numerical considerations. Just as for the univariate tech-
niques, the newly introduced nonlinear methods behave much better
than analogous linear methods when the considered equations have
singularities in the neighborhood of the roots [4]. Since the numerical
behavior in such situations is similar using either iteration (8) or iter-
ation (9), except for a difference in convergence order, we shall only
illustrate (8). It is obvious that the exact order of convergence of this
type of method is a difficult problem and should be the subject of
further investigation.

Another advantage of these rational procedures is that one can better
handle nonlinear systems which have a singular or nearly-singular
Jacobian in the neighborhood of the root (multiple zeros, bifurcation
points, . . . ) because the matrix P is not an approximation to the
Jacobian but is “rational” in nature. This is good because Newton-like
methods will generate ill-conditioned approximations to the (nearly)-
singular Jacobian.

Let us illustrate (8) by solving the system [5]

{
f1(x, y) = e−x+y − 0.1 = 0,

f2(x, y) = e−x−y − 0.1 = 0,

with the points (3.2,−0.95), (3.4,−1.15) and (3.3,−1.00) as initial points
for the iterative procedure (8). The numerical results are displayed
in Table 1. The consecutive iteration steps in a discretized Newton
method with the same but fewer initial points as above can be found in
Table 2. Here the partial derivatives of the Jacobian are approximated
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by the difference quotients

∂fj

∂xl

∣∣∣∣
(x

(i)
1 ,...,x

(i)
k

)

≈ fj(x
(i)
1 , . . . , x

(i)
l−1, x

(i−1)
l , x

(i)
l+1, . . . , x

(i)
k ) − fj(x

(i)
1 , . . . , x

(i)
k )

x
(i−1)
l − x

(i)
l

,

which result from choosing N = I = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . ,
0, 1)} and D = {(0, . . . , 0)}. The simple root is (2.302585092994046,0).
All computations are performed in double precision. The rational
method is rapidly converging while the linear method is diverging be-
cause during the iteration f1(x, y) comes close to −0.1, which is pre-
cisely a singularity of the inverse operator

{
g1(x, y) = − ln(x+0.1)−ln(y+0.1)

2 ,

g2(x, y) = ln(x+0.1)−ln(y+0.1)
2

for the considered system of nonlinear equations.

i— x(i)— y(i)

—0.32000000D + 01—−0.95000000D + 00
—0.34000000D + 01—−0.11500000D + 01
0—0.33000000D + 01—−0.10000000D + 01
1—0.25249070D + 01—−0.22072875D + 00
2—0.22618832D + 01— 0.41971944D − 01
3—0.23127609D + 01—−0.10164490D − 01
4—0.23030978D + 01—−0.51269373D − 03
5—0.23025801D + 01— 0.49675854D − 05
6—0.23025851D + 01—−0.25696929D − 08
7—0.23025851D + 01—−0.12778916D − 13
8—0.23025851D + 01—−0.11350932D − 16

TABLE 1.
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i— x(i)— y(i)

— 0.34000000D + 01—−0.11500000D + 01
0— 0.33000000D + 01—−0.10000000D + 01
1—−0.29618530D + 00— 0.21743633D + 01
2— 0.32743183D + 01— 0.20884933D + 01
3— 0.22114211D + 01—−0.84011352D + 01
4— 0.36513339D + 01—−0.72149651D + 01
5—−0.17900983D + 04— 0.20854111D + 04

TABLE 2.
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2. G. Claessens, On the Newton-Padé approximation problem, J. Approx. Theory
22 (1978), 150 160.
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