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Approximation Theory
Annie Cuyt

1 Introduction

Approximation theory is an area of mathematics that
has become indispensable to the computational sci-
ences. The approximation of magnitudes and func-
tions describing some physical behavior is an integral
part of scientific computing, queueing problems, neu-
ral networks, graphics, robotics, network traffic, finan-
cial trading, antenna design, floating-point arithmetic,
image processing, speech analysis, and video signal
filtering, to name just a few areas.

The idea of seeking a simple mathematical function
that describes some behavior approximately has two
sources of motivation. The exact behavior that one is
studying may not be able to be expressed in a closed
mathematical formula. But even if an exact description
is available it may be far too complicated for practical
use. In both cases a best and simple approximation is
required. What is meant by best and simple depends on
the application at hand.

The approximation is often used in a computer
implementation, and therefore its evaluation needs to
be efficient. The simplest and fastest functions for
implementation are polynomials, because they use only
the fast hardware operations of addition and multipli-
cation. Next come rational functions, which also need
the hardware operation division, one or more depend-
ing on their representation as a quotient of polynomials
or as a continued fraction. Rational functions offer the
clear advantage that they can reproduce asymptotic
behavior (vertical, horizontal, slant), which is some-
thing polynomials are incapable of doing. For peri-
odic phenomena, linear combinations of trigonomet-
ric functions make good candidates. For growth mod-
els or decaying magnitudes, linear combinations of
exponentials can be used.

In approximation theory one distinguishes between
interpolation and so-called least-squares problems. In
the former one wants the approximate model to take
exactly the same values as prescribed by data given at
precise argument values. In the latter a set of data (not
necessarily discrete) is regarded as a trend and approx-
imated by a simple model in one or other best sense.
The difference is formalized in the following sections.

Besides constructing a good and efficient mathemati-
cal model, one should also take the following two issues
into account.

• What can be said about the convergence of the
selected mathematical model? In more practical
terms: does the model improve when one adds
more data?

• How sensitive is the mathematical model to per-
turbations in the input data? Data errors are usu-
ally unavoidable, and one wishes to know how
much they can be magnified in the approximation
process.

In the following sections we comment on both issues
where appropriate. We do not aim to discuss con-
vergence or undertake a sensitivity analysis for every
technique.

Despite the need for and interest in multidimensional
models and simulations, we restrict ourselves here
mostly to one-dimensional approximation problems. In
the penultimate section we include some brief remarks
on multivariate interpolation and approximation and
its additional complexity.

2 Numerical Interpolation

Let data fi be given at points xi ∈ [a, b], where i =
0, . . . , n. We assume that if some of the points xi are
repeated, then it is not only the value of some under-
lying function f(x) that is given (or measured) at xi
but also as many higher derivatives f (j)(xi) as there
are copies of the point xi. The interpolation problem
is to find a function of a specified form that matches
all the data at the points. In this section we deal with
the two extreme cases: the one in which all the points
xi are mutually distinct and no derivative information
is available, and the one in which the value of the func-
tion and that of the first n derivatives are all given at
one single point x0. Of course, intermediate situations
can also be dealt with. The approximating functions
that we consider are polynomials, piecewise polyno-
mials (splines), and rational functions, each of which
has particular advantages. Finally, we present the con-
nection between exponential models and sparse inter-
polation on the one hand, and exponential models and
Padé approximation on the other.

2.1 Polynomial Interpolation

For n + 1 given values fi = f(xi) at mutually dis-
tinct points xi, the polynomial interpolation problem
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of degree n,

pn(x) =
n∑

j=0

ajxj, pn(xi) = fi, i = 0, . . . , n, (1)

has a unique solution for the coefficients aj . Now let
us turn to the computation of pn(x). Essentially, two
approaches can be used, depending on the intended
subsequent use of the polynomial interpolant. If one
is interested in easily updating the polynomial inter-
polant by adding an extra data point and consequently
increasing the degree of pn(x), then Newton’s formula
for the interpolating polynomial is very suitable. If one
wants to use the interpolant for several sets of values
fi while keeping the points xi fixed, then Lagrange’s
formula is most appropriate. A simple rearrangement
of the Lagrange form as in (2) below results in the
barycentric form, which combines the advantages of
both approaches.

In the Newton form one writes the interpolating
polynomial pn(x) as

pn(x) = b0 + b1(x − x0)+ b2(x − x0)(x − x1)

+ · · · + bn(x − x0) · · · (x − xn−1).

The coefficients bj then equal the divided differences
bj = f[0, . . . , j] obtained from the recursive scheme

f[j] = fj, j = 0, . . . , n,

f [0, j] = fj − f0

xj − x0
, j = 1, . . . , n,

f [0,1, . . . , k− 1, k, j]

= f[0,1, . . . , k− 1, j]− f[0,1, . . . , k− 1, k]
xj − xk

,

k, j = 2, . . . , n.

Newton’s form for the interpolating polynomial is very
handy when one wants to update the interpolation with
an additional point (xn+1, fn+1). It suffices to add the
term

bn+1(x − x0) · · · (x − xn)

to pn(x) (which does not destroy the previous inter-
polation conditions since it evaluates to zero at all the
previous xi) and to complement the recursive scheme
for the computation of the divided differences with the
computation of the

f[0,1, . . . , k,n+ 1], k = 0, . . . , n.

In the Lagrange form, which is especially suitable if
the interpolation needs to be repeated for different sets
of fi at the same points xi, another form for pn(x) is

used. We write

pn(x) =
n∑

j=0

cjβj(x), βj(x) =
n∏

k=0
k ̸=j

(x − xk)
(xj − xk)

.

The basis functionsβj(x) satisfy a simple interpolation
condition themselves, namely,

βj(xi) =
⎧
⎨
⎩

0 for j ̸= i,
1 for j = i.

The choice cj = fj for the coefficients therefore solves
the interpolation problem. So when altering the fi,
without touching the xi that make up the basis func-
tions βj(x), it takes no computation at all to get the
new coefficients cj .

The barycentric form of the interpolation polyno-
mial,

pn(x) = (x − x0) · · · (x − xn)
n∑

j=0

wj
x − xj

fj,

wj =
( n∏

k=0
k ̸=j

(xj − xk)
)−1

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

is easy to update and is backward stable [??] for
evaluation of pn(x).

The sensitivity of polynomial interpolation ex-
pressed in the Lagrange form is measured by the
value

Ln = max
a!x!b

n∑

j=0

|βj(x)|, (3)

which is also known as the Lebesgue constant. The
growth rate of Ln with n is only logarithmic when the
interpolation points are as in (5) below. This is the
slowest possible growth for polynomial interpolation.

Despite the simplicity and elegance of polynomial
interpolation, the technique has a significant draw-
back, as we discuss next: it may not converge for data
fi = f(xi) given at arbitrary points xi, even if f(x) is
continuous on [a, b].

2.2 The Runge Phenomenon

What happens if we continue updating the interpola-
tion problem with new data? In other words, what hap-
pens if we let the degree n of the interpolating polyno-
mial pn(x) increase? Will the interpolating polynomial
of degree n become better and better? The answer is
no, at least not for freely chosen points xi. To see what
can go wrong, consider

f(x) = 1
1+ 25x2 , −1 ! x ! 1, (4)
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Figure 1 (a) Degree-10 and (b) degree-20 equidistant inter-
polation (solid lines) for function f in (4) (dashed lines).

and take equidistant interpolation points xi = −1 +
2i/n, i = 0, . . . , n. The error (f −p)(x) toward the end-
points of the interval then increases dramatically with
n. Take a look at the bell-shaped f(x) and the inter-
polating polynomial pn(x) for n = 10 and n = 20 in
figure 1.

This phenomenon is called Runge’s phenomenon,
after Carl Runge, who described this behavior for real-
valued interpolation in 1901. An explanation for it
can be found in the fundamental theorem of algebra,
which states that a polynomial has as many zeros as

its degree. Each of these zeros can be real or complex.
So if n is large and the zeros are all real, the poly-
nomial under consideration displays rather oscillatory
behavior.

On the other hand, under certain simple conditions
for f(x) besides continuity in [a, b], it can be proved
that if the interpolation points xi equal

xi =
a+ b

2
+ b − a

2
cos

( (2i+ 1)π
2(n+ 1)

)
,

i = 0, . . . , n, (5)

where the values cos((2i + 1)/(n + 1)(π/2)) are the
zeros of the Chebyshev polynomial of the first kind of
degree n+ 1 (defined in section 3.3), then

lim
n→∞

∥f − pn∥∞ = lim
n→∞

max
x∈[−1,1]

|(f − pn)(x)| = 0.

The effect of this choice of interpolation points is
illustrated in figure 2(a). A similar result holds if the
zeros of the Chebyshev polynomial of degree n+1 are
replaced by the extrema cos(iπ/n), i = 0, . . . , n, of the
Chebyshev polynomial of degree n.

In order to make use of this result in real-world appli-
cations, where the interpolation points xi cannot usu-
ally be chosen arbitrarily, interpolation at the Cheby-
shev zeros is mimicked, for instance by selecting a
proper subset of interpolation points x̃i from a fine
equidistant grid, with x̃i ≈ xi from (5). The grid is
considered to be sufficiently fine when the distance
between the points ensures that a grid point nearest
to a Chebyshev zero xi is never repeated. In a coarse
grid, the same grid point may be the closest one to more
than one Chebyshev zero, especially toward the ends of
the interval [−1,1].

This technique is called mock-Chebyshev interpola-
tion. For comparison, in figure 2(b) we display the
degree-20 mock-Chebyshev interpolant with the inter-
polation points selected from an equispaced grid with
gap 1/155.

If a lot of accurate data points have to be used in
an interpolation scheme, then splines, which are dis-
cussed in the next section, offer a better alternative
than a monolithic high-degree polynomial interpolant.

2.3 Spline Interpolation

In order to avoid the Runge phenomenon when inter-
polating large data sets, piecewise polynomials, also
called splines, can be used. To this end we divide the
data set ofn+1 points into smaller sets each containing
two data points. Rather than interpolating the full data
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Figure 2 Degree-20 (a) Chebyshev and (b) mock-Chebyshev
interpolation (solid lines) for function f in (4) (dashed lines).

set by one polynomial of degree n, we interpolate each
of the smaller data sets by a low-degree polynomial.
These separate polynomial functions are then pieced
together in such a way that the resulting function is as
continuously differentiable as possible.

Take, for instance, the data set (xi, fi) and consider
linear polynomials interpolating every two consecutive
(xi, fi) and (xi+1, fi+1). These linear polynomial pieces
can be joined together at the data points (xi, fi) to pro-
duce a piecewise-linear continuous function or polyg-
onal curve. Note that this function is continuous but
not differentiable at the interpolation points since it is
polygonal.

If we introduce two parameters, ∆ and D, to respec-
tively denote the degree of the polynomial pieces and
the differentiability of the overall function, where obvi-
ously D ! ∆ (even D < ∆ to avoid an overdetermined
system of defining equations, as explained below), then,
for the polygonal curve, ∆ = 1 and D = 0. With ∆ = 2
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Figure 3 A piecewise-cubic function that is
not twice continuously differentiable.

and D = 1, a piecewise-quadratic and smooth (mean-
ing continuously differentiable in the entire interval
[x0, . . . , xn]) function is constructed. The slope of a
smooth function is a continuous quantity. With ∆ = 3
and D = 2, a piecewise-cubic and twice continuously
differentiable function is obtained. Twice continuously
differentiable functions also enjoy continuous curva-
ture. Can the naked eye distinguish between contin-
uous and discontinuous curvature in a function? The
untrained eye certainly cannot! As an example we take
the cubic polynomial pieces

c1(x) = x3 − x2 + x + 0.5, x ∈ [−1,0],

c2(x) = x3 + x2 + x + 0.5, x ∈ [0,1],
and join these together at x = 0 to obtain a new
piecewise-cubic function c(x) on [−1,1]. The result
is a function that is continuous and differentiable at
the origin, but for the second derivatives at the origin
we have limx→0− c(2)(0) = −2 and limx→0+ c(2)(0) = 2.
Nevertheless, the result of the gluing procedure shown
in figure 3 is a very pleasing function that at first sight
looks fine. But while ∆ equals 3, D is only 1.

Since a trained eye can spot these discontinuities, the
most popular choice for piecewise-polynomial inter-
polation in industrial applications is ∆ = 3 and D =
2. Indeed, for manufacturing the continuity of the
curvature is important.

Let us take a look at the general situation where
∆ =m andD =m−1, for which the resulting piecewise
polynomial is called a spline. Assume we are given the
interpolation points x0, . . . , xn. With these n+1 points
we can construct n intervals [xi, xi+1]. The points x0

and xn are the endpoints and the other n− 1 interpo-
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lation points are called the internal points. If ∆ = m,
then for every interval [xi, xi+1] we have to determine
m+1 coefficients, because the explicit formula for the
spline on [xi, xi+1] is a polynomial of degree m:

S(x) = si(x), x ∈ [xi, xi+1], i = 0, . . . , n− 1,

si(x) =
m∑

j=0

a(i)j x
j.

So, in total, n(m + 1) unknown coefficients a(i)j have
to be computed. From which conditions? There are the
n+ 1 interpolation conditions S(xi) = fi, and we have
the smoothness or continuity requirements at the inter-
nal points, meaning that a number of derivatives of
si−1(x) evaluated at the right endpoint of the domain
[xi−1, xi] should coincide with the derivatives of si(x)
when evaluated at the left endpoint of the domain
[xi, xi+1]:

s(k)i−1(xi) = s
(k)
i (xi), i = 1, . . . , n− 1, k = 0, . . . ,m− 1.

The latter requirements add another (n − 1)m conti-
nuity conditions. This brings us to a total of n + 1 +
(n−1)m = n(m+1)−m+1 conditions for n(m+1)
unknowns. In other words, we lack m − 1 conditions
to determine the degree-m piecewise-polynomial inter-
polant with overall smoothness of order m − 1. When
m = 1, which is the case for the piecewise-linear spline
or the polygonal curve, no conditions are lacking. When
m = 2, a value for s′0(x0) is usually given as an addi-
tional piece of information. When m = 3, which is the
case for the widely used cubic spline, values for s′′0 (x0)
and s′′n−1(xn) are often provided (the cubic spline with
clamped end conditions) or they are set to zero (the
natural cubic spline).

The natural cubic spline interpolant has a very ele-
gant property, namely, that it avoids oscillatory behav-
ior between interpolation points. More precisely, for
every twice continuously differentiable function f(x)
defined on [a, b] and satisfying f(xi) = fi for all i, we
have ∫ b

a
S′′(x)2 dx !

∫ b

a
f ′′(x)2 dx.

A simple illustration is given in figure 4 for n = 6 with
xi = i, i = 1, . . . ,6.

2.4 Padé Approximation

The rational equivalent of the Taylor series partial
sum is the irreducible rational function rk,ℓ(x) =
pk,ℓ(x)/qk,ℓ(x) with numerator of degree at most k
and denominator of degree at most ℓ that satisfies

r (i)k,ℓ(x0) = f (i)(x0), i = 0,1, . . . , n, (6)

1 2 3 4 5 6

12

14

16

18

20

22

1 2 3 4 5 6

12

14

16

18

20

22

(a)

(b)

Figure 4 (a) The polynomial interpolant
and (b) the natural cubic spline.

with n as large as possible. It is also called the [k/l]
Padé approximant. The aim is to have n = k + ℓ. Note
that we are imposing one fewer condition than the total
number k + ℓ + 2 of coefficients in rk,ℓ. The reason is
that one degree of freedom is lost because multiplying
pk,ℓ and qk,ℓ by a scalar does not change rk,ℓ.

A key question is whether n can be less than k +
ℓ. The answer to this question requires some analy-
sis. Computing the numerator and denominator coeffi-
cients of rk,ℓ(x) from (6) gives rise to a nonlinear sys-
tem of equations. So let us explore whether the Padé
approximant can also be obtained from the linearized
approximation conditions

(fqk,ℓ − pk,ℓ)(i)(x0) = 0, i = 0,1, . . . , k+ ℓ. (7)

We denote f (j)(x0)/j! by dj , where dj = 0 for j <
0. The linearized conditions (7) always have at least
one nontrivial solution for the numerator coefficients
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a0, . . . , ak and the denominator coefficients b0, . . . , bℓ
because they form a homogeneous linear system of
k+ ℓ + 1 conditions in k+ ℓ + 2 unknowns:

d0b0 = a0,
d1b0 + d0b1 = a1,

...
dkb0 + · · · + dk−ℓbℓ = ak,

dk+1b0 + · · · + dk−ℓ+1bℓ = 0,
...

dk+ℓb0 + · · · + dkbℓ = 0.

Moreover, all solutions pk,ℓ(x) and qk,ℓ(x) of (7) are
equivalent in the sense that they have the same irre-
ducible form. Every solution of (6) with n = k + ℓ
therefore also satisfies (7), but not vice versa. From
pk,ℓ(x) and qk,ℓ(x) satisfying (7) we find, for the
unique irreducible form p∗k,ℓ(x)/q

∗
k,ℓ(x), that

(f − rk,ℓ)(i)(x0) = 0, i = 0, . . . , k′ + ℓ′ + r ,
k′ = ∂p∗k,ℓ, ℓ′ = ∂q

∗
k,ℓ, r " 0,

where ∂p denotes the degree of the polynomial p. In
some textbooks, the [k/l] Padé approximation prob-
lem is said to have no solution if k′ + ℓ′ + r < k + ℓ;
in others, the Padé approximant rk,ℓ is identified with
rk′,ℓ′ = p∗k,ℓ/q

∗
k,ℓ if that is the case (this is the conven-

tion we adopt here). Let us illustrate the situation with
a simple example. Take x0 = 0 with d0 = 1, d1 = 0,
d2 = 1, and k = 1 = ℓ. The linearized conditions (7) are
then

b0 = a0, b1 = a1, b0 = 0.

A solution is given by p1,1(x) = x and q1,1(x) = x. We
therefore find r1,1(x) = 1, k′ = 0, ℓ′ = 0, and

(f − r1,1)(2)(x0) = 2 ̸= 0.

Since r = 1 we have k′ + ℓ′ + r = 1 < k+ ℓ = 2.
This kind of complication does not occur when ℓ = 0.

The Padé approximant rk,0(x) is then merely the Tay-
lor series partial sum of degree k. But when asymptotic
behavior needs to be reproduced, a polynomial func-
tion is not very useful. In figure 5 one can compare the
Taylor series partial sum of degree 9 with the [5/4]
Padé approximant for the function f(x) = arctan(x).

Padé approximants can be organized in a table, where
the numerator degree indicates the row and the denom-
inator degree the column. To illustrate this we give
part of the Padé table for f(x) = sin(x) in table 1.
A sequence of Padé approximants in the Padé table can
converge uniformly or in measure only to a function
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Figure 5 Padé approximants r9,0(x) (dotted line) and
r5,4(x) (dashed line) for arctan(x) (solid line).

Table 1 The Padé table for sin(x).

0 1 2

1 x x x
1+ 1

6x2
· · ·

2 x x x
1+ 1

6x2
· · ·

3 x − 1
6x

3 x − 1
6x

3 (− 7
60x

3 + x)
(1+ 1

20x2)
...

...
. . .

f(x) that is meromorphic in a substantial part of its
domain.

2.5 Rational Interpolation

The rational equivalent of polynomial interpolation
at mutually distinct interpolation points xi consists
of finding an irreducible rational function rk,ℓ(x), of
numerator degree at most k and denominator degree
at most ℓ, that satisfies

rk,ℓ(xi) = fi, i = 0, . . . , k+ ℓ, (8)

where fi = f(xi). Instead of solving (8) one considers
the linearized equations

(fqk,ℓ − pk,ℓ)(xi) = 0, i = 0, . . . , k+ ℓ, (9)

where pk,ℓ(x) and qk,ℓ(x) are polynomials of respec-
tive degree k and ℓ. Condition (9) is a homogeneous lin-
ear system of k+ℓ+1 equations in k+ℓ+2 unknowns
and it therefore always has a nontrivial solution. More-
over, as in the Padé approximation case, all solutions
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of (9) are equivalent in the sense that they deliver the
same unique irreducible rational function.

By computing the irreducible form rk,ℓ(x) of
pk,ℓ(x)/qk,ℓ(x), common factors in numerator and
denominator are canceled and it may well be that
rk,ℓ does not satisfy the interpolation conditions (8)
anymore, despite pk,ℓ and qk,ℓ being solutions of (9),
because one or more of the canceled factors may be of
the form x − xi with xi an interpolation point. A sim-
ple example illustrates this. Let x0 = 0, x1 = 1, x2 = 2
with f0 = 0, f1 = 3, f2 = 3, and take k = 1 = ℓ. The
homogeneous linear system of interpolation conditions
is then

a0 = 0,

3(b0 + b1)− (a0 + a1) = 0,

3(b0 + 2b1)− (a0 + 2a1) = 0.

A solution is given by p1,1(x) = 3x and q1,1(x) = x.
Hence, r1,1(x) = 3 and clearly r1,1(x0) ̸= f0. The
interpolation point x0 is then called unattainable. This
problem can only be fixed by increasing the degrees k
and/or ℓ until the interpolation point is attainable. Note
that unattainable interpolation points do not occur in
polynomial interpolation (ℓ = 0).

A well-known problem with rational interpolation
and Padé approximation is the occurrence of undesir-
able poles in the interpolant rk,ℓ(x). One way to avoid
this is to work with preassigned poles, either explicitly
or implicitly, by determining the denominator polyno-
mial qk,ℓ(x) a priori. All k+ ℓ + 1 interpolation condi-
tions are then imposed on the coefficients of the numer-
ator polynomial, and consequently the degree of the
numerator is raised to k+ ℓ.

Let the interpolation points xi be ordered such that
x0 < x1 < · · · < xn with k + ℓ = n. A popular choice
for the denominator polynomial that guarantees a pole-
free real axis, unless the location of the poles needs to
be controlled by other considerations, is

qn,n(x) =
n∑

j=0

(−1)j
n∏

k=0
k ̸=j

(x − xk).

With this choice, the rational interpolant can be written
in a barycentric form similar to that in (2):

rn,n(x) =
∑n
j=0 fj(−1)j/(x − xj)∑n
j=0(−1)j/(x − xj)

.

Again, this form is very stable for interpolation. Its
numerical sensitivity is measured by

Mn = max
a!x!b

n∑

i=0

|qn,n(xi)βi(x)|
|qn,n(x)|

.

And there is more good news now: in the case of
equidistant interpolation points, Mn grows as slowly
with n as the Lebesgue constant Ln in (3) for polyno-
mial interpolation in the Chebyshev zeros. The latter
makes the technique very useful in practice.

More practical choices for the denominator poly-
nomial qn,n(x) are possible, guaranteeing other fea-
tures, such as rapid convergence, comonotonicity, or
coconvexity (coconcavity).

2.6 Sparse Interpolation

When interpolating

f(x) = α1 +α2x100

by a polynomial, the previous techniques require 101
samples of f(x) to determine that f(x) is itself a poly-
nomial, while only four values need to be computed
from the data points, namely the two exponents 0
and 100 and the two coefficients α1 and α2. So it would
be nice if we could solve this polynomial reconstruction
problem from only four samples.

The above is a special case of the more general sparse
interpolation, which was studied as long ago as 1795,
by Gaspard de Prony, in which the complex values φj
and αj in the interpolant

φ(x) =
n∑

j=1

αjeφjx, αj ,φj ∈ C, (10)

are to be determined from only 2n samples of φ(x).
While the nonlinear interpolation problems of Padé

approximation and rational interpolation are solved by
linearizing the conditions as in (7) and (9), the nonlin-
ear problem of sparse interpolation is solved by sepa-
rating the computation of the φj and the αj into two
linear algebra subproblems. Letφ(x) be sampled at the
equidistant points xi = i∆, i = 0, . . . ,2n − 1, and let
us denote φ(xi) by fi. We introduce the n×n Hankel
matrices

H(r)n :=

⎛
⎜⎜⎜⎝

fr · · · fr+n−1

...
.

.
.

...

fr+n−1 · · · fr+2n−2

⎞
⎟⎟⎟⎠

and λj = eφj∆, j = 1, . . . , n.
The λj are then retrieved as the generalized eigen-

values of the problem

H(1)n vj = λjH(0)n vj, j = 1, . . . , n,

where the vj are the generalized right eigenvectors.
From the values λj , the complex numbers φj can
be retrieved uniquely subject to the restriction that
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|Im(φj∆)| < π . In order to satisfy this restriction, the
sampling interval ∆ is usually adapted to the range of
the values Im(φj).

The αj are computed from the interpolation condi-
tions

n∑

j=1

αjeφjxi = fi, i = 0, . . . ,2n− 1, (11)

either by solving the system in the least-squares sense
or by solving a subset of n consecutive interpolation
conditions. Note that

eφjxi = λij
and that the coefficient matrix of (11) is therefore a
Vandermonde matrix.

With fi = φ(xi) we now define

f(x) =
∞∑

j=0

fjxj,

where xi = i∆, i " 0. Since

fi =
n∑

j=1

αjeφjxi =
n∑

j=1

αjλij ,

we can rewrite f(x) as follows:

f(x) =
n∑

j=1

αj
1− xλj

. (12)

So we see that f(x) is itself a rational function of
degree n− 1 in the numerator and n in the denomina-
tor, with poles 1/λj . Hence, from Padé approximation
theory we know (as is to be expected) that rn−1,n(x)
reconstructs f(x); in other words,

rn−1,n(x) = f(x)

with

q(x) =
n∏

j=1

(1− xλj).

The partial fraction decomposition (12) is the Laplace
transform of the exponential model (10), which
explains why this approach is known as the Padé–
Laplace method.

The above connection between approximation theory
and harmonic analysis is clearly not accidental.
More constructions from harmonic analysis, includ-
ing wavelets and Fourier series, also provide impor-
tant insights into central problems in approximation
theory. Other mathematical models in which the major
features of a data set are represented using only a
few terms are considered in the theory of compressed
sensing [??].

3 Least-Squares Approximation

When the quality of the data does not justify the impo-
sition of an exact match on the approximating function,
or when the quantity of the data is simply overwhelm-
ing and depicts a trend rather than very precise mea-
surements, interpolation techniques are of no use. It
is better to find a linear combination of suitable basis
functions that approximates the data in some best
sense. We first discuss the existence and uniqueness of
a best linear approximant and the discrete linear least-
squares problem. How the bestness or nearness of the
approximation is measured is then explained. Differ-
ent measures lead to different approximants and are
to be used in different contexts. We discuss the impor-
tance of orthogonal basis functions and describe the
continuous linear least-squares problem and the mini-
max approximation. A discussion of a connection with
Fourier series and the interpolation and approximation
of periodic data concludes the section.

3.1 Discrete Least-Squares Approximation

First and foremost we discuss the existence and unique-
ness of a best approximant p∗ from a finite-dimen-
sional subspace P to an element f from a normed linear
space V . More specifically, we ask for which of the ℓ1-,
ℓ2-, or ℓ∞-norms can we guarantee that either at least
one or exactly one solution exists to the approximation
problem of finding p∗ ∈ P such that

∥f − p∗∥ ! ∥f − p∥, p ∈ P.
The answer to the existence problem is affirmative
for all three mentioned norms. To guarantee unique-
ness of p∗, either the norm or the subspace P under
consideration must satisfy additional conditions. And
we must distinguish between discrete and continuous
approximation and norms.

When V is strictly convex, in other words, when a
sphere in V does not contain line segments, so that

∥x1 − c∥ = r = ∥x2 − c∥ ⇒
∥λx1 + (1− λ)x2 − c∥ < r, 0 < λ < 1,

then the best approximant p∗ to f is unique. This
applies, for instance, to the ℓ2- or Euclidean norm, in
both the discrete and continuous cases.

In the discussion of the role of P with respect to the
uniqueness of p∗, we deal with the continuous case
first. When a basis {b0(x), . . . , bn(x)} for P satisfies the
Haar condition, meaning that every linear combination

qn(x) = λ0b0(x)+ · · · + λnbn(x)
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has at most n zeros, then the continuous best ℓ1 and
best ℓ∞ approximation problems also have a unique
solution.

Let us now look at the discrete best approximation
problem in somewhat more detail. We consider a large
data set of values fi that we want to approximate by a
linear combination of some linearly independent basis
functions bj(x):

λ0b0(xi)+ · · · + λnbn(xi) = fi, i = 0, . . . ,m > n.
(13)

This (m + 1) × (n + 1) linear system can be written
compactly as

Aλ = f , λ =

⎡
⎢⎢⎢⎣

λ0

...
λn

⎤
⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎣

f0

...
fm

⎤
⎥⎥⎥⎦ ,

A = (bj−1(xi−1)) ∈ R(m+1)×(n+1).

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

Unless the right-hand side f lies in the column space
of A, the system cannot be solved exactly. The residual
vector is given by

r = f −Aλ ∈ Rm+1,

and the solution λ we are looking for is the one that
solves the system best, in other words, the system that
makes the magnitude (or norm) of the residual vec-
tor minimal. The least-squares problem corresponds
to using the Euclidean norm or the ℓ2-norm ∥r∥2 =
(r2

1 + · · · + r2
m)1/2 to measure the residual vector, and

the optimization problem translates to

(ATA)λ = ATf ,

which is a square linear system of equations called the
normal equations [??]. If the matrix A of the overde-
termined linear system has maximal column rank, then
the matrix ATA is nonsingular and the solution is
unique.

When every (n+1)× (n+1) submatrix of the matrix
A in (14) is nonsingular, then the discrete best ℓ∞
approximation problem has a unique solution as well.
An example showing the lack of uniqueness of the best
ℓ1 approximation under the same condition is easy to
find. Take

A =
(

1
−1

)
, f =

(
1
2

)

in (14). Then the minimum of ∥Aλ−f∥1 with n = 0 and
b0(x) = 1 is the same for all −2 ! λ0 ! 1.

In practice, instead of solving the normal equations,
more numerically stable techniques based on orthog-
onal transformations [??] are applied directly to

the overdetermined system (14). These transforma-
tions do not alter the Euclidean norm of the residual
vector r and hence have no impact on the optimization
criterion.

Let us now see whether the Euclidean norm is the
correct norm to use.

3.2 Choice of Norm

If the optimal solution to the overdetermined linear
system is the one that makes the norm ∥r∥ of the resid-
ual minimal, then we must decide which norm to use to
measure r . Although norms are in a sense equivalent,
because they differ only by a scalar multiple depend-
ing only on the dimension, it makes quite a differ-
ence whether we minimize ∥r∥1, ∥r∥2, or ∥r∥∞. Let us
perform the following experiment.

Using a Gaussian random number generator with
mean µ and standard deviation σ , we generate m + 1
numbers fi. The approximation problem we consider
is the computation of an estimate for µ from the data
points fi, where σ expresses a tight or loose spread
around µ. Compare this with a real-life situation where
the data fi are collected by performing some measure-
ments of a magnitude µ, and σ represents the accuracy
of the measuring tool used to obtain the fi.

In the notation of (13), we want to fit the fi by a mul-
tiple of the basis function b0(x) = 1 because we are
looking for the constant µ. The overdetermined linear
system takes the form

λ0 · 1 = fi, i = 0, . . . ,m.

It is clear that this linear system does not have an exact
solution. The residual vector is definitely nonzero. We
shall see that different criteria or norms can be used to
express the closeness of the estimate λ0 for µ to the
data points fi or, in other words, the magnitude of the
residual vector r with components fi−λ0, and that the
standard deviation σ will also play a role.

If the Euclidean norm is used, then the optimal
estimate λ(2)0 is the mean of the m measurements fi:

λ(2)0 = 1
m+ 1

m∑

i=0

fi.

If we choose the ℓ1-norm ∥r∥1 =
∑m
i=1 |ri| as a way to

measure distances, then the value λ(1)0 that renders the
ℓ1-norm of the residual vector minimal is the median
of the values fi. Any change that makes the larger val-
ues extremely large or the smaller values extremely
small therefore has no impact on λ(1)0 , which is rather
insensitive to outliers.
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When choosing as distance function the ℓ∞-norm
∥r∥∞ = maxi=1,...,m |ri|, the optimal solution λ(∞)0 to
the problem is given by

λ(∞)0 = 1
2

(
min

i=0,...,m
fi + max

i=0,...,m
fi
)
.

This can also be understood intuitively. The value for
λ1 that makes ∥r∥∞ minimal is the one that makes the
largest deviation minimal, so it should be right in the
middle between the extremes.

So the ℓ∞-norm criterion performs particularly well
in the context of rather accurate data (in this experi-
ment meaning small standard deviation σ ) that suffer
relatively small input errors (such as roundoff errors).
When outliers or additional errors (such as from man-
ual data input) are suspected, use of the ℓ1-norm is
recommended. If the measurement errors are believed
to be normally distributed with mean zero, then the ℓ2-
norm is the usual choice. Approximation problems of
this type are therefore called least-squares problems.

3.3 Orthogonal Basis Functions

In the same way that we prefer to draw a graph using an
orthogonal set of axes (the smaller the angle between
the axes, the more difficult it becomes to make a clear
drawing), it is preferred to use a so-called orthogonal
set of basis functions bj(x) in (13). Orthogonal basis
functions bj(x) can tremendously improve the condi-
tioning or sensitivity of the problem (14). They are also
useful in continuous least-squares problems.

The notion of orthogonality in a function space par-
allels that of orthogonality in the vector space Rk:
for a positive weight function w(x) defined on the
interval [a, b], we say that the functions f and g are
w-orthogonal if

⟨f , g⟩w =
∫ b

a
f(x)g(x)w(x)dx = 0.

The function w(x) can assign a larger weight to cer-
tain parts of the interval [a, b]. For instance, the func-
tionw(x) = 1/

√
1− x2 on [−1,1] assigns more weight

toward the endpoints of the interval.
For w(x) = 1 and [a, b] = [−1,1], a sequence of

orthogonal polynomials Li(x) satisfying
∫ 1

−1
Lj(x)Lk(x)dx = 0, j ̸= k,

is given by

L0(x) = 1, L1(x) = x,

Li+1(x) =
2i+ 1
i+ 1

xLi(x)−
i

i+ 1
Li−1(x), i " 1.

The polynomials Li(x) are called the Legendre polyno-
mials. For w(x) = 1/

√
1− x2 and [a, b] = [−1,1], a

sequence of orthogonal polynomials Ti(x) satisfying
∫ 1

−1
Tj(x)Tk(x)

1√
1− x2

dx = 0, j ̸= k,

is given by

T0(x) = 1, T1(x) = x,
Ti+1(x) = 2xTi(x)− Ti−1(x), i " 1.

The polynomials Ti(x) are called the Chebyshev poly-
nomials (of the first kind). They are also very useful in
(continuous as well as discrete) least-squares problems,
as discussed below.

When the polynomials are to be used on an inter-
val [a, b] different from [−1,1], the simple change of
variable

x → 2
b − a

(
x − a+ b

2

)

transforms the interval [a, b] to the interval [−1,1], on
which the orthogonal polynomials are defined.

Orthogonal polynomials also satisfy the Haar condi-
tion, so every linear combination

qn(x) = a0p0(x)+ · · · + anpn(x)

of the orthogonal polynomials pi(x) of degree i =
0, . . . , n has at most n zeros. Therefore, orthogonal
polynomials are also a suitable basis in which to
express an interpolating function: the system of inter-
polation conditions

n∑

j=0

ajpj(xi) = fi, i = 0, . . . , n,

has a coefficient matrix that is guaranteed to be non-
singular for mutually distinct points xi.

The importance of orthogonal basis functions in
interpolation and approximation cannot be overstated.
Problems become numerically better conditioned and
formulas simplify. For instance, the Chebyshev poly-
nomials Ti(x) also satisfy the discrete orthogonality

n∑

i=0

Tj(xi)Tk(xi) = (1+ δk0)
n+ 1

2
δjk,

j, k = 0,1, . . . ,

where δij is the kronecker delta [??] and

xi = cos
( (2i+ 1)π

2(n+ 1)

)

are the zeros of the Chebyshev polynomial Tn+1. When
expressing the polynomial interpolant pn(x) in (1) of
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degree n in the Chebyshev basis,

pn(x) =
n∑

j=0

ajTj(x),

an easy explicit formula for pn(x) interpolating the
values fi at the points xi can be given:

pn(x) =
∑n
i=0 fi
n+ 1

+
n∑

j=1

(2
∑n
i=0 fiTj(xi)
n+ 1

)
Tj(x).

Another elegant explicit formula, based on the contin-
uous orthogonality property of the Chebyshev polyno-
mials, is given in (16).

The practical utility of Chebyshev polynomials is
illustrated by the open source Chebfun software sys-
tem (www.chebfun.org) for numerical computation
with functions, which is built on piecewise-polynomial
interpolation at the extrema of Chebyshev polynomials,
or what is equivalent (via the fast fourier transform
[??]), expansions in Chebyshev polynomials.

3.4 Chebyshev Series

Let us now choose the basis functions bj(x) = Tj(x)
and look for the coefficients λj that make the ℓ2-norm
of

f(x)−
n∑

j=0

λjTj(x), −1 ! x ! 1,

minimal for f(x) defined on [−1,1], for simplicity.
We are looking for the polynomial pn(x) of degree n
that is closest to f(x), where we measure the distance
between the functions using the inner product

∥f − pn∥2
2 = ⟨f − pn, f − pn⟩

=
∫ 1

−1

(f − pn)2(x)√
1− x2

dx. (15)

This is a continuous least-squares problem because the
norm of a function is minimized instead of the norm
of a finite-dimensional vector. Since
∥∥∥∥f −

n∑

j=0

λjTj
∥∥∥∥

2

2
=
〈
f −

n∑

j=0

λjTj, f −
n∑

j=0

λjTj
@

= ∥f∥2
2 −

n∑

j=0

⟨f , Tj/∥Tj∥2⟩2

+
n∑

j=0

(⟨f , Tj/∥Tj∥2⟩ − λj∥Tj∥2)2,

in which only the last sum of squares depends on λj ,
the minimum is attained for the so-called Chebyshev
coefficients

λj = ⟨f , Tj⟩/⟨Tj, Tj⟩. (16)

The partial sum of degree n of the Chebyshev series
development of a function,

f(x) =
∞∑

j=0

⟨f , Tj⟩
⟨Tj, Tj⟩

Tj(x),

is therefore the best polynomial approximation of
degree n to f(x) in the ℓ2 sense. Since

∣∣∣∣f(x)−
n∑

j=0

⟨f , Tj⟩
⟨Tj, Tj⟩

Tj(x)
∣∣∣∣ !

∞∑

j=n+1

∣∣∣∣
⟨f , Tj⟩
⟨Tj, Tj⟩

∣∣∣∣,

this error can be made arbitrarily small when the series
of Chebyshev coefficients converges absolutely, a con-
dition which is automatically satisfied for functions
that are continuously differentiable in [−1,1].

The above technique can be generalized to any weight
function and its associated family of orthogonal poly-
nomials: when switching the weight function, the norm
criterion (15) changes and the orthogonal basis is
changed.

The Chebyshev series partial sums are good overall
approximations to a function f(x) defined on the inter-
val [−1,1] (or [a, b] after a suitable change of variable).
To illustrate this, in figure 6 we compare, for the func-
tion f(x) = arctan(x), the error plots of the Chebyshev
series partial sum of degree 9 with the Taylor series par-
tial sum of the same degree. Its Chebyshev series and
Taylor series developments are, respectively, given by

arctan(x) =
∞∑

i=0

(−1)i 2(
√

2− 1)2i+1

2i+ 1
T2i+1(x),

arctan(x) =
∞∑

i=0

(−1)i 1
2i+ 1

x2i+1.

Although explicit formulas for the Taylor series
expansion of most elementary and special functions
are known, the same is not true for Chebyshev series
expansions. For most functions, the coefficients (16)
have to be computed numerically because no analytic
expression for (16) can be given.

3.5 The Minimax Approximation

Instead of minimizing the ℓ2-distance (15) between a
function f(x) ∈ C([a, b]) and a polynomial model for
f(x), we can consider the problem of minimizing the
ℓ∞-distance. Every continuous function f(x) defined
on a closed interval [a, b] has a unique so-called mini-
max polynomial approximant of degree n. This means
that there exists a unique polynomial pn = p∗n of
degree ∂pn ! n that minimizes

∥f − pn∥∞ = max
x∈[a,b]

∣∣∣∣f(x)−
n∑

j=0

λjxj
∣∣∣∣. (17)
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Figure 6 Error plots of Chebyshev (solid line) and Taylor
(dashed line) partial sums of degree 9 for arctan(x).

More generally, if the set of basis functions
{b0(x), . . . , bn(x)} satisfies the Haar condition,
then there exists a unique approximant

q∗n(x) = λ∗0 b0(x)+ · · · + λ∗nbn(x)

that minimizes

∥f − qn∥∞ = max
x∈[a,b]

∣∣∣∣f(x)−
n∑

j=0

λjbj(x)
∣∣∣∣.

The minimum is attained and is not an infimum. When
bj(x) = xj , the polynomial p∗n(x) is computed using
the Remes algorithm, which is based on its characteri-
zation given by the alternation property of the function
(f −p∗n)(x): p∗n is the best polynomial approximant of
degree n if the error ∥f −p∗n∥∞ is attained by the func-
tion f − p∗n in at least n+ 2 points y0, . . . , yn+1 in the
interval [a, b] and this with alternating sign, meaning
that

∃y0 > y1 > · · · > yn+1 ∈ [a, b] :
(f − p∗n)(yi) = s(−1)i∥f − p∗n∥∞,

s = ±1, i = 0, . . . , n+ 1.

The Remes algorithm is an iterative procedure and the
polynomial p∗n(x) is obtained as the limit. The above
characterization is also called the equioscillation prop-
erty. We illustrate it in figure 7, where we plot the error
ex − p∗3 (x) on [−1,1]. Compare this figure with fig-

–1.0 –0.5 0.5 1.0

–0.006

–0.004

–0.002

0.002

0.004

0.006

0

Figure 7 Error plot of ex − p∗3 (x).

ures 8 and 9, in which the error oscillates but does not
equioscillate.

How much better the (nonlinear) minimax approxi-
mation is, compared with a linear approximation pro-
cedure of degree n such as polynomial interpolation,
Chebyshev approximation, and the like, is expressed
by the norm ∥Pn∥∞ = sup∥f∥∞!1 ∥Pn(f)∥∞ of the lin-
ear operator Pn that associates with a function its par-
ticular linear approximant. Since Pn(p∗n) = p∗n , we
have

∥f − Pn(f)∥∞ = ∥f − p∗n + p∗n − Pn(f)∥∞
= ∥f − p∗n + Pn(p∗n − f)∥∞
! (1+ ∥Pn∥∞)∥f − p∗n∥∞.

The value ∥Pn∥∞ is called the Lebesgue constant. When
dealing with polynomial interpolation, ∥Pn∥∞ = Ln,
with Ln given by (3).

The quality of the continuous best ℓ2 approximant
(such as that in figure 8) is expressed by

∥Pn∥∞ =
1
π

∫ π

0

∣∣∣∣
sin((n+ 1

2 )θ)
sin( 1

2θ)

∣∣∣∣,

which again grows only logarithmically with n. Contin-
uous ℓ2 polynomial approximation and Lagrange inter-
polation in the Chebyshev zeros (such as in figure 9) can
therefore be considered near-best polynomial approxi-
mants.
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Figure 8 Error plot of the Chebyshev
partial sum of degree 3 for ex .
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Figure 9 Error plot of the polynomial interpolant of
degree 3 in the Chebyshev zeros for ex .

3.6 Fourier Series

Let us return to a discrete approximation problem. Our

interest is now in data exhibiting some periodic behav-

ior, such as the description of rotation-invariant geo-

metric figures or the sampling of a sound waveform. A

suitable set of orthogonal basis functions is the set

1, cos(x), cos(2x), . . . , cos(nx),

sin(x), sin(2x), . . . , sin(nx),

⎫
⎬
⎭ (18)

as long as the distinct datapoints xi with i = 0, . . . ,m
are evenly spaced on an interval of length 2π , because
then, for any two basis functions bj(x) and bk(x) from
(18), we have

⟨bj, bk⟩ =
m∑

i=0

bj(xi)bk(xi) =
m+ 1

2
δjk, j ̸= 0,

⟨b0, bk⟩ =
m∑

i=0

b0(xi)bk(xi) = (m+ 1)δ0k,

where δij is the Kronecker delta. For simplicity we
assume that the real data f0, . . . , fm are given on
[0,2π) at

x0 = 0, x1 =
2π
m
, x2 =

4π
m
, . . . , xm = 2mπ

m+ 1
.

Because of the periodicity, the value at xm+1 = 2π
equals the value at x0 and therefore it is not repeated.
Let m " 2n and consider the approximation

λ0

2
+

n∑

j=1

λ2j cos(jx)+
n∑

j=1

λ2j−1 sin(jx).

The values

λ2j =
2

m+ 1

m∑

i=0

fi cos(jxi), j = 0, . . . , n,

λ2j−1 =
2

m+ 1

m∑

i=0

fi sin(jxi), j = 1, . . . , n,

minimize the ℓ2-norm

m∑

i=1

(λ0

2
+

n∑

j=1

λ2j cos(jxi)+
n∑

j=1

λ2j−1 sin(jxi)− fi
)2

.

When m = 2n, the minimum is zero because the least-
squares approximant becomes a trigonometric inter-
polant. Note that we have replaced λ0 by 1

2λ0 because
⟨bj, bj⟩ is smaller by a factor of 2 when j = 0.

If we form a single complex quantityΛj = λ2j−iλ2j−1

for j = 1, . . . , n, where i =
√
−1, these summations can

be computed using a discrete Fourier transform that
maps the data fi at the points xi to the Λj :

Λj =
1

m+ 1

m∑

i=0

fie−i2πij/(m+1), j = 0, . . . , n.
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The functions in (18) also satisfy a continuous
orthogonality property:

∫ 2π

0
cos(jx) cos(kx)dx = πδjk, j ̸= 0,

∫ 2π

0
cos(jx) cos(kx)dx = π

2
δjk, j = 0,

∫ 2π

0
cos(jx) sin(kx)dx = 0,

∫ 2π

0
sin(jx) sin(kx)dx = πδjk.

They can therefore be used for a Fourier series repre-
sentation of a function f(x):

f(x) = λ0

2
+

∞∑

j=1

λ2j cos(jx)+
∞∑

j=1

λ2j−1 sin(jx),

λ2j =
⟨f(x), cos(jx)⟩

π
, j = 0,1, . . . ,

λ2j−1 =
⟨f(x), sin(jx)⟩

π
, j = 1,2, . . . .

The partial sum of trigonometric degreen of this series
minimizes the ℓ2-norm

∫ 2π

0

(
f(x)− λ0

2
−

n∑

j=1

λ2j cos(jx)

−
n∑

j=1

λ2j−1 sin(jx)
)2

dx.

4 Multivariate Interpolation and
Approximation

The approximation of multivariate functions—contin-
uous ones as well as discontinuous ones—is an active
field of research due to its large variety of applica-
tions in the computational sciences and engineering.
A wide range of multivariate generalizations of the
above interpolation and approximation problems to
functions of several variables x,y, z, . . . have therefore
been developed: polynomial and rational ones, discrete
and continuous ones.

A fundamental issue in multivariate interpolation
and approximation is the so-called curse of dimension-
ality, meaning that when the dimensionality increases,
the number of different combinations of variables
grows exponentially in the dimensionality. A poly-
nomial of degree 3 in eight variables already has
165 terms! Another problem is that the polynomial
basis of the multinomials does not satisfy the Haar
condition and there is no easy generalization of this
property to the multivariate case.

(a)

(b)

(c)

Figure 10 Gaussian basis function with
(a) s = 0.4, (b) s = 1, and (c) s = 3.

In order to counter both problems, the theory of
radial basis functions has been developed.

Let us consider data fi given at corresponding mul-
tidimensional vectors xi, i = 0, . . . , n. The data vectors
xi do not have to form a grid but can be scattered. A
radial basis function is a function whose value depends
only on the distance from the origin or from another
point, so its variable is r = ∥x∥2 or r = ∥x − c∥2.
When centering a radial basis function B(r) at each data
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point, there is a basis function B(∥x−xj∥2) for each j =
0, . . . , n. The coefficients aj in a radial basis function
interpolant

∑n
j=0 ajB(∥x − xj∥2) are then computed

from the linear system
n∑

j=0

ajB(∥xi − xj∥2) = fi, i = 0, . . . , n.

Several commonly used types of radial basis functions
B(r) guarantee nonsingular systems of interpolation
conditions, in other words, nonsingular matrices

(
B(∥xi − xj∥2)

)
i,j=0,...,n

.

We mention as examples the Gaussian, multiquadric,
inverse multiquadric, and a member of the Matern
family, respectively, given by

B(r) = e−(sr)
2),

B(r) =
√

1+ (sr)2),

B(r) = 1/
√

1+ (sr)2,
B(r) = (1+ sr)e−sr .

The real parameter s is called a shape parameter. As can
be seen in figure 10, different choices for s greatly influ-
ence the shape of B(r). Smaller shape parameters cor-
respond to a flatter or wider basis function. The choice
of s has a significant impact on the accuracy of the
approximation, and finding an optimal shape param-
eter is not an easy problem. Another concern is the
numerical conditioning of the radial basis interpolation
problem, especially when the shape parameter is small.
The user often has to find the right trade-off between
accuracy and conditioning.

The concept of radial basis function also allows one
to work mesh free. In a mesh or grid of data points each
point has a fixed number of neighbors and this connec-
tivity between neighbors is used to define mathemat-
ical operators such as the derivative and the divided
difference. Multivariate mesh-free methods allow one
to generalize these concepts and are especially use-
ful when the mesh is difficult to maintain (e.g., in
high-dimensional problems, when there is nonlinear
behavior, discontinuities, singularities, etc.).

5 Future Research

Especially in multivariate approximation theory, many
research questions remain unsolved: theory for the
multivariate case is not nearly as well understood as
it is for the univariate case. But researchers continue to
push the boundaries in the one-variable case as well:

what is the largest function class or the most gen-
eral domain for which a result holds, for example?
Many papers can be found on Jackson-type inequalities
(approximation error bounds in terms of the function’s
smoothness), Bernstein-type inequalities (bounds on
derivatives of polynomials), and convergence proper-
ties of particular approximations (polynomial, spline,
rational, trigonometric), to name just a few fundamen-
tal topics. The development of orthogonal basis func-
tions, on disconnected regions or in more variables,
also deserves (and is getting) a lot of attention.
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