
APPROXIMATION THEORY

INTRODUCTION

Approximation theory is a specialized discipline of mathe-
matics that has become indispensable to the computer and
computing sciences. The approximation of magnitudes
and functions describing some physical behavior is an
integral part of scientific computing, queueing problems,
neural networks, graphics, robotics, network traffic,
financial trading, antenna design, floating-point arith-
metic, image processing, speech analysis, and video signal
filtering, to name just a few.

The sense of finding a simple mathematical function
that describes some behavior approximately is twofold.
Either the exact behavior that one is studying cannot be
expressed in a closed mathematical formula or its exact
description is far too complicated for practical use, for
instance, in an implementation. In both cases, an approx-
imate and preferably simple formula is required. Now the
question arises which mathematical functions are consid-
ered simple.

The simplest and fastest functions for implementation
are polynomials, because they only use additions and
multiplications. Then come rational functions, which
also need the hardware divisions, one or more depending
on their representation. Rational functions offer the clear
advantage that they can reproduce asymptotic behavior
(vertical, horizontal, slant), which is something polyno-
mials are incapable of. For periodic phenomena, linear
combinations of trigonometric functions make good can-
didates. For rapidly decaying magnitudes, linear combi-
nations of exponentials can be used.

In approximation theory, one distinguishes between
interpolation and so-called least-squares problems. In
the former, one wants the approximate model to take
exactly the same values as prescribed by given data at
some argument values. In the latter, a set of data is
regarded as a trend and is approximated by a simple model
in the best sense. The difference will be formalized in the
next section.

In the sequel of the presentation, we limit ourselves to a
description of one-dimensional approximation problems.
Although the growth in computer power allows for the
study of more and more complex models and simulations,
the theory of several more-dimensional approximation pro-
blems is still not sufficiently complete. We indicate where
up-to-date literature on the more-dimensional generaliza-
tions can be found.

NUMERICAL INTERPOLATION

Let some data fi be given at some points xi 2 ½a; b� where
i ¼ 0,. . ., n. If points xi are repeated, then in fact not only the
value of some underlying function f(x) is given (or mea-
sured) at xi but also one or more higher derivatives f(j)(xi). In
this section, we deal with the two extreme cases: either the
value of the function and that of the first n derivatives are
all given at one single point x0 or all points xi are mutually
distinct and no derivative information is available. In the

next two subsections polynomials are used, whereas in the
subsections on Padé approximation and on rational inter-
polation, rational functions are used. When n grows large,
polynomial interpolation is not suitable because of the
Runge phenomenon, which is explained below. Another
possibility is the use of piecewise polynomial functions as
interpolant, a technique that is also presented below.

Taylor Series Approximation

We explore the possibility to approximate a function f(x) by
a polynomial of the form

pnðxÞ ¼
Xn

j¼0

d jðx� x0Þ j ð1Þ

It is clear, by successive substitution and derivation, that

pnðx0Þ ¼ d0

p0nðx0Þ ¼ d1

p00nðx0Þ ¼ 2d2

..

.

p
ðnÞ
n ðx0Þ ¼ n!dn:

Hence, if the value of f(x) and its derivatives f(i)(x) for
i ¼ 1,. . ., n are given at the point x0, then the polynomial
pn(x) with d j ¼ f ð jÞðx0Þ= j! satisfies

p
ðiÞ
n ðx0Þ ¼ f ðiÞðx0Þ; i ¼ 0; . . . ;n: ð2Þ

This polynomial is called the Taylor polynomial of degree n
and is the partial sum of degree n of the Taylor series
representation of f(x),

f ðxÞ ¼
X1
j¼0

f ð jÞðx0Þ
j!

ðx� x0Þ j:

The question where the series actually equals the function
f(x) is not within the scope of this exposition.

Newton and Lagrange Interpolation

For n þ 1 given fi ¼ f(xi) at mutually distinct points xi, the
polynomial interpolation problem of degree n,

pnðxÞ ¼
Xn

j¼0

a jx
j; pnðxiÞ ¼ fi; i ¼ 0; . . . ;n

has a unique solution for the coefficients aj. Now let us turn
to the computation of pn(x). Essentially two approaches can
be used, depending on the use of the polynomial interpolant
afterward. If one is interested in easily updating the poly-
nomial interpolant by adding an extra data point and
consequently increasing the degree of pn(x), then Newton’s
formula for the interpolating polynomial is most useful. If
one wants to use the interpolant for several sets of values fi

while keeping the points xi fixed, then Lagrange’s formula
is appropriate.
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In the Newton form one writes the interpolating poly-
nomial pn(x) as

pnðxÞ ¼ b0 þ b1ðx� x0Þ þ b2ðx� x0Þðx� x1Þ
þ . . .þ bnðx� x0Þ � � � ðx� xn�1Þ

The coefficients bj are then obtained as the divided differ-
ences bj ¼ f [x0,. . .,xj] from the recursive scheme

f ½x j� ¼ f j; j ¼ 0; . . . ;n

f ½x0; x j� ¼
f j � f0
x j � x0

; j ¼ 1; . . . ;n

f ½x0; x1; . . . ; xk�1; xk; x j�

¼
f ½x0; x1; . . . ; xk�1; x j� � f ½x0; x1; . . . ; xk�1;xk�

x j � xk
;

k; j ¼ 2; . . . ;n:

We remark that the divided differences f [x0,. . ., xj] for j ¼
0,. . ., n do not depend on the ordering of the data (xi,fi).
Newton’s form for the interpolating polynomial is very
handy when one wants to update the interpolation with
an additional point (xn+1, fn+1). It suffices to add the term

bnþ1ðx� x0Þ � � � ðx� xnÞ

to pn(x), which does not destroy the previous interpolation
conditions since it evaluates to zero at all the previous xi,
and to complement the recursive scheme for the computa-
tion of the divided differences with the computation of

f ½x0; x1; . . . ; xk; xnþ1�; k ¼ 0; . . . ;n:

In the Lagrange form, which is especially suitable if
the interpolation needs to be repeated for different sets
of fi at the same points xi, another form for pn(x) is used. We
write

pnðxÞ ¼
Xn

j¼0

c jb jðxÞ; b jðxÞ ¼
Yn

k¼0; k 6¼ j

ðx� xkÞ
ðx j � xkÞ

:

The basis functions b jðxÞ satisfy a simple interpolation
condition themselves, namely

b jðxiÞ ¼
�

0 for j 6¼ i

1 for j ¼ i
:

Hence, the choice cj ¼ fj for the coefficients solves the inter-
polation problem. So when altering the fi, without touching
the xi that make up the basis functions b jðxÞ, it takes no
extra computation scheme to get the new coefficients cj.

The Runge Phenomenon

What happens if we continue updating the interpolation
problem with new data, in other words, if we let the degree n
of the interpolating polynomial pn(x) increase? Will the
interpolating polynomial of degree n become better and

better? Surprisingly enough not! At least not for freely
chosen points xi. The next counterexample illustrates
this. Consider

f ðxÞ ¼ 1

1þ 25x2
; �1 � x � 1

and take equidistant interpolation points xi ¼ �1þ 2i/n, i =
0,. . ., n. Then the error (f � p) (x) increases with n, toward
the endpoints of the interval. Take a look at the bell-shaped
f(x) and the interpolating polynomial pn(x) for n¼ 10 and n
¼ 20 in the Figs. 1 and 2.

This phenomenon is called Runge’s phenomenon as he
was the first to discover this behavior for real-valued
interpolation. An explanation for it can be found in the
fundamental theorem of algebra, which states that a poly-
nomial has as many zeroes as its degree. Each of these
zeroes can be real or complex. So if n is large and in case the
zeroes are all real, the polynomial under consideration
displays a very oscillatory behavior.

On the other hand, under certain simple conditions for
f(x), it can be proved that if the interpolation points xi equal

xi ¼
aþ b

2
þ b� a

2
cos

�
ip

n

�
; i ¼ 0; . . . ;n

then

lim
n!1

max
x2 ½�1;1�

jð f � pnÞðxÞj ¼ 0:

The effect of this choice of interpolation points, if it is at all
possible to control the choice of the xi, is illustrated in the
Figs. 3 and 4.

If a lot of accurate datapoints have to be used in an
interpolation scheme, the next subsection offers a better
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Figure 1. Degree 10 equidistant interpolation.
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alternative than a monolithic high-degree polynomial
interpolant.

Spline Interpolation

To avoid the Runge phenomenon when interpolating large
data sets, piecewise polynomials, also called splines, can
be used. To this end we divide the data set of nþ 1 points
into smaller sets each containing 2 data points. Rather
than interpolating the full data set by one n-degree poly-
nomial, we interpolate each of the smaller data sets by a
low-degree polynomial. These separate polynomial func-
tions are then glued together as continuously differenti-
able as possible.

Take, for instance, the data set (xi, fi) with x0<x1< . . . xn,
and consider linear polynomials interpolating every two
consecutive (xi, fi) and (xi+1, fiþ1). These linear polynomial
pieces can be glued together in the data points (xi, fi)
to result in a piecewise linear continuous function or
polygonal curve. Remark that the function is continuous
but not differentiable at the interpolation points since it is
polygonal.

If we introduce two parameters, D and D, to respectively
denote the degree of the polynomial pieces and the differ-
entiability of the overall function, then for the polygonal
curve, D ¼ 1 and D ¼ 0. With D ¼ 2 and D ¼ 1, a piecewise
quadratic and smooth (meaning continuously differenti-
able in the entire interval [x0,. . .,xn]) function is con-
structed. With D ¼ 3 and D ¼ 2, a piecewise cubic and
twice continuously differentiable function is obtained.
The slope of a smooth function is a continuous quantity.
Twice continuously differentiable functions also enjoy con-
tinuous curvature. Can the naked eye distinguish between
continuous and discontinuous curvature in a function? The

untrained eye certainly cannot! As an example we take the
cubic polynomial pieces

c1ðxÞ ¼ x3 � x2 þ xþ 1; x2 ½�1; 0�
c2ðxÞ ¼ x3 þ x2 þ xþ 1; x2 ½0; 1�
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Figure 2. Degree 20 equidistant interpolation.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

Figure 3. Degree 10 nonequidistant interpolation.
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Figure 4. Degree 20 nonequidistant interpolation.
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and glue these together in 0. The result is a function that is
continuous and differentiable in the origin, but for the
second derivatives at the origin, we have c

ð2Þ
1 ð0Þ ¼ �2,

whereas c
ð2Þ
2 ð0Þ ¼ þ2. Nevertheless the result of the gluing

procedure shown in Fig. 5 is a very pleasing function that at
first sight looks smooth enough. But although D equals 3, D
is only 1.

Since a trained eye can spot these discontinuities, the
most popular choice for piece-wise polynomial interpolation
in industrial applications is D ¼ 3 and D ¼ 2. For manu-
facturing, the smoothness of the curvature is not unim-
portant.

Let us take a look at the general situation where D ¼ m
and D ¼ m�1. Assume we are given the interpolation
points x0,. . .,xn. With these nþ1 points, we can construct
n intervals [xi,xi+1]. The points x0 and xn are the endpoints,
and the other n�1 interpolation points are called the
internal points. If D ¼ m, then per interval [xi, xi+1]
we have to determine m þ 1 coefficients, because the
explicit formula for the spline on [xi, xi+1] is an m-degree
polynomial:

SðxÞ ¼ siðxÞ; x2 ½xi; xiþ1�; i ¼ 0; . . . ;n� 1

siðxÞ ¼
Xm
j¼0

a
ðiÞ
j x j:

So in total n(m þ 1) unknown coefficients a
ðiÞ
j have to be

computed. From which conditions? There are the n þ 1
interpolation conditions S(xi) ¼ fi, and we have the smooth-
ness or continuity requirements at the internal points,
expressing that several derivatives of si-1(x) evaluated at
the right endpoint of the domain [xi-1, xi] should coincide

with the derivatives of si(x) when evaluated at the left
endpoint of the domain ½xi; xiþ1�,

s
ðkÞ
i�1ðxiÞ ¼ s

ðkÞ
i ðxiÞ; i ¼ 1; . . . ;n� 1; k ¼ 0; . . . ;m� 1:

The latter add another (n �1)m continuity conditions,
which brings us in total to n þ 1 þ (n � 1)m ¼ n(m þ 1)
�m þ 1 conditions for n(m þ1) unknowns. In other words,
we lack m � 1 conditions to determine the m-degree piece-
wise polynomial interpolant with all-over smoothness of
order m � 1. So when m ¼ 1, which is the case of the
piecewise linear spline or polygonal curve, no conditions are
lacking. When m ¼ 2, usually a value for s00ðx0Þ is given as
an additional piece of information. When m¼3, which is the
case of the widely used cubic spline, values for s000ðx0Þ and
s00n�1ðxnÞ are provided (cubic spline with clamped end con-
ditions) or they are set to zero (natural cubic spline).

Padé Approximation

The rational equivalent of the Taylor polynomial (1) satis-
fying Eq. (2) is the irreducible rational function rk,‘(x) of
numerator degree at most k and denominator degree at
most ‘, which satisfies

r
ðiÞ
k;‘ðx0Þ ¼ f ðiÞðx0Þ; i ¼ 0; 1; . . . ;n ð3Þ

with n as large as possible. It is also called the Padé
approximant of degree k over ‘. The aim is to have n ¼
kþ ‘. Two questions originate immediately from the defini-
tion. Why impose at least one condition less than the total
number k þ ‘ þ 2 of coefficients in a rational function of
degree k in the numerator and degree ‘ in the denominator?
Can n actually be less than kþ ‘, and when does that occur
or not occur?

The answer to the first question is simple. A rational
function

pk;‘ðxÞ
qk;‘ðxÞ

¼ a0 þ a1ðx� x0Þ þ . . . akðx� x0Þk

b0 þ b1ðx� x0Þ þ b‘ðx� x0Þ‘

is only unique up to a scalar multiple in numerator and
denominator. Hence, not all coefficients in numerator and
denominator must be fixed by the approximation condi-
tions (3). One coefficient can be determined by the form in
which we want to write down rk;‘ðxÞ, such as the require-
ment to make the numerator monic, or the denominator
monic, or have a normalized constant term in the denomi-
nator. The Padé approximant is still uniquely determined
by Eq. (3).

The answer to the second question requires some ana-
lysis. Computing the numerator and denominator coeffi-
cients of rk;‘ðxÞ from Eq. (3) gives rise to a nonlinear system
of equations. So let us explore whether the Padé approx-
imant can also be obtained from the linearized approxima-
tion conditions

ð fqk;‘ � pk;‘ÞðiÞðx0Þ ¼ 0; i ¼ 0; 1; . . . ; kþ ‘: ð4Þ
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Figure 5. Piecewise cubic function that is not twice continuously
differentiable.
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Indeed, the linearizedconditions (4) always have at leastone
nontrivial solution for the coefficients a0; . . . ; ak; b0; . . . ; b‘,
because they are a homogeneous linear system of kþ ‘þ 1
conditions in kþ ‘þ 2 unknowns,

d0b0 ¼ a0

d1b0 þ d0b1 ¼ a1

..

.

dkb0 þ . . .þ dk�‘b‘ ¼ a‘

;

dkþ1b0 þ . . .þ dk�‘þ1b‘ ¼ 0

..

.

dkþ‘b0 þ . . .þ dkb‘ ¼ 0

8><
>:

8>>><
>>>:
where the dj are given by Eq. (1) with dj ¼ 0 for j < 0.
Moreover, all solutions pk;‘ðxÞ and qk;‘ðxÞ of Eq. (4) are
equivalent in the sense that they have the same irreducible
form. Hence every solution of Eq. (3) with n ¼ k þ ‘ also
satisfies Eq. (4) but not vice versa. From Eq. (4) for pk;‘ðxÞ
and qk;‘ðxÞ, we find for their unique irreducible form
rk;‘ðxÞ ¼ p�k;‘ðxÞ=q�k;‘ðxÞ that

ð f � rk;‘ÞðiÞðx0Þ ¼ 0; i ¼ 0; . . . ; k0 þ ‘0 þ r;

k0 ¼ @ p�k;‘; ‘
0 ¼ @q�k;‘; r� 0:

ð5Þ

In some textbooks, the Padé approximation problem of
degree k over ‘ is said to have no solution if k0 þ ‘0 þ r <
k þ ‘. In others the Padé approximant rk,‘ is identified with
rk0;‘0 ¼ p�k;‘=q

�
k;‘ in that case. This kind of complication does

not occur when using the polynomial model (1). But then a
polynomial model cannot reproduce asymptotic behavior.

Let us illustrate the situation with a simple example.
Take x0 ¼ 0 with d0 ¼ 1, d1¼0, d2 ¼ 1 and k ¼ 1 ¼ ‘. Then
the linearized conditions (4) are

b0 ¼ a0

b1 ¼ a1

b0 ¼ 0:

8<
:

A solution is given by p1,1(x) ¼ x and q1,1(x) ¼ x. Hence we
find r1,1(x) ¼ l, k0 ¼ 0, ‘0 ¼ 0 and

ð f � r1;1Þð2Þðx0Þ ¼ 2 6¼ 0:

Since r ¼ 1, we have k0 þ ‘0 þ r ¼ 1 < k + ‘ ¼ 2.

Rational Interpolation

The rational equivalent of polynomial interpolation at
mutually distinct interpolation points xi consists in finding
an irreducible rational function rk,‘(x), of numerator degree
at most k and denominator degree at most ‘, that satisfies

rk;‘ðxiÞ ¼ fi; i ¼ 0; . . . ; kþ ‘ ð6Þ

where fi ¼ f(xi). Instead of solving Eq. (6), one considers the
linearized equations

ð fqk;‘ � pk;‘ÞðxiÞ ¼ 0; i ¼ 0; . . . ; kþ ‘ ð7Þ

where pk;‘ðxÞ and qk;‘ðxÞ are polynomials of respective
degree k and ‘. Condition (7) is a homogeneous linear
system of kþ‘þ1 equations in k+‘+2 unknowns and, hence,

always has a nontrivial solution. Moreover, as in the Padé
approximation case, all solutions of Eq. (7) are equivalent in
the sense that they deliver the same unique irreducible
rational function.

Bycomputingtheirreducible formrk;‘ðxÞ of pk;‘ðxÞ=qk;‘ðxÞ,
common factors in numerator and denominator are canceled
and it may well be that rk;‘ does not satisfy the interpolation
conditions (6) anymore although pk;‘ and qk;‘ are solutions of
Eq. (7), because one or more of the canceled factors may be of
the form (x � xi) with xi an interpolation point. A simple
example illustrates this. Let x0 ¼ 0, x1 ¼ 1, x2 ¼ 2 with
f0 ¼ 0, f1 ¼ 3, f2 ¼ 3, and take k ¼ 1 ¼ ‘. Then the homo-
genous linear system of interpolation conditions is

a0 ¼ 0

3ðb0 þ b1Þ � ða0 þ a1Þ ¼ 0

3ðb0 þ 2b1Þ � ða0 þ 2a1Þ ¼ 0

8><
>:

A solution is given by p1,1(x) ¼ 3x and q1,1(x) ¼ x. Hence,
r1,1(x)¼ 3 and clearly r1,1(x0) 6¼ f0. The interpolation point x0

is then called unattainable. This problem can only be fixed
by increasing the degrees k and/or ‘ until the interpolation
point is not unattainable anymore. Note that unattainable
interpolation points do not occur in polynomial interpolation
(‘ ¼ 0).

MULTIVARIATE INTERPOLATION

Several multivariate generalizations of the above interpo-
lation problems have been studied in the past decades:

� A nice state of the art on multivariate polynomial
interpolation can be found in Ref. 1, listing different
definitions for divided differences and Newton or
Lagrange forms. In particular we refer to Refs. 2
and 3.

� Reviews of multivariate polynomial spline techniques
for scattered data or data on triangulations are, respec-
tively, given in Refs. 4 and 5.

� Information on how to generalize the concept of Padé
approximation to functions of more variables is
bundled in Ref. 6. Some approaches are closer to the
univariate theory than others.

� For the subject of multivariate rational interpolation
we refer to Ref. 7, with many references to computer
science and engineering applications therein.

LEAST-SQUARES APPROXIMATION

When the quality of the data does not justify that we
impose an exact match on the model, or when the quantity
of the data is just overwhelming and rather depicts a trend
than very precise measurements, then interpolation tech-
niques are of no use. It is far better to find a linear combina-
tion of suitable basis functions that approximates the data
in some best sense. The discrete linear least squares pro-
blem is introduced next. How the bestness or nearness of
the approximation is measured is explained. Different
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measures lead to different approximants and are to be used
in different contexts. The importance of the use of ortho-
gonal basis functions is also illustrated. Then the contin-
uous linear least-squares problem is formulated. Finally, a
way to deal with periodic data is given.

Discrete-Least Squares Approximation

Let us consider a large data set of values fi at points xi that
we want to approximate by a linear combination of some
linearly independent basis functions bj(x):

l1b1ðxiÞ þ . . .þ lnbnðxiÞ ¼ fi; i ¼ 1; . . . ;m�n: ð8Þ

This m 	 n linear system can be written compactly as

Al ¼ f ; l ¼
l1

..

.

ln

0
BB@

1
CCA; f ¼

f1

..

.

fm

0
BB@

1
CCA;

A ¼ ðai jÞm	n ¼ ðb jðxiÞÞm	n: ð9Þ

Unless at least m � n linearly dependent equations can be
found among the m linear equations, the system cannot be
solved exactly. The residual vector is given by

r ¼ f � Al; r2Rm

and the solution l we are looking for is the one that solves
the system best, in other words, that makes the magnitude
(or norm) of the residual vector minimal (it will soon become
apparent why the problem is called a least-squares pro-
blem). This optimization problem usually translates to

ðATAÞl ¼ AT f

which is now a square linear system of equations and is
called the system of normal equations. In practice, the
system of normal equations is never solved since different
numerical techniques, which are applicable directly to the
overdetermined system of linear conditions (9), are more
suitable. It is important to note that if the matrix A of the
overdetermined linear system has maximal column rank,
then the matrix ATA is nonsingular.

Choice of Norm

If the optimal solution to the overdetermined linear system
is the one that makes the norm ||r|| of the residual mini-
mal, then we must decide which norm to use to measure r.
Although norms are in a way equivalent, because they
equal one another up to a scalar multiple, it makes quite
a difference to minimize ||r||1, ||r||2 or ||r||1. Let us
perform the following experiment.

Using a Gaussian random number generator with mean
m and standard deviation s, we generate m numbers fi. The
approximation problem we consider is the computation of
an estimate for m from the datapoints fi. Compare this with
a real-life situation where the data fi are collected by
performing some measurements of a magnitude m and s

represents in a way the accuracy of the measuring tool used

to obtain the fi. In the terminology of the previous subsec-
tion, we want to fit the fi by a multiple of the basis function
b1(x) ¼ 1 because we are looking for the constant m. The
overdetermined linear system takes the form

l1 � 1 ¼ fi; i ¼ 1; . . . ;m:

It is clear that this linear system does not have an exact
solution. The residual vector is definitely nonzero. We shall
see that different criteria or norms can be used to express
the closeness of the estimate l1 for m to the datapoints fi, or
in other words the magnitude of the residual vector r with
components fi � l1, and that the standard deviation s will
also play a role.

If the Euclidean norm or ‘2-norm ||r||2 ¼ (r1
2 þ . . . þ

rm
2)1/2 is used, then the optimal estimate l1

(2) is the mean of
the m measurements fi,

l
ð2Þ
1 ¼ 1

m

Xm
i¼1

fi:

If we choose the ‘1-norm krk1 ¼
Pm

i¼1 jrij as a way to mea-

sure distances, then the value l
ð1Þ
1 , which renders the ‘1-

norm minimal is the median of the values fi. When choosing
as the distance function the ‘1-norm krk1 ¼ maxi¼1;...;mjrij,
then the optimal solution l

ð1Þ
1 to the problem is given by

l
ð1Þ
1 ¼ 1

2
min

i¼1;...;m
fi þ max

i¼1;...;m
fi

� �

This can also be understood intuitively. The value for l1

that makes ||r||1 minimal is the one that makes the
largest deviation minimal, so it should be right in the
middle between the extremal values.

Let us consider an actual example. Take m ¼ 5, s ¼ 0.1,
and m ¼ 10 with fi shown in Fig. 6. Then

l
ð2Þ
1 ¼ 5:00299; l

ð1Þ
1 ¼ 5:04832; l

ð1Þ
1 ¼ 4:97042:

The ‘2-norm solution is clearly the most adequate in this
case, with the ‘1-norm solution as first runner-up. When
introducing a typo in the values fi, the situation changes

4.8

4.9

5

5.1

2 4 6 8 10

Figure 6. m ¼ 5; s ¼ 0:1; m ¼ 10.
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completely. Change for instance the third measurement
f3 ¼ 5:185 . . . to f3 ¼ 8.185. . . to obtain

l
ð2Þ
1 ¼ 5:30299; l

ð1Þ
1 ¼ 5:04832; l

ð1Þ
1 ¼ 6:47042:

This has a dramatic effect on l
ð1Þ
1 , a large effect on l

ð2Þ
1 , but

apparently the ‘1-technique is much more stable and can
better cope with outliers (the median here does not change).
This conclusion does not only hold for our little test
problem, but it is valid in general. If one suspects outliers
in the dataset, then the ‘1-norm is a more appropriate
choice as a distance function than the ‘2-norm. The latter
is the general recommendation in the case of normally
distributed noise on the measurements.

When increasing the standard deviation s from 0.1 to
0.7, which in terms of measurements means that the mea-
suring tool is less accurate, then another important con-
clusion can be drawn. Using the dataset given in Fig. 7, we
find

l
ð2Þ
1 ¼ 5:0685; l

ð1Þ
1 ¼ 4:84329; l

ð1Þ
1 ¼ 4:76951:

The ‘2-norm is still the best choice, but the ‘1-norm has lost
its second place to another distance function. The following
conclusion again holds in general. The ‘1-norm criterion
performs well only in the context of accurate data suffering
relatively small input (round-off) errors. When outliers or
additional errors (such as from manual data input) are
suspected, use of the ‘1-norm is recommended. If the mea-
surement errors are believed to be normally distributed
with mean zero, then the ‘2-norm is the usual choice. And
therefore approximation problems of this type are called
least-squares problems. When using the ‘2-norm as a cri-
terion, the overdetermined linear system (9) translates to
the system of normal equations (10). The usual way to solve
Eq. (9) though is not via Eq. (10) but using techniques to
rewrite the matrix A in a more suitable form.

Orthogonal Basis Functions

In the same way that we prefer to draw a graph using an
orthogonal set of axes (the smaller the angle between the

axes, the more difficult it becomes to make a clear drawing),
it is preferred to use a so-called orthogonal set of basis
functions bj(x) in Eq. (8). The use of orthogonal basis func-
tions bj(x) can tremendously improve the conditioning of
the problem (9).

The notion of orthogonality in a function space parallels
that of orthogonality in the vector space Rk; two elements of
the space are called orthogonal if their inner product h�, �i
equals zero. For two vectors A ¼ (a1,. . .,ak) and
B ¼ (b1,. . .,bk), this translates to

ða1; . . . ;akÞ? ðb1; . . . ; bkÞ, hA;Bi ¼
Xk

j¼1

a jb j ¼ 0

The continuous analogon, where functions replace vectors
and integrals replace sums, is given by

f ðxÞ? gðxÞ; x2 ½a; b�, h f ; gi ¼
Z b

a
f ðxÞgðxÞdx ¼ 0

A more advanced definition of w-orthogonality in addition
uses discrete weights W ¼ (w1,. . .,wk) or a weight function
w(x) defined on the interval [a, b]:

ða1; . . . ;akÞ?wðb1; . . . ; bkÞ,
Xk

j¼1

wja jb j ¼ 0

f ðxÞ?wðxÞgðxÞ; x2 ½a; b�, h f ; giw

¼
Z b

a
f ðxÞgðxÞwðxÞdx ¼ 0:

The function w(x) can assign a larger weight to certain
parts of the interval [a, b]. For instance, the function
wðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

on [�1,1] assigns more weight toward
the endpoints of the interval. For w(x) ¼ 1 and [a,
b] ¼ [�1,1], a sequence of orthogonal polynomials Li(x)
satisfying

Z 1

�1
L jðxÞLkðxÞdx ¼ 0; j 6¼ k

is given by

L0ðxÞ ¼ 1
L1ðxÞ ¼ x

Liþ1ðxÞ ¼
2iþ 1

iþ 1
xLiðxÞ �

i

iþ 1
Li�1ðxÞ; i� 1:

The polynomials Li(x) are called the Legendre polynomials.
For wðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

and [a,b] ¼ [�1,1], a sequence of
orthogonal polynomials Ti(x) satisfying

Z 1

�1
T jðxÞTkðxÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ 0; j 6¼ k

is given by

T0ðxÞ ¼ 1
T1ðxÞ ¼ x
Tiþ1ðxÞ ¼ 2xTiðxÞ � Ti�1ðxÞ; i� 1:
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Figure 7. m ¼ 5; s ¼ 0:1; m ¼ 10.
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The polynomials Ti(x) are called the Chebyshev polyno-
mials. They are also very useful in continuous (versus
discrete) least-squares problems, as discussed below.

When the polynomials are to be used on an interval [a, b]
different from [�1, 1], then the simple change of variable

x! x� aþ b

2

� ��
b� a

2

transforms the interval [a, b] into the interval [�1, 1], on
which the orthogonal polynomials are defined.

Chebyshev Series

Let us choose the basis functions b jðxÞ ¼ TjðxÞ and look for
the coefficients l j that make the ‘2-norm of

f ðxÞ �
Xn

j¼0

l jT jðxÞ; �1 � x � 1

minimal. This is a continuous least-squares problem
because the norm of a function is minimized instead of
the norm of a finite-dimensional vector. Since

f �
Xn

j¼0

l jT j

������
������

2

2

¼ f �
Xn

j¼0

l jT j; f �
Xn

j¼0

l jT j

* +

¼ k fk22 �
Xn

j¼0

h f ;Tji2 þ
Xn

j¼0

ðh f ;T ji � l jÞ2

ð11Þ

in which only the last sum of squares depends on l j, the
minimal is attained for the so-called Chebyshev coefficients
l j ¼ h f ;T ji. Apparently the partial sum of degree n of the
Chebyshev series development of a function,

f ðxÞ ¼
X1
j¼0

h f ;T jiT jðxÞ

is the best polynomial approximation of degree n to f(x) in
the ‘2-sense. Since

f ðxÞ �
Xn

j¼0

h f ;T jiT jðxÞ

������
������ �

X1
j¼nþ1

jh f ;T jij

this error can be made arbitrarily small when the series of
Chebyshev coefficients converges absolutely. It suffices to
choose n sufficiently large.

Minimax Approximation

Instead of minimizing the ‘2-distance (11) between a func-
tion f(x) and a polynomial model for f(x), we can also con-
sider the problem of minimizing the ‘1-distance (12). Every
continuous function f(x) defined on a closed interval [a, b]
has a unique so-called minimax polynomial approximant of
degree n. This means that a unique polynomial pn ¼ p�n of

degree at most n exists that minimizes k f � pnk1, which is
given by

k f � pnk1 ¼ max
x2 ½a;b�

f ðxÞ �
Xn

j¼0

l jx
j

������
������: ð12Þ

The minimum is attained and is not an infimum. It is
computed using the Remes algorithm, which is based on
its characterization being the typical alternation property
of the function ð f � p�nÞðxÞwhen p�nðxÞ equals the minimax
approximation:

k f� p�nk1¼ min
pn2C½x�
k f � pnk1)9 y0 > y1 > . . . > ynþ1 2½a; b�:

ð f � p�nÞðyiÞ ¼ ð�1Þik f � p�nk1 or ð�1Þiþ1k f � p�nk1;

i ¼ 0; . . . ;nþ 1:

Here C½x� denotes the vector space of polynomials with
complex coefficients in the variable x. The Remes algorithm
is an iterative procedure, and the polynomial p�n ðxÞ is only
obtained as the limit.

Fourier Series

Let us return to a discrete approximation problem. Our
interest is now in data exhibiting some periodic behavior,
such as the description of rotation-invariant geometric
figures or the sampling of a sound waveform. A suitable
set of orthogonal basis functions is the set

1; cosðtÞ; cosð2tÞ; . . . ; cosðntÞ; sinðtÞ; sinð2tÞ; . . . ; sinðntÞ ð13Þ

as long as the datapoints ti with i ¼ 1; . . . ;m are evenly
spaced on an interval of length 2p, because then for any
two basis functions bj(t) and bk(t) from Eq. (13), we have

Xm
i¼1

b jðtiÞbkðtiÞ ¼ 0; j 6¼ k:

For simplicity, we assume that the real data f1; . . . ; fm are
given on [0, 2p] at

t1 ¼ 0; t2 ¼
2p

m
; t3 ¼

4p

m
; . . . ; tm ¼

2ðm� 1Þp
m

:

Let m� 2kþ 1 and consider the approximation

l0

2
þ
Xk

j¼1

l2 jcosð jtÞ þ
Xk

j¼1

l2 j�1sinð jtÞ:

The values

l2 j ¼
2

m

Xm
i¼1

ficosð jtiÞ; j ¼ 0; . . . ; k

l2 j�1 ¼
2

m

Xm
i¼1

fisinð jtiÞ; j ¼ 1; . . . ; k
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minimize the ‘2-norm

Xm
i¼1

l0

2
þ
Xk

j¼1

l2cosð jtiÞ þ
Xk

j¼1

l2 j�1sinð jtiÞ � fi

0
@

1
A2

:

If we form for j ¼ 1; . . . ; k a single complex quantity
Lj ¼ l2 j þ il2 j�1, these summations can be computed using
a discrete Fourier transform that maps the data fi at the
points ti to the L j.

If the datapoints are evenly distributed on an interval
[a, b] instead of [0, 2p], then the problem may be
transformed to the interval [0, 2p] by the linear transfor-
mation

t! 2p

b� a
ðt� aÞ:

MULTIVARIATE LEAST-SQUARES PROBLEMS

We focus on linear discrete multivariate least-squares
problems:

� Information on multivariate generalizations of
orthogonal polynomials can be found in Refs. 8
and 9.

� A practical reference for discrete least-squares models
using multivariate basis functions is Ref 10.
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