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1. Introduction 

While the history of continued fractions goes back to Euclid’s algorithm, branched continued 
fractions are only twenty years old. The idea to construct them was born in Lvov (U.S.S.R.) in 
the early sixties. The first and most general form of these fractions was introduced by 
Skorobogatko in [14] together with Droniuk, Bobyk and Ptashnik. 

An ordinary continued frution (CF) is an expression of the form 
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which is often written in more convenient way 

Now suppose we substitute for each of the partial denominators bi an ordinary CF 

Then the CF (1) already looks like 

This process can be repeated where now each b/i is replaced by 
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In this way (2) and hence (1) become 
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Suppose this recursive computation has been performed (I - 1) times. Then the CF (1) is called 
f-branched. If we proceed with the construction of 

nextbranch( I ) 
begin 

XJ ski, 11 
replace b,, I, bY bOi, 3, + C 

I 
_-I 

k=l 
b 

kr, 11 

rename bkr, 1, as b,,+, 11 

call nextbranch( I+ 1) 
end 

then this recursive scheme defines a branched continued fraction (BCF). 
The concept was for the first time introduced in [14]. In this paper 

terminology branched from looking at the computation scheme for an 
Skorobogatko chose the 
ordinary CF, see Fig. 1. 

When this structure is itself copied in each node b; and this process is performed recursively, one 
indeed gets a very tree-like picture, see Fig. 2. 

For the history of BCF we mainly refer to papers of Bodnar. In the near future he will also 
publish a book on this subject. 

+ 

Fig. 1. Computation scheme for an ordinary CF. 
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Fig. 2. Tree-like structure of a BCF. 
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In the beginning branched continued fractions were used to represent the solution of some 
well-known problems in order to establish new algorithms and new theoretical results. Consider 
for instance the solution of the system of linear equations [15] 

n 

c aijXj= ili,n+l, i = I,..., n. 
j=l 

From Cramer’s rule we have 

and after expanding numerator and denominator along the first column 

x, = 
al.n+lA*l + a2.n+lA21 + . l ’ +an,n+lAn* 

al.*All + a2,1A21 + l ’ l +an lAn* ’ . 

where the Aij are the cofactors of the elements aij. Therefore 
I1 

x, = c 
i=l 

ai n+l . 
” aj,lAjl * 

ai.l + C - 
j=l Ail 

j#i 

Since the Aij are determinants of dimension n - 1 they can be expanded in the same way and 
hence a branched continued fraction expression for x1 can be obtained with n - k branches at 
the k th stage. 

Later on, from the construction of BCF the idea originated to use them for the solution of 
multivariate problems. However, the most general form for a BCF was not very useful because 
there was too much freedom in the choice of the partial numerators and denominators [l]. 
Simplifications seemed to be necessary. If an n-dimensions1 problem could be solved using 
n-branched continued fractions instead of infinitely branched continued fractions, then an 
(n + I)-dimensional problem could be attacked by adding a branch to the n-branched continued 
fraction. In this way bivariate problems could be approached using a BCF cf the form (2) 
b?c?use ordinary CFs are often used for univariate problems. We shall see in the next sections 
tnat tlris approach is Indeed successful. The sequel of the text is composed so that the level of 
complexity in the formulas increases steadily. However, if the reader is interested in a chrono- 
logical approach, then he or she should keerp the following historical facts in mind. In [6] 
Kuchminskaya developed a lot of the formulas mentioned in Sections 3 and 4, while in the 
western hemispere several other mathematicians worked on the same problem and published 
their results independently [3,11]. In the middle of this evolution Siemaszko published his own 
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solution to the problem of multivariate approximation [12] and interpolation 
present first. 

2. Bivariate CF expansions and interpolating CF’s introduced by Siemaszlco 

Given a bivariate power series 

f(x, y)= c cijxiyJ = C Cii(XYJi + C C,jXiYi + C Cij.X’Y’, 
(i, j)EN’ iEN i>J i<j 

it is possible to construct a sum of BCFs of the form 

of which the convergent 

Pnb Y) 
4,(x. Y) 

=b,+C +i n XY rl j=l bjO i=l i= -1 

[ 131 which we shall 

(3) 

corresponds with f(x, y) on the subset E of &I2 with E as given in Fig. 3. In other words, 

(f4, - PJX. Y) = C dijx’y’ = C dijxiy’, 

(i. j)EN’\E i>n 
j > n 

The computation scheme for the coefficients in the BCF (3) is described in detail in [12]: the ides 
is to use Viscovatov’s algorithm along shifted diagonals in N ‘. Siemaszko called the convergents 
of this corresponding BCF bivariate Pad& approximants. For a comparison with other defititions 
of Pad6 approximants for bivariate power series we refer to [2]. 

As soon as bivariate Pad6 approximants exist, one would of course also like to solve the 
problem of how to interpolate data spread over several points. To this end a Thiele-type BCF of 
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Fig. 3. Index set of correspodence for p,,/q”. 
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Fig. 4. Index set of interpolation conditions for p,Jq,,. 
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the form (3) proved to be unsuccessful and hence Siemaszko changed the form of his BCF as 
follows. Given data ( A, 1 (i, j) E N 2 > in points (( x,, y,) I( i, j) E IV’), compute a BCF 

b00+ g 
( 

j=l + x-ixj-l j. ‘+q---$$g 
of which the convergent 

I j=l I bji 

Pnb. Y) 
‘1’ 0 ( ) 

%lb~ Y) 
=b,+ c 

j=l 4 x-bT-1 + 
JO “7 1 

(4) 

with m, >, ml >/ l l l >, m, satisfies 

(fqn - Pnltxi, vi) = O 

for (i, j) E E with E as given in Fig. 4. 
The values b,, can be computed using a bivariate inverse difference scheme 1131, 

#[xi] [ Yj] =fijy 

Ic/[ X0 ,-•., XJ[YoYr Ytl 

Xk -x/&1 =- +[xo ,...‘_ w,_,,x,j[.4-) ,..., y,] - qqxo ,..., xJ[.Y(),...,_Y,] 
= A,. b 

From this scheme it is clear that one proceeds along horizontal lines in N2. Of course the roles of 
x and y can be interchanged in (4) and then one proceeds along vertical lines in N2. Remark 
that interchanging x and y yields different interpolants because the algorithm for the inverse 
differences is not symmetric. 

If m=m,= l - ==m,? then we denote the rational interpolant by p,.,,,( x, y)/q,& x, y) and 
th; following error form& can be proved 1131. For 

!D nJ-x* Y> = [U&.m -Pn.m)4n.m+ll(X~ YL 

there exist q0 and {o in intervals J and I that respectively contain the points _v,, . . . , _Y, 

X0,. . .: x, such that for(x, ~)EIxJ, 
I1 n1 

Il. (Y -Yj) I-H 
@n,mix~ Y) = ‘=(“(l + l)j a”+l@n,m(x, y) x-xx,) am+l@n &c Y) 

. a”+ly + ‘7; + l,r y7;+lx 

and 

. 

x=5,, 
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Fig. 5. N’ as a union of prongs. 
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Fig. 6. index set of interpolation conditions for p,,/q,,. 

When all the interpolation points coincide, one needs reciprocal differences for the calculation of 
the limiting values of the inverse differences. Doing so Siemaszko again gets kade approximants 
but now different in form from those given at the beginning of the section. 

Up to now we have looked at N’ as a union of straight lines (diagonal or horizontal or 
vertical). The next sections will illustrate that one can develop more symmetric formulas when 
looking at N2 as a union of prongs. This implies that the partial denominators bi in (1) are 
replaced by a sum of ordinary CFs instead of by a single CF. 

3. Symmetric corresponding BCFs introduced by Kuchminskaya and Murphy-O’Donohoe 

A double power series 

f(s. _r) = c c, , x’f 
(1. ‘)‘Ngl- 

can be written as 

which means that we locate each point in IV’ on a particular prong, see Fig. 5. 
This way to group the terms of f( x. _r) suggests to look for a corresponding BCF of the form 

In [7] and 

’ ~ Ci,r+JX'~'+' , 
j=l J 

I J = I+ 1 1”“~ j=i+l l"lJ 

[l l] it is proved independently that the convergent 

= b,, + 

t1 

c 
‘=I 
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satisfies 

(.fqn -Pn)(xp Y) = C dijxiY'- 
i+j>n 

The b,, are again computed using Viscovatov-like algorithms along each leg of the prong. 
Remark that (5) and pn/qn are symmetric functions of x and _v. Also the form (5) is suitable for 
generalization to bivariate rational interpolation. 

4. Symmetric Thiele-type BCFs introduced by Cuyt-Verdonk and Kuehmiwkaya 

[3] 
Given data ( fij I( i, j) E IV2 } at points ((Xi, Tj) 1 (i, j) E N 2 ) it is proved independently in 
and [15] that one can interpolate these data using a Thiele-type BCF of the form 

The unknowns b,, are symmetric inverse differences given by 

cP[xi] [ Yj] =J;:iT 

Xl - yo 
cp[xo~xll[yol = cp[x,][yJ -cp[xo][y,] ’ 

Yl 3’0 
cp[xol[yo~yxl = cp[x,][y,] -cp[x,][y,] ’ 

Ax O,...y xk][YO] = ‘p[ 
xk - xk-l 

x0 ,.*.,-+2,t&][yO] -~[xO~-**~xk-l][YO] ’ 

~[xO][-v09~~~9 yJ = ‘p[xo][yo,..., y,_2y~~~~-;[xo][yo,..., Y/4] ’ , 

( Xl - Xo)(Y, -Yo) . 
cp[~oJ~l[Yo~Yll = f _f __f +f ’ 

11 01 10 00 

k=k ‘p[x,,...,x,][yO,...,y,] 
= ( xk - xk-l)bk -Y&-l) 

x0 ,...,x,_,,x,][y,,...,y,_,,y,] -~[XO~.-.,Xk-1][YO~...rYk--2ryk] 

-(P[Xo,...r x,_2,x&][yO,..., y&e,] + ~[xO,..*, x,-,][h,...q Yk-I]) 

= &&; b 

‘<l: <p[x,,...,~,][Y() ,..., Y,] 

YI -YI-1 

= <p[xo ,...,x&][y0,*..,y,-2,y,] -~[x,,*..,x,][~~O,...,y,-,] 
= &I; b 
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k>l: cp[x, . . . . . x~][[-v . . . . . _L,] 

_Yk - Xk-1 
I 

TIX (-J,...* Xx-2. x,l[y, 9.... y,] - q[x, ,...9 X,_,][_Y(p.~ yt] 

= bkl. 

For the convergent 

for (i. j) E E with E as given in Fig. 6. 
If we take ,Irc) = . . . = ml;‘) = fl and fit:‘) = . . l = ml;“’ = n, then it is possible to write 

down the following error formula which is proved by Kuchminskaya in [8]. Let 

@,,(s. _I) =f4Js, _I) -p,(x. ,:). 

Then there exist &, & and ql. q2 in intervals I and 9 respectively, containing x0,. . ., x, and 
. 

.lo l * * * ’ v such that for (x. y) E I x J. . II 

1 I n + 1 

@Jx. y) = I-H (n+l)! \,=, x - - x,) 
a”+‘@,,( .K, y) 

ax n+l 
x = e +I 

n + 1 

+ ,fi (y-y;) ““+~f+~* y, 
y=v, 

1 
I1 + 1 

-- 
n! I-U x-x,)(y-y,) 

a 2n+2@n(x, y) 

/=I ax ,?+ Q.v+ *- (&, v2) I 1 * 

Cuyt and Verdonk on the other hand have defined in [4] symmetric reciprocal differences to 
compute limiting values of the b,, in case all the interpolation points coincide. Jr, this case one 
establishes a link between these rational interpolants and convergents of the corresponding BCF 
0). 

5. Perspectives 

Most of the bivariate rational approximants are now under investigation for their use in 
numerical applications such as the convergence acceleration of multidimensional tables, the 
solution of systems of nonlinear equations with singularities in the neighbourhood of the root, 
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the solution of ordinary and partial differential equations, and model reduction in the theory of 
multidimensional signal processing. Other points of interest are convergence criteria for the BCF 
similar to the results of van Vleck, Worpitzky, Pringsheim [9,10] and forward evaluation 
algorithms via the solution of block&diagonal linear systems [S]. 

Since many univariate results do not yet have their multivariate analogon, a lot of work 
remains to be done. 
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